Using Atomic Vectors
sample(10) + 10
## [1] 12 15 19 20 11 16 13 17 14 18
1:10 + 1:2
## [1] 2 4 4 6 6 8 8 10 10 12
data.frame(a = 1:10, b = 1:2)
## a b
## 1 1 1
## 2 2 2
## 3 3 1
## 4 4 2
## 5 5 1
## 6 6 2
## 7 7 1
## 8 8 2
## 9 9 1
## 10 10 2
#data.frame(a = 1:10, b = 1:3)
x <- sample(10)
x
## [1] 5 4 7 6 9 2 10 3 8 1
x[c(5, 7)]
## [1] 9 10
x[x>5]
## [1] 7 6 9 10 8
Recursive Vectors (Lists)
a <- list(a = 1:3, b = "a string", c = pi, d = list(-1, -5))
a
## $a
## [1] 1 2 3
##
## $b
## [1] "a string"
##
## $c
## [1] 3.141593
##
## $d
## $d[[1]]
## [1] -1
##
## $d[[2]]
## [1] -5
a[1:2]
## $a
## [1] 1 2 3
##
## $b
## [1] "a string"
a[[4]]
## [[1]]
## [1] -1
##
## [[2]]
## [1] -5
a[[4]][2]
## [[1]]
## [1] -5
a[[4]][[2]]
## [1] -5
For Loops
# example from the cheatsheet
for (i in 1:4){
j <- i + 10
print(j)
}
## [1] 11
## [1] 12
## [1] 13
## [1] 14
# example 1: numeric calculation - add 10
x <- 11:15
for (i in seq_along(x)){
j <- x[i] + 10
print(j)
}
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
# save output
y <- vector("integer", length(x))
for (i in seq_along(x)){
y[i] <- x[i] + 10
print(y[i])
}
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
# output
y
## [1] 21 22 23 24 25
# example 2: string operation - extract first letter
x <- c("abc", "xyz")
y <- vector("character", length(x))
for (i in seq_along(x)){
y[i] <- x[i] %>% str_extract("[a-z]")
print(y[i])
}
## [1] "a"
## [1] "x"
# output
y
## [1] "a" "x"
The Map Functions
# example 1: numeric calculation - add 10
x <- 11:15
for (i in seq_along(x)){
j <- x[i] + 10
print(j)
}
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
#using map function
x
## [1] 11 12 13 14 15
map(.x = x, .f = ~.x + 10)
## [[1]]
## [1] 21
##
## [[2]]
## [1] 22
##
## [[3]]
## [1] 23
##
## [[4]]
## [1] 24
##
## [[5]]
## [1] 25
map_dbl(.x = x, .f = ~.x + 10)
## [1] 21 22 23 24 25
add_10 <- function(x){x + 10}
11 %>% add_10()
## [1] 21
map_dbl(.x = x, .f = add_10)
## [1] 21 22 23 24 25
df <- tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
map_dbl(.x = df, .f = mean)
## a b c d
## 0.3103117 -0.5927474 0.4715937 0.3746886
map_dbl(df, median)
## a b c d
## 0.3353912 -0.8984302 0.6009846 0.3988495
map_dbl(df, sd)
## a b c d
## 0.6972186 0.9947352 1.2610560 1.0500844
map_dbl(df, mean, trim = 0.5)
## a b c d
## 0.3353912 -0.8984302 0.6009846 0.3988495