Last Update:

Monday, April 21, 2025

Opening Value:

175.1

Highest Value:

177.98

Lowest Value:

171.41

Adj. Closing Value:

175

  • The forecast plot shows the forecasted Coinbase stock prices for the next 12 months.

  • The plot also shows the 80% prediction interval in dark purple and the 95% prediction interval in light purple.

  • The numeric values for these forecasted values and prediction intervals are shown in the next tab.

The table below shows the forecast values and 80% and 95% prediction intervals for the 12 requested forecasts for the Coinbase stock.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Feb 2025 174.52 124.068431 224.9716 97.360982 251.6790
Mar 2025 174.52 103.170706 245.8693 65.400668 283.6393
Apr 2025 174.52 87.135317 261.9047 40.876657 308.1634
May 2025 174.52 73.616858 275.4232 20.201960 328.8380
Jun 2025 174.52 61.706858 287.3332 1.987185 347.0528
Jul 2025 174.52 50.939394 298.1006 -14.480230 363.5202
Aug 2025 174.52 41.037689 308.0023 -29.623580 378.6636
Sep 2025 174.52 31.821407 317.2186 -43.718668 392.7587
Oct 2025 174.52 23.165285 325.8747 -56.957063 405.9971
Nov 2025 174.52 14.978122 334.0619 -69.478248 418.5183
Dec 2025 174.52 7.191067 341.8489 -81.387522 430.4275
Jan 2026 174.52 -0.249371 349.2894 -92.766690 441.8067
  • In March of 2026, the Coinbase stock price is forecasted to be 175 dollars.

  • The width of the 80% prediction interval for this forecast in March of 2026 is 335 dollars.
  • These three residual plots allow the analyst to examine the distribution of the residuals of the modeled time series.

  • Despite increasing volatility, our stock price model is estimated to be 81% accurate.

  • This doesn’t guarantee that forecasts will be 81% accurate but it does improve our chances of accurate forecasting.


This dashboard was created using Quarto in RStudio, and the R Language and Environment.

The dataset used to create this dashboard was downloaded from Yahoo Finance.

Software Citations

Allaire, J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2024). Quarto (Version 1.5.57). doi.org/10.5281/zenodo.5960048 https://doi.org/10.5281/zenodo.5960048

Arnold J (2024). ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 5.1.0, https://CRAN.R-project.org/package=ggthemes.

Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package version 2.0.3, https://CRAN.R-project.org/package=magrittr.

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2025). forecast: Forecasting functions for time series and linear models. R package version 8.24.0, https://pkg.robjhyndman.com/forecast/.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, 27(3), 1-22. doi:10.18637/jss.v027.i03 https://doi.org/10.18637/jss.v027.i03.

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer.

Posit team (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rinker, T. W. & Kurkiewicz, D. (2017). pacman: Package Management for R. version 0.5.0. Buffalo, New York. http://github.com/trinker/pacman

Vanderkam D, Allaire J, Owen J, Gromer D, Thieurmel B (2018). dygraphs: Interface to ‘Dygraphs’ Interactive Time Series Charting Library. R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.

Xie Y (2025). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.50, https://yihui.org/knitr/.

Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC. ISBN 978-1498716963

Yihui Xie (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In Victoria Stodden, Friedrich Leisch and Roger D. Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN 978-1466561595

Zhu H (2024). kableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R package version 1.4.0, https://github.com/haozhu233/kableExtra, http://haozhu233.github.io/kableExtra/.