we <- c(68,85,74,88,63,78,90,80,58,63)
we2 <- c(85,91,74,100,82,84,78,100,51,70)
plot(we,we2,
pch = 17,
col= "skyblue",
main ="統計成績與數學成績之散佈圖",
xlab ="統計成績",
ylab ="數學成績")

hist(we,
col= "lightyellow",
main ="數學成績或統計成績的直方圖",
xlab ="統計成績",
ylab ="數學成績")

# Load ggplot2
library(ggplot2)
# Create data
data <- data.frame(
name=c("娛樂休閒","知識閱讀","體育競技","科學創新","公益活動") ,
value=c(185,82,36,28,25) )
# Barplot
ggplot(data, aes(x=name, y=value)) +
geom_bar(stat = "identity", width=0.2, fill="skyblue")

data<- c(185,82,36,28,25)
labels <- c("娛樂休閒","知識閱讀","體育競技","科學創新","公益活動")
pie(data,labels,main ="學生的比例", col=heat.colors(length(data)))

# Library
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.4 ✔ tibble 3.2.1
## ✔ purrr 1.0.4 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Create data
data <- data.frame(
name= c("娛樂休閒","知識閱讀","體育競技","科學創新","公益活動"),
value= c(185,82,36,28,25)
)
# plot
ggplot(data, aes(x=name, y=value)) +
geom_segment( aes(x=name,xend=name,y=0,yend=value)) +
geom_point( size=5, color="red", fill=alpha("orange", 0.3), alpha=0.7, shape=21, stroke=2)

Data <- read.csv("D:/table1_1.csv")
stem(Data$Japanese,scale = 2)
##
## The decimal point is 1 digit(s) to the right of the |
##
## 4 | 9
## 5 | 13
## 5 | 9
## 6 | 13
## 6 |
## 7 |
## 7 | 9
## 8 | 4
## 8 | 9
## 9 | 1
mean(Data$Japanese) #平均數
## [1] 67.9
median(Data$Japanese)#中位數
## [1] 62
as.numeric(names(table(Data$Japanese)))[which.max(table(Data$Japanese))] #眾數
## [1] 49
sd(Data$Japanese)#標準差
## [1] 16.25115
var(Data$Japanese)#變異數
## [1] 264.1
summary(Data$Japanese)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 49.00 54.50 62.00 67.90 82.75 91.00