plot_probability_stacked(df_long_bi_prob)impossibilities_pilot_analysis
1 preprocessing
2 plotting
2.1 binary
combined_plot_with_title(filter(df_prob, batch == "binary"), filter(df_sur, batch == "binary"), plot_probability_means, plot_surprise_means, "participants (N = 16), binary batch")Warning: Removed 336 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 336 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 312 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 312 rows containing non-finite outside the scale range
(`stat_summary()`).
2.2 continuous batch
combined_plot_with_title(filter(df_prob, batch == "continuous"), filter(df_sur, batch == "continuous"), plot_probability_means, plot_surprise_means, "participants (N = 16), binary batch")Warning: Removed 328 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 328 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 312 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 312 rows containing non-finite outside the scale range
(`stat_summary()`).
2.3 combined
combined_plot_with_title(df_prob, df_sur, plot_probability_means_nofacet, plot_surprise_means_nofacet, "all participants (N = 32), combined batch")Warning: Removed 664 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 664 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 624 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 624 rows containing non-finite outside the scale range
(`stat_summary()`).
combined_plot_with_title(df_prob, df_sur, plot_probability_means, plot_surprise_means, "all participants (N = 32), combined batch")Warning: Removed 664 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 664 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 624 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 624 rows containing non-finite outside the scale range
(`stat_summary()`).
2.4 compare binary vs continuous question asking method
combined_plot_with_title(filter(df_prob, batch == "binary"), filter(df_prob, batch == "continuous"), plot_probability_means, plot_probability_means, "Top: binary (yes, no), Bottom: continuous (0-100%)")Warning: Removed 336 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 336 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 328 rows containing non-finite outside the scale range
(`stat_summary()`).
Removed 328 rows containing non-finite outside the scale range
(`stat_summary()`).
3 model
# all subs
## probability/impossibility
m_prob_all <- lmerTest::lmer(response ~ impossible_degree + violation_type + (1|subject), df_prob)
m_prob_all_int <- lmerTest::lmer(response ~ impossible_degree * violation_type + (1|subject), df_prob)
anova(m_prob_all, m_prob_all_int)refitting model(s) with ML (instead of REML)
Data: df_prob
Models:
m_prob_all: response ~ impossible_degree + violation_type + (1 | subject)
m_prob_all_int: response ~ impossible_degree * violation_type + (1 | subject)
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
m_prob_all 13 6521.0 6579.1 -3247.5 6495.0
m_prob_all_int 22 6527.8 6626.3 -3241.9 6483.8 11.128 9 0.267
anova(m_prob_all)Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
impossible_degree 14478 14478 1 606.04 11.932 0.0005904 ***
violation_type 151778 16864 9 606.04 13.898 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(effects::allEffects(m_prob_all))## surprise
m_sur_all <- lmerTest::lmer(response ~ impossible_degree + violation_type + (1|subject), df_sur)
m_sur_all_int <- lmerTest::lmer(response ~ impossible_degree * violation_type + (1|subject), df_sur)
anova(m_sur_all, m_sur_all_int)refitting model(s) with ML (instead of REML)
Data: df_sur
Models:
m_sur_all: response ~ impossible_degree + violation_type + (1 | subject)
m_sur_all_int: response ~ impossible_degree * violation_type + (1 | subject)
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
m_sur_all 13 5860 5917.7 -2917.0 5834
m_sur_all_int 22 5863 5960.6 -2909.5 5819 15.027 9 0.0902 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m_sur_all)Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
impossible_degree 13746 13745.7 1 582.14 22.353 2.849e-06 ***
violation_type 88181 9797.9 9 582.10 15.933 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(effects::allEffects(m_sur_all))