library(tidyverse) # data manipulation
## Warning: package 'tidyverse' was built under R version 4.3.3
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'tibble' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.3
## Warning: package 'readr' was built under R version 4.3.3
## Warning: package 'purrr' was built under R version 4.3.3
## Warning: package 'dplyr' was built under R version 4.3.3
## Warning: package 'stringr' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
## Warning: package 'lubridate' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(broom) # clustering algorithms
## Warning: package 'broom' was built under R version 4.3.3
library(datarium) # clustering algorithms & visualization
## Warning: package 'datarium' was built under R version 4.3.3
library(ggplot2)
data("marketing")
head(marketing, 3)
## youtube facebook newspaper sales
## 1 276.12 45.36 83.04 26.52
## 2 53.40 47.16 54.12 12.48
## 3 20.64 55.08 83.16 11.16
tail(marketing, 3)
## youtube facebook newspaper sales
## 198 212.40 11.16 7.68 15.36
## 199 340.32 50.40 79.44 30.60
## 200 278.52 10.32 10.44 16.08
Sales = β0 + β1 Youtube + ε
model <- lm(sales ~ youtube, data = marketing)
model
##
## Call:
## lm(formula = sales ~ youtube, data = marketing)
##
## Coefficients:
## (Intercept) youtube
## 8.43911 0.04754
model.diag.metrics <- augment(model)
ggplot(model.diag.metrics, aes(youtube, sales)) +
geom_point() +
stat_smooth(method = lm, se = FALSE) +
geom_segment(aes(xend = youtube, yend = .fitted), color = "green", size = 0.3)+
theme_bw()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'
plot(model, 3)
error2 <- residuals(model)^2
model.error <- lm(error2 ~ marketing$youtube)
chi_stat <- dim(marketing)[1]*summary(model.error)$r.square
p_value <- 1 - pchisq(chi_stat, df = 1)
cat("BP =",chi_stat, "; p-value =", p_value)
## BP = 48.03797 ; p-value = 4.180434e-12
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.3.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
bptest(model)
##
## studentized Breusch-Pagan test
##
## data: model
## BP = 48.038, df = 1, p-value = 4.18e-12
p_value <- 1 - pchisq(chi_stat, df = 1)
cat("BP =",chi_stat, "; p-value =", p_value)
## BP = 48.03797 ; p-value = 4.180434e-12
log.model<-lm(log(sales) ~ youtube, data = marketing)
log.model
##
## Call:
## lm(formula = log(sales) ~ youtube, data = marketing)
##
## Coefficients:
## (Intercept) youtube
## 2.189514 0.003156
plot(log.model, 3)
bptest(log.model)
##
## studentized Breusch-Pagan test
##
## data: log.model
## BP = 1.1959, df = 1, p-value = 0.2742
plot(log.model, 2)
error <- residuals(log.model)
ecdf_function <- ecdf(error)
t_cdf <- pnorm(error, mean = 0, sd = sd(error))
e_cdf <- ecdf_function(error)
D <- max(abs(e_cdf - t_cdf))
print(D)
## [1] 0.0658037
ks.test(error, "pnorm", 0, sd(error))
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: error
## D = 0.070804, p-value = 0.2686
## alternative hypothesis: two-sided
ks.test(error, "pnorm", 0, sd(residuals(model)))
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: error
## D = 0.45656, p-value < 2.2e-16
## alternative hypothesis: two-sided
plot(log.model, 1)
n <- dim(marketing)[1]
r <- cor(error[-1], error[-n])
DW <- 2*(1-r)
DW
## [1] 1.819105
dU <- 1.778
if(DW > dU && DW < 4-dU){
cat("No Autocorrelation, DW = ", DW)
} else {
cat("Autocorrelation exists, DW = ", DW)
}
## No Autocorrelation, DW = 1.819105
dwtest(log.model)
##
## Durbin-Watson test
##
## data: log.model
## DW = 1.81, p-value = 0.08847
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(model)
##
## Durbin-Watson test
##
## data: model
## DW = 1.9347, p-value = 0.3213
## alternative hypothesis: true autocorrelation is greater than 0
#####Menambahkan Variabel Kedalam Model ##### sales = β0 + β1youtube + β2facebook + β3newspaper + ε
model.mlr <- lm(sales ~ youtube + facebook + newspaper, data = marketing)
library(reshape2)
## Warning: package 'reshape2' was built under R version 4.3.3
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
marketing$fit.r <- model.mlr$residuals
marketing$fit.p <- model.mlr$fitted.values
marketing %>%
melt(measure.vars = c("youtube", "facebook", "newspaper", "fit.p")) %>%
ggplot(aes(value, fit.r, group = variable)) +
geom_point(shape = 1) +
geom_smooth(method = loess) +
geom_hline(yintercept = 0) +
facet_wrap(~ variable, scales = "free")
## `geom_smooth()` using formula = 'y ~ x'
Setelah linieritas, kita juga dapat memeriksa apakah model ini mengalami heteroskedasititas atau homoskedasititas.
marketing$fit.r <- model.mlr$residuals
marketing$fit.p <- model.mlr$fitted.values
marketing$sqrt.fit.r <- sqrt(abs(marketing$fit.r))
marketing_long <- marketing %>%
melt(measure.vars = c("youtube", "facebook", "newspaper", "fit.p"))
ggplot(marketing_long, aes(value, sqrt.fit.r, group = variable)) +
geom_point(shape = 1) +
geom_smooth(method = "loess") +
geom_hline(yintercept = 0, linetype = "dashed") +
facet_wrap(~ variable, scales = "free") +
labs(x = "Fitted values / Original Variable", y = "Square Root of |Residuals|") +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
library(lmtest)
bptest(model.mlr)
##
## studentized Breusch-Pagan test
##
## data: model.mlr
## BP = 5.1329, df = 3, p-value = 0.1623
Karena p-value lebih dari 0.05 maka dapat disimpulkan dapat bersifat homosekdastisitas.
Setelah itu, kita dapat memeriksa normalitas dari model.
plot(model.mlr, 2)
Berdasarkan Q-Q plot, sebagian besar residual model mengikuti distribusi normal dengan baik, terutama di bagian tengah, meskipun ada penyimpangan kecil di bagian ekor kiri dan kanan yang menunjukkan kemungkinan keberadaan outlier atau heavy tails. Agar kita tahu, kita dapat lakukan tes Kolmogrov-Smirnov.
error <- residuals(model.mlr)
e_cdf <- ecdf(error)
t_cdf <- pnorm(error, mean = 0, sd = sd(error))
D <- max(abs(e_cdf(error) - t_cdf))
print(D)
## [1] 0.1269655
ks.test(error, "pnorm", 0, sd(error))
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: error
## D = 0.13197, p-value = 0.001887
## alternative hypothesis: two-sided
Berdasarkan uji Kolmogorov-Smirnov, diperoleh nilai p-value sebesar 0.001887, yang lebih kecil dari 0.05, sehingga dapat disimpulkan bahwa residual tidak berdistribusi normal secara statistik.
Selanjutnya kita akan memeriksa apa terjadi autokorelasi pada model kita.
n <- dim(marketing)[1]
r <- cor(error[-1], error[-n])
DW <- 2*(1-r)
DW
## [1] 2.094184
dU <- 1.788 #n= 200 dan k= 3
if(DW > dU && DW < 4-dU){
cat("No Autocorrelation, DW = ", DW)
} else {
cat("Autocorrelation exists, DW = ", DW)
}
## No Autocorrelation, DW = 2.094184
dwtest(model.mlr)
##
## Durbin-Watson test
##
## data: model.mlr
## DW = 2.0836, p-value = 0.7236
## alternative hypothesis: true autocorrelation is greater than 0
Karena nilai p value lebih dari 0.05 dapat disimpulkan bahwa tidak terjadi autocorrelation pada model ini.
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.3.3
## corrplot 0.95 loaded
corrplot.mixed(cor(marketing[,1:4]), upper = "square")
m_youtube <- lm(youtube ~ facebook + newspaper, data = marketing)
m_facebook <- lm(facebook ~ youtube + newspaper, data = marketing)
m_newspaper <- lm(newspaper ~ youtube + facebook, data = marketing)
R2_youtube <- summary(m_youtube)$r.sq
R2_facebook <- summary(m_facebook)$r.sq
R2_newspaper <- summary(m_newspaper)$r.sq
VIF_y <- 1/(1-R2_youtube)
VIF_f <- 1/(1-R2_facebook)
VIF_n <- 1/(1-R2_newspaper)
#Let's check the vIF
data.frame(Youtube = VIF_y,
Facebook = VIF_f,
Newspaper = VIF_n)
## Youtube Facebook Newspaper
## 1 1.004611 1.144952 1.145187
library(car)
## Warning: package 'car' was built under R version 4.3.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.3
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
vif(model.mlr)
## youtube facebook newspaper
## 1.004611 1.144952 1.145187
marketing$X4 <- 0.5*marketing$facebook + marketing$newspaper + rnorm(n,0,2)
model.update <- lm(sales ~ youtube + facebook + newspaper + X4, data = marketing)
model.update
##
## Call:
## lm(formula = sales ~ youtube + facebook + newspaper + X4, data = marketing)
##
## Coefficients:
## (Intercept) youtube facebook newspaper X4
## 3.52509 0.04575 0.17358 -0.02948 0.02881
m_x4 <- lm(X4 ~ newspaper + youtube + facebook, data = marketing)
R2_x4 <- summary(m_x4)$r.square
1/(1- R2_x4)
## [1] 260.4106
#Bandingkan with vif dari car:
vif(model.update)
## youtube facebook newspaper X4
## 1.005493 25.232403 188.792241 260.410587
Setelah menambahkan variabel baru (X4), VIF dan R-squared menunjukkan bahwa tidak ada masalah multikolinearitas yang signifikan.
Dengan memanfaatkan fungsi bawaan dari R, kita sudah bisa mendapatkan gambaran atau analisis yang cukup baik untuk mengevaluasi model. Namun, jika menggunakan sintaks manual, hasil yang diperoleh bisa lebih rinci, meskipun memerlukan pengecekan berulang untuk memastikan bahwa sintaks yang digunakan sudah benar.