Last Update:

Monday, April 21, 2025

Opening Value:

193.27

Highest Value:

193.8

Lowest Value:

189.81

Adj. Closing Value:

193.16

  • The forecast plot shows the forecasted Apple Inc stock prices for the next 12 months.

  • The plot also shows the 80% prediction interval in dark purple and the 95% prediction interval in light purple.

  • The numeric values for these forecasted values and prediction intervals are shown in the next tab.

The table below shows the forecast values and 80% and 95% prediction intervals for the 12 requested forecasts for the Apple Inc stock.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
May 2025 224.3744 215.0368 233.7121 210.0937 238.6552
Jun 2025 225.5589 212.3534 238.7643 205.3628 245.7549
Jul 2025 226.7433 210.5700 242.9166 202.0083 251.4782
Aug 2025 227.9277 209.2524 246.6030 199.3662 256.4892
Sep 2025 229.1121 208.2325 249.9918 197.1794 261.0448
Oct 2025 230.2965 207.4240 253.1691 195.3160 265.2771
Nov 2025 231.4810 206.7758 256.1861 193.6977 269.2643
Dec 2025 232.6654 206.2545 259.0763 192.2734 273.0574
Jan 2026 233.8498 205.8368 261.8628 191.0076 276.6920
Feb 2026 235.0342 205.5059 264.5626 189.8746 280.1939
Mar 2026 236.2187 205.2491 267.1882 188.8548 283.5825
Apr 2026 237.4031 205.0565 269.7497 187.9332 286.8730
  • In March of 2026, the Apple Inc stock price is forecasted to be 236 dollars.

  • The width of the 80% prediction interval for this forecast in March of 2026 is 62 dollars.
  • These three residual plots allow the analyst to examine the distribution of the residuals of the modeled time series.

  • Despite increasing volatility, our stock price model is estimated to be 92.7% accurate.

  • This doesn’t guarantee that forecasts will be 92.7% accurate but it does improve our chances of accurate forecasting.


This dashboard was created using Quarto in RStudio, and the R Language and Environment.

The dataset used to create this dashboard was downloaded from Yahoo Finance.

Software Citations

Allaire, J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2024). Quarto (Version 1.5.57). doi.org/10.5281/zenodo.5960048 https://doi.org/10.5281/zenodo.5960048

Arnold J (2024). ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 5.1.0, https://CRAN.R-project.org/package=ggthemes.

Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package version 2.0.3, https://CRAN.R-project.org/package=magrittr.

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2025). forecast: Forecasting functions for time series and linear models. R package version 8.24.0, https://pkg.robjhyndman.com/forecast/.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, 27(3), 1-22. doi:10.18637/jss.v027.i03 https://doi.org/10.18637/jss.v027.i03.

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer.

Posit team (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rinker, T. W. & Kurkiewicz, D. (2017). pacman: Package Management for R. version 0.5.0. Buffalo, New York. http://github.com/trinker/pacman

Vanderkam D, Allaire J, Owen J, Gromer D, Thieurmel B (2018). dygraphs: Interface to ‘Dygraphs’ Interactive Time Series Charting Library. R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.

Xie Y (2025). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.50, https://yihui.org/knitr/.

Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC. ISBN 978-1498716963

Yihui Xie (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In Victoria Stodden, Friedrich Leisch and Roger D. Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN 978-1466561595

Zhu H (2024). kableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R package version 1.4.0, https://github.com/haozhu233/kableExtra, http://haozhu233.github.io/kableExtra/.