Last Update:

Monday, April 21, 2025

Opening Value:

175.53

Highest Value:

175.7

Lowest Value:

172.66

Adj. Closing Value:

174.52

  • The forecast plot shows the forecasted Toyota stock prices for the next 12 months.

  • The plot also shows the 80% prediction interval in dark purple and the 95% prediction interval in light purple.

  • The numeric values for these forecasted values and prediction intervals are shown in the next tab.

The table below shows the forecast values and 80% and 95% prediction intervals for the 12 requested forecasts for the Toyota stock.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
May 2025 174.42 165.0990 183.7410 160.1648 188.6752
Jun 2025 174.42 161.2381 187.6019 154.2601 194.5799
Jul 2025 174.42 158.2756 190.5644 149.7292 199.1108
Aug 2025 174.42 155.7780 193.0620 145.9095 202.9305
Sep 2025 174.42 153.5776 195.2624 142.5443 206.2957
Oct 2025 174.42 151.5883 197.2517 139.5020 209.3380
Nov 2025 174.42 149.7590 199.0810 136.7042 212.1358
Dec 2025 174.42 148.0562 200.7838 134.1001 214.7399
Jan 2026 174.42 146.4570 202.3830 131.6543 217.1857
Feb 2026 174.42 144.9444 203.8956 129.3410 219.4990
Mar 2026 174.42 143.5058 205.3342 127.1407 221.6993
Apr 2026 174.42 142.1311 206.7089 125.0384 223.8016
  • In March of 2026, the Toyota stock price is forecasted to be 174 dollars.

  • The width of the 80% prediction interval for this forecast in March of 2026 is 62 dollars.
  • These three residual plots allow the analyst to examine the distribution of the residuals of the modeled time series.

  • Despite increasing volatility, our stock price model is estimated to be 95.5% accurate.

  • This doesn’t guarantee that forecasts will be 95.5% accurate but it does improve our chances of accurate forecasting.


This dashboard was created using Quarto in RStudio, and the R Language and Environment.

The dataset used to create this dashboard was downloaded from Yahoo Finance.

Software Citations

Allaire, J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2024). Quarto (Version 1.5.57). doi.org/10.5281/zenodo.5960048 https://doi.org/10.5281/zenodo.5960048

Arnold J (2024). ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 5.1.0, https://CRAN.R-project.org/package=ggthemes.

Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package version 2.0.3, https://CRAN.R-project.org/package=magrittr.

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2025). forecast: Forecasting functions for time series and linear models. R package version 8.24.0, https://pkg.robjhyndman.com/forecast/.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, 27(3), 1-22. doi:10.18637/jss.v027.i03 https://doi.org/10.18637/jss.v027.i03.

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer.

Posit team (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rinker, T. W. & Kurkiewicz, D. (2017). pacman: Package Management for R. version 0.5.0. Buffalo, New York. http://github.com/trinker/pacman

Vanderkam D, Allaire J, Owen J, Gromer D, Thieurmel B (2018). dygraphs: Interface to ‘Dygraphs’ Interactive Time Series Charting Library. R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.

Xie Y (2025). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.50, https://yihui.org/knitr/.

Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC. ISBN 978-1498716963

Yihui Xie (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In Victoria Stodden, Friedrich Leisch and Roger D. Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN 978-1466561595

Zhu H (2024). kableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R package version 1.4.0, https://github.com/haozhu233/kableExtra, http://haozhu233.github.io/kableExtra/.