Last Update:

Monday, April 21, 2025

Opening Value:

75.39

Highest Value:

75.73

Lowest Value:

73.55

Adj. Closing Value:

74.04

  • The forecast plot shows the forecasted Bank of New York stock prices for the next 12 months.

  • The plot also shows the 80% prediction interval in dark purple and the 95% prediction interval in light purple.

  • The numeric values for these forecasted values and prediction intervals are shown in the next tab.

The table below shows the forecast values and 80% and 95% prediction intervals for the 12 requested forecasts for the Bank of New York stock.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
May 2025 83.60093 80.32394 86.87791 78.58921 88.61265
Jun 2025 83.94761 79.31325 88.58196 76.85997 91.03525
Jul 2025 84.29429 78.61838 89.97019 75.61374 92.97483
Aug 2025 84.64096 78.08699 91.19494 74.61753 94.66440
Sep 2025 84.98764 77.66008 92.31521 73.78110 96.19418
Oct 2025 85.33432 77.30738 93.36126 73.05817 97.61047
Nov 2025 85.68100 77.01091 94.35109 72.42124 98.94076
Dec 2025 86.02768 76.75896 95.29639 71.85240 100.20296
Jan 2026 86.37436 76.54340 96.20531 71.33920 101.40951
Feb 2026 86.72104 76.35830 97.08377 70.87259 102.56948
Mar 2026 87.06771 76.19918 97.93625 70.44573 103.68970
Apr 2026 87.41439 76.06258 98.76620 70.05329 104.77549
  • In March of 2026, the Bank of New York stock price is forecasted to be 87 dollars.

  • The width of the 80% prediction interval for this forecast in March of 2026 is 22 dollars.
  • These three residual plots allow the analyst to examine the distribution of the residuals of the modeled time series.

  • Despite increasing volatility, our stock price model is estimated to be 94.3% accurate.

  • This doesn’t guarantee that forecasts will be 94.3% accurate but it does improve our chances of accurate forecasting.


This dashboard was created using Quarto in RStudio, and the R Language and Environment.

The dataset used to create this dashboard was downloaded from Yahoo Finance.

Software Citations

Allaire, J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2024). Quarto (Version 1.5.57). doi.org/10.5281/zenodo.5960048 https://doi.org/10.5281/zenodo.5960048

Arnold J (2024). ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 5.1.0, https://CRAN.R-project.org/package=ggthemes.

Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package version 2.0.3, https://CRAN.R-project.org/package=magrittr.

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2025). forecast: Forecasting functions for time series and linear models. R package version 8.24.0, https://pkg.robjhyndman.com/forecast/.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, 27(3), 1-22. doi:10.18637/jss.v027.i03 https://doi.org/10.18637/jss.v027.i03.

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer.

Posit team (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rinker, T. W. & Kurkiewicz, D. (2017). pacman: Package Management for R. version 0.5.0. Buffalo, New York. http://github.com/trinker/pacman

Vanderkam D, Allaire J, Owen J, Gromer D, Thieurmel B (2018). dygraphs: Interface to ‘Dygraphs’ Interactive Time Series Charting Library. R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.

Xie Y (2025). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.50, https://yihui.org/knitr/.

Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC. ISBN 978-1498716963

Yihui Xie (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In Victoria Stodden, Friedrich Leisch and Roger D. Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN 978-1466561595

Zhu H (2024). kableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R package version 1.4.0, https://github.com/haozhu233/kableExtra, http://haozhu233.github.io/kableExtra/.