Program 8

Author

Tejaswini Reddy U

Develop an R program to compile all the programmes from 1-7.

1. Develop an R program to quickly explore a given dataset, including categorical analysis using group_by command, and visualize the findings using ggplot2 features.

Step 1 : Load necessary libaries

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(ggplot2)
mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

Step 2 : load the dataset

#LOad dataset
data<-mtcars

#Convert 'cyl' to a factor for categorical analysis
data$cyl <- as.factor(data$cyl) 

Step 3: Group by categorical variables

#Summarize average mpg by cylinder ccategory
summary_data <- data %>%
  group_by(cyl) %>%
  summarise(avg_mpg = mean(mpg), .groups = 'drop')
#display summary
print (summary_data)
# A tibble: 3 × 2
  cyl   avg_mpg
  <fct>   <dbl>
1 4        26.7
2 6        19.7
3 8        15.1

Step-4: Visualizing the findings

#create a bar plot using ggpot2
ggplot(summary_data, aes(x = cyl, y =avg_mpg, fill = cyl))+
  geom_bar(stat = "identity")+
  labs(title = "average MPG by Cylinder Count",
       x= "Number of cylinders" , 
       y= "Average MPG")+
  theme_minimal()

2. Write an R script to create a scatter plot, incorporating categorical analysis through color-coded data points representing different groups, using ggplot2.

Step-1:Load Necessary Libraries

# Load the necesssary library
library(ggplot2)
library(dplyr)

Step-2: Load the Dataset

Explanation:

  • The iris dataset contains 150 samples of iris flowers categorized into 3 species

  • Each sample has the Sepal and the petal measurements.

  • head(data) displays the first few rows.

# load the iris dataset
data<- iris
#display the first few rows
head(data , n=10)
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1           5.1         3.5          1.4         0.2  setosa
2           4.9         3.0          1.4         0.2  setosa
3           4.7         3.2          1.3         0.2  setosa
4           4.6         3.1          1.5         0.2  setosa
5           5.0         3.6          1.4         0.2  setosa
6           5.4         3.9          1.7         0.4  setosa
7           4.6         3.4          1.4         0.3  setosa
8           5.0         3.4          1.5         0.2  setosa
9           4.4         2.9          1.4         0.2  setosa
10          4.9         3.1          1.5         0.1  setosa
table(data$Species)

    setosa versicolor  virginica 
        50         50         50 

Step-3: Create a Scatter Plot

ggplot(data, aes(x = Sepal.Length, y= Sepal.Width, color = Species))+
  geom_point(size=3,alpha = 0.7)+
  labs(title = "Scatter Plot of Sepal Dimensions",
       x= "Sepal length",
       y = "Sepal Width",# legend title
       theme_minimal() + # clean layout
       theme(legend.position = "top")) # move legend to top

3. Implement an R function to generate a line graph depicting the trend of a time-series dataset, with separate lines for each group, utilizing ggplot2’s group aesthetic.

Introduction:

This document demonstrates how to create a time-series line graph using the built-in AirPassengers dataset in R.

The dataset contains monthly airline passenger counts from 1949 to 1960. We will use ggplot2 to visualize trends , with separate lines for each year.

Step 1: Load necessary libraries.

library(tidyr)
library(dplyr)
library(ggplot2)

Step 2: Load the Built-in AirPassengers Dataset

The AirPassengers dataset is a time series object in R.

We first convert it into a dataframe to use it with ggplot2.

#convert time-series data to a dataframe
AirPassengers
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432
as.numeric(AirPassengers)
  [1] 112 118 132 129 121 135 148 148 136 119 104 118 115 126 141 135 125 149
 [19] 170 170 158 133 114 140 145 150 178 163 172 178 199 199 184 162 146 166
 [37] 171 180 193 181 183 218 230 242 209 191 172 194 196 196 236 235 229 243
 [55] 264 272 237 211 180 201 204 188 235 227 234 264 302 293 259 229 203 229
 [73] 242 233 267 269 270 315 364 347 312 274 237 278 284 277 317 313 318 374
 [91] 413 405 355 306 271 306 315 301 356 348 355 422 465 467 404 347 305 336
[109] 340 318 362 348 363 435 491 505 404 359 310 337 360 342 406 396 420 472
[127] 548 559 463 407 362 405 417 391 419 461 472 535 622 606 508 461 390 432
as.numeric(time(AirPassengers))
  [1] 1949.000 1949.083 1949.167 1949.250 1949.333 1949.417 1949.500 1949.583
  [9] 1949.667 1949.750 1949.833 1949.917 1950.000 1950.083 1950.167 1950.250
 [17] 1950.333 1950.417 1950.500 1950.583 1950.667 1950.750 1950.833 1950.917
 [25] 1951.000 1951.083 1951.167 1951.250 1951.333 1951.417 1951.500 1951.583
 [33] 1951.667 1951.750 1951.833 1951.917 1952.000 1952.083 1952.167 1952.250
 [41] 1952.333 1952.417 1952.500 1952.583 1952.667 1952.750 1952.833 1952.917
 [49] 1953.000 1953.083 1953.167 1953.250 1953.333 1953.417 1953.500 1953.583
 [57] 1953.667 1953.750 1953.833 1953.917 1954.000 1954.083 1954.167 1954.250
 [65] 1954.333 1954.417 1954.500 1954.583 1954.667 1954.750 1954.833 1954.917
 [73] 1955.000 1955.083 1955.167 1955.250 1955.333 1955.417 1955.500 1955.583
 [81] 1955.667 1955.750 1955.833 1955.917 1956.000 1956.083 1956.167 1956.250
 [89] 1956.333 1956.417 1956.500 1956.583 1956.667 1956.750 1956.833 1956.917
 [97] 1957.000 1957.083 1957.167 1957.250 1957.333 1957.417 1957.500 1957.583
[105] 1957.667 1957.750 1957.833 1957.917 1958.000 1958.083 1958.167 1958.250
[113] 1958.333 1958.417 1958.500 1958.583 1958.667 1958.750 1958.833 1958.917
[121] 1959.000 1959.083 1959.167 1959.250 1959.333 1959.417 1959.500 1959.583
[129] 1959.667 1959.750 1959.833 1959.917 1960.000 1960.083 1960.167 1960.250
[137] 1960.333 1960.417 1960.500 1960.583 1960.667 1960.750 1960.833 1960.917
class(AirPassengers)
[1] "ts"
data<-data.frame(
  Date = seq(as.Date("1949-01-01"),
             by = "month",
             length.out = length(AirPassengers)
             ),
  Passengers = as.numeric(AirPassengers),
  year = as.factor(format(seq(as.Date("1949-01-01"),
                              by= "month",
                              length.out = length(AirPassengers)) ,"%Y"))
)

#display first few rows
head(data,n=20)
         Date Passengers year
1  1949-01-01        112 1949
2  1949-02-01        118 1949
3  1949-03-01        132 1949
4  1949-04-01        129 1949
5  1949-05-01        121 1949
6  1949-06-01        135 1949
7  1949-07-01        148 1949
8  1949-08-01        148 1949
9  1949-09-01        136 1949
10 1949-10-01        119 1949
11 1949-11-01        104 1949
12 1949-12-01        118 1949
13 1950-01-01        115 1950
14 1950-02-01        126 1950
15 1950-03-01        141 1950
16 1950-04-01        135 1950
17 1950-05-01        125 1950
18 1950-06-01        149 1950
19 1950-07-01        170 1950
20 1950-08-01        170 1950

Step-3: Define a function

plot_time_series<-function(data, x_col, y_col, group_col, title="Air Passenger Trends" ){
  ggplot(data, aes_string(x=x_col,y= y_col , color = group_col,group = group_col))+
    geom_line(size = 1.2)+
    geom_point(size = 2)+
    labs(title = title,
         x="year",
         y="number of passengers",
         color = "year") +
    theme_minimal()+
    theme(legend.position = "top")
}

#call the function
plot_time_series(data,"Date","Passengers" , "year", "Trend of airline passengers over time")
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.

4. Develop a script in R to produce a bar graph displaying the frequency distribution of categorical data in a given dataset, grouped by specific variable, using ggplot2.

#LOAD necessary library
library(ggplot2)

Step 1 : Load the dataset

We use the built-in mtcars dataset, which contains information about different car models.

data <- mtcars
head(data)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

Step 2 : Convert Numeric Data into Categorical data

data$cyl<-as.factor(data$cyl)
data$gear<- as.factor(data$gear)

Step 3: Create bar graph

ggplot(data, aes(x=cyl,fill=gear))+
  geom_bar(position = "dodge")+
  labs(title = "frequncy of cylinders grouped by gear type",
       x="no.of cylinders",
       y="count",
       fill="gears")+
  theme_minimal()

5. Implement an R program to create a histogram illustrating the distribution of a continuous variable, with overlays of density curves for each group, using ggplot2.

Step 1: load required library

library(ggplot2)

C

str(iris) # shows structure of dataset
'data.frame':   150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Step 3:Create Histogram with Group-wise Density Curves

Step 3.1 : Intialize the ggplot with aesthetic mappings

# Start ggplot with iris dataset
# Map Petal.Length to x-axis and fill by Species (grouping variable)

p <- ggplot(data = iris, aes(x = Petal.Length, fill = Species))
p

Step 3.2: Add Histogram Layer

p<- ggplot(data=iris, aes(x= Petal.Length, fill = Species))
p<- p+geom_histogram(aes(y=..density..),
                     alpha=0.4,
                     position = "identity",
                     bins=30)

Step 3.3: Add Density Curve Layer

# Overlay density curves for each group

p <- p + 
  geom_density(aes(color = Species), # Line color by group
  size = 1.2)# Line thickness
p
Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.

Step 3.4: Add Labels and Theme

# Add title and axis labels, and apply clean theme

p <- p + labs(
title = "Distribution of Petal Length with Group-wise Density Curves", 
x = "Petal Length", 
y = "Density")+ 
theme_minimal()

p

Step 3.5: Display the Plot

p

6. Write a R script to construct a box plot showcasing the distribution of a continuous variable , grouped by a categorical variable , using ggplot2’s fill aesthetic.

Step1: Load Required Library

#Load ggplot2 package for visualization
library(ggplot2)

Step2: Explore the Inbuilt Dataset

# Use the built-in 'iris' dataset
# 'Petal.Width' is a continuous variable
# 'Species' is a categorical grouping variable

str(iris)  # View structure of the dataset
'data.frame':   150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris) # View sample data
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Step 3: Construct Box Plot with Grouping

Step 3.1: Initialize ggplot with Aesthetic Mappings

Explanation:

  • x = Species: Grouping variable (categorical)

  • y = Petal.Width: Continuous variable to show distribution

  • fill = Species: Fill box colors by species

# Initialize ggplot with data and aesthetic mappings

p <- ggplot(data = iris, aes(x = Species, y = Petal.Width, fill = Species))

Step 3.2: Add Box Plot Layer

# Add the box plot layer  
p <- p + geom_boxplot()

Explanation:

  • geom_boxplot() creates box plots for each group.

  • Automatically shows median, quartiles, and outliers.

Step 3.3: Add Labels and Theme

# Add title and labels and use a minimal theme
p <- p + labs(title = "Box Plot of Petal Width by Species",               x = "Species",               y = "Petal Width") +          theme_minimal()

Explanation:

  • labs() adds a descriptive title and axis labels.

  • theme_minimal() gives a clean, modern look.

Step 3.4: Display the Plot

# Render the final plot
p

7. Develop a function in R to plot a function curve based on mathematical equation provided as input, with different curve styles for each group, using ggplot2.

Step 1 : Load the library

#Load ggplot2 package for advanced plotting
library(ggplot2)

Step 2 : Create data for the functions

#Create a sequence of x values ringing from -2pi to 2pi
x <- seq(-2*pi, 2*pi, length.out = 500)

#Evaluate sin(x) and cos(x) over the x range
y1 <- sin(x)
y2 <- cos(x)

#Combine data into one data frame
df <- data.frame(
  x = rep(x,2),
  y = c(y1,y2),
  group = rep(c("sin(x)", "cos(x)"), each = length(x))
)
df
               x             y  group
1    -6.28318531  2.449213e-16 sin(x)
2    -6.25800220  2.518045e-02 sin(x)
3    -6.23281909  5.034492e-02 sin(x)
4    -6.20763598  7.547747e-02 sin(x)
5    -6.18245288  1.005622e-01 sin(x)
6    -6.15726977  1.255831e-01 sin(x)
7    -6.13208666  1.505244e-01 sin(x)
8    -6.10690356  1.753702e-01 sin(x)
9    -6.08172045  2.001048e-01 sin(x)
10   -6.05653734  2.247125e-01 sin(x)
11   -6.03135423  2.491777e-01 sin(x)
12   -6.00617113  2.734849e-01 sin(x)
13   -5.98098802  2.976186e-01 sin(x)
14   -5.95580491  3.215637e-01 sin(x)
15   -5.93062180  3.453048e-01 sin(x)
16   -5.90543870  3.688269e-01 sin(x)
17   -5.88025559  3.921151e-01 sin(x)
18   -5.85507248  4.151547e-01 sin(x)
19   -5.82988937  4.379310e-01 sin(x)
20   -5.80470627  4.604296e-01 sin(x)
21   -5.77952316  4.826362e-01 sin(x)
22   -5.75434005  5.045367e-01 sin(x)
23   -5.72915694  5.261173e-01 sin(x)
24   -5.70397384  5.473642e-01 sin(x)
25   -5.67879073  5.682640e-01 sin(x)
26   -5.65360762  5.888035e-01 sin(x)
27   -5.62842451  6.089695e-01 sin(x)
28   -5.60324141  6.287494e-01 sin(x)
29   -5.57805830  6.481306e-01 sin(x)
30   -5.55287519  6.671007e-01 sin(x)
31   -5.52769208  6.856478e-01 sin(x)
32   -5.50250898  7.037601e-01 sin(x)
33   -5.47732587  7.214261e-01 sin(x)
34   -5.45214276  7.386346e-01 sin(x)
35   -5.42695965  7.553746e-01 sin(x)
36   -5.40177655  7.716357e-01 sin(x)
37   -5.37659344  7.874074e-01 sin(x)
38   -5.35141033  8.026798e-01 sin(x)
39   -5.32622722  8.174432e-01 sin(x)
40   -5.30104412  8.316882e-01 sin(x)
41   -5.27586101  8.454057e-01 sin(x)
42   -5.25067790  8.585872e-01 sin(x)
43   -5.22549479  8.712241e-01 sin(x)
44   -5.20031169  8.833086e-01 sin(x)
45   -5.17512858  8.948329e-01 sin(x)
46   -5.14994547  9.057897e-01 sin(x)
47   -5.12476236  9.161722e-01 sin(x)
48   -5.09957926  9.259736e-01 sin(x)
49   -5.07439615  9.351879e-01 sin(x)
50   -5.04921304  9.438090e-01 sin(x)
51   -5.02402993  9.518317e-01 sin(x)
52   -4.99884683  9.592507e-01 sin(x)
53   -4.97366372  9.660615e-01 sin(x)
54   -4.94848061  9.722596e-01 sin(x)
55   -4.92329751  9.778411e-01 sin(x)
56   -4.89811440  9.828026e-01 sin(x)
57   -4.87293129  9.871407e-01 sin(x)
58   -4.84774818  9.908529e-01 sin(x)
59   -4.82256508  9.939368e-01 sin(x)
60   -4.79738197  9.963903e-01 sin(x)
61   -4.77219886  9.982119e-01 sin(x)
62   -4.74701575  9.994006e-01 sin(x)
63   -4.72183265  9.999554e-01 sin(x)
64   -4.69664954  9.998761e-01 sin(x)
65   -4.67146643  9.991628e-01 sin(x)
66   -4.64628332  9.978158e-01 sin(x)
67   -4.62110022  9.958361e-01 sin(x)
68   -4.59591711  9.932248e-01 sin(x)
69   -4.57073400  9.899837e-01 sin(x)
70   -4.54555089  9.861148e-01 sin(x)
71   -4.52036779  9.816205e-01 sin(x)
72   -4.49518468  9.765037e-01 sin(x)
73   -4.47000157  9.707677e-01 sin(x)
74   -4.44481846  9.644161e-01 sin(x)
75   -4.41963536  9.574528e-01 sin(x)
76   -4.39445225  9.498824e-01 sin(x)
77   -4.36926914  9.417097e-01 sin(x)
78   -4.34408603  9.329397e-01 sin(x)
79   -4.31890293  9.235781e-01 sin(x)
80   -4.29371982  9.136308e-01 sin(x)
81   -4.26853671  9.031041e-01 sin(x)
82   -4.24335360  8.920047e-01 sin(x)
83   -4.21817050  8.803397e-01 sin(x)
84   -4.19298739  8.681164e-01 sin(x)
85   -4.16780428  8.553425e-01 sin(x)
86   -4.14262117  8.420263e-01 sin(x)
87   -4.11743807  8.281760e-01 sin(x)
88   -4.09225496  8.138006e-01 sin(x)
89   -4.06707185  7.989091e-01 sin(x)
90   -4.04188874  7.835109e-01 sin(x)
91   -4.01670564  7.676159e-01 sin(x)
92   -3.99152253  7.512341e-01 sin(x)
93   -3.96633942  7.343759e-01 sin(x)
94   -3.94115631  7.170520e-01 sin(x)
95   -3.91597321  6.992734e-01 sin(x)
96   -3.89079010  6.810513e-01 sin(x)
97   -3.86560699  6.623974e-01 sin(x)
98   -3.84042389  6.433233e-01 sin(x)
99   -3.81524078  6.238413e-01 sin(x)
100  -3.79005767  6.039637e-01 sin(x)
101  -3.76487456  5.837031e-01 sin(x)
102  -3.73969146  5.630723e-01 sin(x)
103  -3.71450835  5.420845e-01 sin(x)
104  -3.68932524  5.207529e-01 sin(x)
105  -3.66414213  4.990910e-01 sin(x)
106  -3.63895903  4.771127e-01 sin(x)
107  -3.61377592  4.548317e-01 sin(x)
108  -3.58859281  4.322624e-01 sin(x)
109  -3.56340970  4.094189e-01 sin(x)
110  -3.53822660  3.863158e-01 sin(x)
111  -3.51304349  3.629677e-01 sin(x)
112  -3.48786038  3.393894e-01 sin(x)
113  -3.46267727  3.155959e-01 sin(x)
114  -3.43749417  2.916023e-01 sin(x)
115  -3.41231106  2.674237e-01 sin(x)
116  -3.38712795  2.430756e-01 sin(x)
117  -3.36194484  2.185733e-01 sin(x)
118  -3.33676174  1.939324e-01 sin(x)
119  -3.31157863  1.691685e-01 sin(x)
120  -3.28639552  1.442974e-01 sin(x)
121  -3.26121241  1.193347e-01 sin(x)
122  -3.23602931  9.429635e-02 sin(x)
123  -3.21084620  6.919820e-02 sin(x)
124  -3.18566309  4.405617e-02 sin(x)
125  -3.16047998  1.888621e-02 sin(x)
126  -3.13529688 -6.295735e-03 sin(x)
127  -3.11011377 -3.147369e-02 sin(x)
128  -3.08493066 -5.663168e-02 sin(x)
129  -3.05974755 -8.175375e-02 sin(x)
130  -3.03456445 -1.068240e-01 sin(x)
131  -3.00938134 -1.318265e-01 sin(x)
132  -2.98419823 -1.567454e-01 sin(x)
133  -2.95901512 -1.815649e-01 sin(x)
134  -2.93383202 -2.062692e-01 sin(x)
135  -2.90864891 -2.308428e-01 sin(x)
136  -2.88346580 -2.552699e-01 sin(x)
137  -2.85828269 -2.795352e-01 sin(x)
138  -2.83309959 -3.036232e-01 sin(x)
139  -2.80791648 -3.275186e-01 sin(x)
140  -2.78273337 -3.512064e-01 sin(x)
141  -2.75755027 -3.746715e-01 sin(x)
142  -2.73236716 -3.978989e-01 sin(x)
143  -2.70718405 -4.208740e-01 sin(x)
144  -2.68200094 -4.435822e-01 sin(x)
145  -2.65681784 -4.660091e-01 sin(x)
146  -2.63163473 -4.881405e-01 sin(x)
147  -2.60645162 -5.099624e-01 sin(x)
148  -2.58126851 -5.314608e-01 sin(x)
149  -2.55608541 -5.526222e-01 sin(x)
150  -2.53090230 -5.734332e-01 sin(x)
151  -2.50571919 -5.938805e-01 sin(x)
152  -2.48053608 -6.139512e-01 sin(x)
153  -2.45535298 -6.336326e-01 sin(x)
154  -2.43016987 -6.529121e-01 sin(x)
155  -2.40498676 -6.717776e-01 sin(x)
156  -2.37980365 -6.902171e-01 sin(x)
157  -2.35462055 -7.082189e-01 sin(x)
158  -2.32943744 -7.257715e-01 sin(x)
159  -2.30425433 -7.428639e-01 sin(x)
160  -2.27907122 -7.594852e-01 sin(x)
161  -2.25388812 -7.756249e-01 sin(x)
162  -2.22870501 -7.912727e-01 sin(x)
163  -2.20352190 -8.064188e-01 sin(x)
164  -2.17833879 -8.210534e-01 sin(x)
165  -2.15315569 -8.351673e-01 sin(x)
166  -2.12797258 -8.487517e-01 sin(x)
167  -2.10278947 -8.617978e-01 sin(x)
168  -2.07760636 -8.742973e-01 sin(x)
169  -2.05242326 -8.862425e-01 sin(x)
170  -2.02724015 -8.976256e-01 sin(x)
171  -2.00205704 -9.084395e-01 sin(x)
172  -1.97687393 -9.186773e-01 sin(x)
173  -1.95169083 -9.283325e-01 sin(x)
174  -1.92650772 -9.373990e-01 sin(x)
175  -1.90132461 -9.458710e-01 sin(x)
176  -1.87614150 -9.537432e-01 sin(x)
177  -1.85095840 -9.610106e-01 sin(x)
178  -1.82577529 -9.676686e-01 sin(x)
179  -1.80059218 -9.737129e-01 sin(x)
180  -1.77540907 -9.791397e-01 sin(x)
181  -1.75022597 -9.839456e-01 sin(x)
182  -1.72504286 -9.881276e-01 sin(x)
183  -1.69985975 -9.916829e-01 sin(x)
184  -1.67467664 -9.946093e-01 sin(x)
185  -1.64949354 -9.969050e-01 sin(x)
186  -1.62431043 -9.985685e-01 sin(x)
187  -1.59912732 -9.995987e-01 sin(x)
188  -1.57394422 -9.999950e-01 sin(x)
189  -1.54876111 -9.997572e-01 sin(x)
190  -1.52357800 -9.988854e-01 sin(x)
191  -1.49839489 -9.973802e-01 sin(x)
192  -1.47321179 -9.952424e-01 sin(x)
193  -1.44802868 -9.924735e-01 sin(x)
194  -1.42284557 -9.890752e-01 sin(x)
195  -1.39766246 -9.850497e-01 sin(x)
196  -1.37247936 -9.803996e-01 sin(x)
197  -1.34729625 -9.751277e-01 sin(x)
198  -1.32211314 -9.692374e-01 sin(x)
199  -1.29693003 -9.627324e-01 sin(x)
200  -1.27174693 -9.556170e-01 sin(x)
201  -1.24656382 -9.478955e-01 sin(x)
202  -1.22138071 -9.395729e-01 sin(x)
203  -1.19619760 -9.306545e-01 sin(x)
204  -1.17101450 -9.211459e-01 sin(x)
205  -1.14583139 -9.110532e-01 sin(x)
206  -1.12064828 -9.003827e-01 sin(x)
207  -1.09546517 -8.891412e-01 sin(x)
208  -1.07028207 -8.773359e-01 sin(x)
209  -1.04509896 -8.649742e-01 sin(x)
210  -1.01991585 -8.520640e-01 sin(x)
211  -0.99473274 -8.386134e-01 sin(x)
212  -0.96954964 -8.246310e-01 sin(x)
213  -0.94436653 -8.101257e-01 sin(x)
214  -0.91918342 -7.951067e-01 sin(x)
215  -0.89400031 -7.795834e-01 sin(x)
216  -0.86881721 -7.635657e-01 sin(x)
217  -0.84363410 -7.470638e-01 sin(x)
218  -0.81845099 -7.300882e-01 sin(x)
219  -0.79326788 -7.126496e-01 sin(x)
220  -0.76808478 -6.947590e-01 sin(x)
221  -0.74290167 -6.764279e-01 sin(x)
222  -0.71771856 -6.576678e-01 sin(x)
223  -0.69253545 -6.384906e-01 sin(x)
224  -0.66735235 -6.189085e-01 sin(x)
225  -0.64216924 -5.989340e-01 sin(x)
226  -0.61698613 -5.785796e-01 sin(x)
227  -0.59180302 -5.578583e-01 sin(x)
228  -0.56661992 -5.367833e-01 sin(x)
229  -0.54143681 -5.153678e-01 sin(x)
230  -0.51625370 -4.936255e-01 sin(x)
231  -0.49107060 -4.715702e-01 sin(x)
232  -0.46588749 -4.492159e-01 sin(x)
233  -0.44070438 -4.265766e-01 sin(x)
234  -0.41552127 -4.036669e-01 sin(x)
235  -0.39033817 -3.805012e-01 sin(x)
236  -0.36515506 -3.570941e-01 sin(x)
237  -0.33997195 -3.334606e-01 sin(x)
238  -0.31478884 -3.096157e-01 sin(x)
239  -0.28960574 -2.855744e-01 sin(x)
240  -0.26442263 -2.613520e-01 sin(x)
241  -0.23923952 -2.369639e-01 sin(x)
242  -0.21405641 -2.124255e-01 sin(x)
243  -0.18887331 -1.877524e-01 sin(x)
244  -0.16369020 -1.629602e-01 sin(x)
245  -0.13850709 -1.380647e-01 sin(x)
246  -0.11332398 -1.130816e-01 sin(x)
247  -0.08814088 -8.802680e-02 sin(x)
248  -0.06295777 -6.291619e-02 sin(x)
249  -0.03777466 -3.776568e-02 sin(x)
250  -0.01259155 -1.259122e-02 sin(x)
251   0.01259155  1.259122e-02 sin(x)
252   0.03777466  3.776568e-02 sin(x)
253   0.06295777  6.291619e-02 sin(x)
254   0.08814088  8.802680e-02 sin(x)
255   0.11332398  1.130816e-01 sin(x)
256   0.13850709  1.380647e-01 sin(x)
257   0.16369020  1.629602e-01 sin(x)
258   0.18887331  1.877524e-01 sin(x)
259   0.21405641  2.124255e-01 sin(x)
260   0.23923952  2.369639e-01 sin(x)
261   0.26442263  2.613520e-01 sin(x)
262   0.28960574  2.855744e-01 sin(x)
263   0.31478884  3.096157e-01 sin(x)
264   0.33997195  3.334606e-01 sin(x)
265   0.36515506  3.570941e-01 sin(x)
266   0.39033817  3.805012e-01 sin(x)
267   0.41552127  4.036669e-01 sin(x)
268   0.44070438  4.265766e-01 sin(x)
269   0.46588749  4.492159e-01 sin(x)
270   0.49107060  4.715702e-01 sin(x)
271   0.51625370  4.936255e-01 sin(x)
272   0.54143681  5.153678e-01 sin(x)
273   0.56661992  5.367833e-01 sin(x)
274   0.59180302  5.578583e-01 sin(x)
275   0.61698613  5.785796e-01 sin(x)
276   0.64216924  5.989340e-01 sin(x)
277   0.66735235  6.189085e-01 sin(x)
278   0.69253545  6.384906e-01 sin(x)
279   0.71771856  6.576678e-01 sin(x)
280   0.74290167  6.764279e-01 sin(x)
281   0.76808478  6.947590e-01 sin(x)
282   0.79326788  7.126496e-01 sin(x)
283   0.81845099  7.300882e-01 sin(x)
284   0.84363410  7.470638e-01 sin(x)
285   0.86881721  7.635657e-01 sin(x)
286   0.89400031  7.795834e-01 sin(x)
287   0.91918342  7.951067e-01 sin(x)
288   0.94436653  8.101257e-01 sin(x)
289   0.96954964  8.246310e-01 sin(x)
290   0.99473274  8.386134e-01 sin(x)
291   1.01991585  8.520640e-01 sin(x)
292   1.04509896  8.649742e-01 sin(x)
293   1.07028207  8.773359e-01 sin(x)
294   1.09546517  8.891412e-01 sin(x)
295   1.12064828  9.003827e-01 sin(x)
296   1.14583139  9.110532e-01 sin(x)
297   1.17101450  9.211459e-01 sin(x)
298   1.19619760  9.306545e-01 sin(x)
299   1.22138071  9.395729e-01 sin(x)
300   1.24656382  9.478955e-01 sin(x)
301   1.27174693  9.556170e-01 sin(x)
302   1.29693003  9.627324e-01 sin(x)
303   1.32211314  9.692374e-01 sin(x)
304   1.34729625  9.751277e-01 sin(x)
305   1.37247936  9.803996e-01 sin(x)
306   1.39766246  9.850497e-01 sin(x)
307   1.42284557  9.890752e-01 sin(x)
308   1.44802868  9.924735e-01 sin(x)
309   1.47321179  9.952424e-01 sin(x)
310   1.49839489  9.973802e-01 sin(x)
311   1.52357800  9.988854e-01 sin(x)
312   1.54876111  9.997572e-01 sin(x)
313   1.57394422  9.999950e-01 sin(x)
314   1.59912732  9.995987e-01 sin(x)
315   1.62431043  9.985685e-01 sin(x)
316   1.64949354  9.969050e-01 sin(x)
317   1.67467664  9.946093e-01 sin(x)
318   1.69985975  9.916829e-01 sin(x)
319   1.72504286  9.881276e-01 sin(x)
320   1.75022597  9.839456e-01 sin(x)
321   1.77540907  9.791397e-01 sin(x)
322   1.80059218  9.737129e-01 sin(x)
323   1.82577529  9.676686e-01 sin(x)
324   1.85095840  9.610106e-01 sin(x)
325   1.87614150  9.537432e-01 sin(x)
326   1.90132461  9.458710e-01 sin(x)
327   1.92650772  9.373990e-01 sin(x)
328   1.95169083  9.283325e-01 sin(x)
329   1.97687393  9.186773e-01 sin(x)
330   2.00205704  9.084395e-01 sin(x)
331   2.02724015  8.976256e-01 sin(x)
332   2.05242326  8.862425e-01 sin(x)
333   2.07760636  8.742973e-01 sin(x)
334   2.10278947  8.617978e-01 sin(x)
335   2.12797258  8.487517e-01 sin(x)
336   2.15315569  8.351673e-01 sin(x)
337   2.17833879  8.210534e-01 sin(x)
338   2.20352190  8.064188e-01 sin(x)
339   2.22870501  7.912727e-01 sin(x)
340   2.25388812  7.756249e-01 sin(x)
341   2.27907122  7.594852e-01 sin(x)
342   2.30425433  7.428639e-01 sin(x)
343   2.32943744  7.257715e-01 sin(x)
344   2.35462055  7.082189e-01 sin(x)
345   2.37980365  6.902171e-01 sin(x)
346   2.40498676  6.717776e-01 sin(x)
347   2.43016987  6.529121e-01 sin(x)
348   2.45535298  6.336326e-01 sin(x)
349   2.48053608  6.139512e-01 sin(x)
350   2.50571919  5.938805e-01 sin(x)
351   2.53090230  5.734332e-01 sin(x)
352   2.55608541  5.526222e-01 sin(x)
353   2.58126851  5.314608e-01 sin(x)
354   2.60645162  5.099624e-01 sin(x)
355   2.63163473  4.881405e-01 sin(x)
356   2.65681784  4.660091e-01 sin(x)
357   2.68200094  4.435822e-01 sin(x)
358   2.70718405  4.208740e-01 sin(x)
359   2.73236716  3.978989e-01 sin(x)
360   2.75755027  3.746715e-01 sin(x)
361   2.78273337  3.512064e-01 sin(x)
362   2.80791648  3.275186e-01 sin(x)
363   2.83309959  3.036232e-01 sin(x)
364   2.85828269  2.795352e-01 sin(x)
365   2.88346580  2.552699e-01 sin(x)
366   2.90864891  2.308428e-01 sin(x)
367   2.93383202  2.062692e-01 sin(x)
368   2.95901512  1.815649e-01 sin(x)
369   2.98419823  1.567454e-01 sin(x)
370   3.00938134  1.318265e-01 sin(x)
371   3.03456445  1.068240e-01 sin(x)
372   3.05974755  8.175375e-02 sin(x)
373   3.08493066  5.663168e-02 sin(x)
374   3.11011377  3.147369e-02 sin(x)
375   3.13529688  6.295735e-03 sin(x)
376   3.16047998 -1.888621e-02 sin(x)
377   3.18566309 -4.405617e-02 sin(x)
378   3.21084620 -6.919820e-02 sin(x)
379   3.23602931 -9.429635e-02 sin(x)
380   3.26121241 -1.193347e-01 sin(x)
381   3.28639552 -1.442974e-01 sin(x)
382   3.31157863 -1.691685e-01 sin(x)
383   3.33676174 -1.939324e-01 sin(x)
384   3.36194484 -2.185733e-01 sin(x)
385   3.38712795 -2.430756e-01 sin(x)
386   3.41231106 -2.674237e-01 sin(x)
387   3.43749417 -2.916023e-01 sin(x)
388   3.46267727 -3.155959e-01 sin(x)
389   3.48786038 -3.393894e-01 sin(x)
390   3.51304349 -3.629677e-01 sin(x)
391   3.53822660 -3.863158e-01 sin(x)
392   3.56340970 -4.094189e-01 sin(x)
393   3.58859281 -4.322624e-01 sin(x)
394   3.61377592 -4.548317e-01 sin(x)
395   3.63895903 -4.771127e-01 sin(x)
396   3.66414213 -4.990910e-01 sin(x)
397   3.68932524 -5.207529e-01 sin(x)
398   3.71450835 -5.420845e-01 sin(x)
399   3.73969146 -5.630723e-01 sin(x)
400   3.76487456 -5.837031e-01 sin(x)
401   3.79005767 -6.039637e-01 sin(x)
402   3.81524078 -6.238413e-01 sin(x)
403   3.84042389 -6.433233e-01 sin(x)
404   3.86560699 -6.623974e-01 sin(x)
405   3.89079010 -6.810513e-01 sin(x)
406   3.91597321 -6.992734e-01 sin(x)
407   3.94115631 -7.170520e-01 sin(x)
408   3.96633942 -7.343759e-01 sin(x)
409   3.99152253 -7.512341e-01 sin(x)
410   4.01670564 -7.676159e-01 sin(x)
411   4.04188874 -7.835109e-01 sin(x)
412   4.06707185 -7.989091e-01 sin(x)
413   4.09225496 -8.138006e-01 sin(x)
414   4.11743807 -8.281760e-01 sin(x)
415   4.14262117 -8.420263e-01 sin(x)
416   4.16780428 -8.553425e-01 sin(x)
417   4.19298739 -8.681164e-01 sin(x)
418   4.21817050 -8.803397e-01 sin(x)
419   4.24335360 -8.920047e-01 sin(x)
420   4.26853671 -9.031041e-01 sin(x)
421   4.29371982 -9.136308e-01 sin(x)
422   4.31890293 -9.235781e-01 sin(x)
423   4.34408603 -9.329397e-01 sin(x)
424   4.36926914 -9.417097e-01 sin(x)
425   4.39445225 -9.498824e-01 sin(x)
426   4.41963536 -9.574528e-01 sin(x)
427   4.44481846 -9.644161e-01 sin(x)
428   4.47000157 -9.707677e-01 sin(x)
429   4.49518468 -9.765037e-01 sin(x)
430   4.52036779 -9.816205e-01 sin(x)
431   4.54555089 -9.861148e-01 sin(x)
432   4.57073400 -9.899837e-01 sin(x)
433   4.59591711 -9.932248e-01 sin(x)
434   4.62110022 -9.958361e-01 sin(x)
435   4.64628332 -9.978158e-01 sin(x)
436   4.67146643 -9.991628e-01 sin(x)
437   4.69664954 -9.998761e-01 sin(x)
438   4.72183265 -9.999554e-01 sin(x)
439   4.74701575 -9.994006e-01 sin(x)
440   4.77219886 -9.982119e-01 sin(x)
441   4.79738197 -9.963903e-01 sin(x)
442   4.82256508 -9.939368e-01 sin(x)
443   4.84774818 -9.908529e-01 sin(x)
444   4.87293129 -9.871407e-01 sin(x)
445   4.89811440 -9.828026e-01 sin(x)
446   4.92329751 -9.778411e-01 sin(x)
447   4.94848061 -9.722596e-01 sin(x)
448   4.97366372 -9.660615e-01 sin(x)
449   4.99884683 -9.592507e-01 sin(x)
450   5.02402993 -9.518317e-01 sin(x)
451   5.04921304 -9.438090e-01 sin(x)
452   5.07439615 -9.351879e-01 sin(x)
453   5.09957926 -9.259736e-01 sin(x)
454   5.12476236 -9.161722e-01 sin(x)
455   5.14994547 -9.057897e-01 sin(x)
456   5.17512858 -8.948329e-01 sin(x)
457   5.20031169 -8.833086e-01 sin(x)
458   5.22549479 -8.712241e-01 sin(x)
459   5.25067790 -8.585872e-01 sin(x)
460   5.27586101 -8.454057e-01 sin(x)
461   5.30104412 -8.316882e-01 sin(x)
462   5.32622722 -8.174432e-01 sin(x)
463   5.35141033 -8.026798e-01 sin(x)
464   5.37659344 -7.874074e-01 sin(x)
465   5.40177655 -7.716357e-01 sin(x)
466   5.42695965 -7.553746e-01 sin(x)
467   5.45214276 -7.386346e-01 sin(x)
468   5.47732587 -7.214261e-01 sin(x)
469   5.50250898 -7.037601e-01 sin(x)
470   5.52769208 -6.856478e-01 sin(x)
471   5.55287519 -6.671007e-01 sin(x)
472   5.57805830 -6.481306e-01 sin(x)
473   5.60324141 -6.287494e-01 sin(x)
474   5.62842451 -6.089695e-01 sin(x)
475   5.65360762 -5.888035e-01 sin(x)
476   5.67879073 -5.682640e-01 sin(x)
477   5.70397384 -5.473642e-01 sin(x)
478   5.72915694 -5.261173e-01 sin(x)
479   5.75434005 -5.045367e-01 sin(x)
480   5.77952316 -4.826362e-01 sin(x)
481   5.80470627 -4.604296e-01 sin(x)
482   5.82988937 -4.379310e-01 sin(x)
483   5.85507248 -4.151547e-01 sin(x)
484   5.88025559 -3.921151e-01 sin(x)
485   5.90543870 -3.688269e-01 sin(x)
486   5.93062180 -3.453048e-01 sin(x)
487   5.95580491 -3.215637e-01 sin(x)
488   5.98098802 -2.976186e-01 sin(x)
489   6.00617113 -2.734849e-01 sin(x)
490   6.03135423 -2.491777e-01 sin(x)
491   6.05653734 -2.247125e-01 sin(x)
492   6.08172045 -2.001048e-01 sin(x)
493   6.10690356 -1.753702e-01 sin(x)
494   6.13208666 -1.505244e-01 sin(x)
495   6.15726977 -1.255831e-01 sin(x)
496   6.18245288 -1.005622e-01 sin(x)
497   6.20763598 -7.547747e-02 sin(x)
498   6.23281909 -5.034492e-02 sin(x)
499   6.25800220 -2.518045e-02 sin(x)
500   6.28318531 -2.449213e-16 sin(x)
501  -6.28318531  1.000000e+00 cos(x)
502  -6.25800220  9.996829e-01 cos(x)
503  -6.23281909  9.987319e-01 cos(x)
504  -6.20763598  9.971475e-01 cos(x)
505  -6.18245288  9.949308e-01 cos(x)
506  -6.15726977  9.920831e-01 cos(x)
507  -6.13208666  9.886063e-01 cos(x)
508  -6.10690356  9.845026e-01 cos(x)
509  -6.08172045  9.797745e-01 cos(x)
510  -6.05653734  9.744251e-01 cos(x)
511  -6.03135423  9.684578e-01 cos(x)
512  -6.00617113  9.618763e-01 cos(x)
513  -5.98098802  9.546848e-01 cos(x)
514  -5.95580491  9.468880e-01 cos(x)
515  -5.93062180  9.384906e-01 cos(x)
516  -5.90543870  9.294981e-01 cos(x)
517  -5.88025559  9.199162e-01 cos(x)
518  -5.85507248  9.097508e-01 cos(x)
519  -5.82988937  8.990086e-01 cos(x)
520  -5.80470627  8.876962e-01 cos(x)
521  -5.77952316  8.758210e-01 cos(x)
522  -5.75434005  8.633903e-01 cos(x)
523  -5.72915694  8.504120e-01 cos(x)
524  -5.70397384  8.368945e-01 cos(x)
525  -5.67879073  8.228463e-01 cos(x)
526  -5.65360762  8.082762e-01 cos(x)
527  -5.62842451  7.931936e-01 cos(x)
528  -5.60324141  7.776080e-01 cos(x)
529  -5.57805830  7.615292e-01 cos(x)
530  -5.55287519  7.449676e-01 cos(x)
531  -5.52769208  7.279335e-01 cos(x)
532  -5.50250898  7.104377e-01 cos(x)
533  -5.47732587  6.924915e-01 cos(x)
534  -5.45214276  6.741061e-01 cos(x)
535  -5.42695965  6.552932e-01 cos(x)
536  -5.40177655  6.360647e-01 cos(x)
537  -5.37659344  6.164329e-01 cos(x)
538  -5.35141033  5.964102e-01 cos(x)
539  -5.32622722  5.760092e-01 cos(x)
540  -5.30104412  5.552430e-01 cos(x)
541  -5.27586101  5.341247e-01 cos(x)
542  -5.25067790  5.126676e-01 cos(x)
543  -5.22549479  4.908855e-01 cos(x)
544  -5.20031169  4.687920e-01 cos(x)
545  -5.17512858  4.464013e-01 cos(x)
546  -5.14994547  4.237274e-01 cos(x)
547  -5.12476236  4.007849e-01 cos(x)
548  -5.09957926  3.775882e-01 cos(x)
549  -5.07439615  3.541520e-01 cos(x)
550  -5.04921304  3.304913e-01 cos(x)
551  -5.02402993  3.066210e-01 cos(x)
552  -4.99884683  2.825562e-01 cos(x)
553  -4.97366372  2.583122e-01 cos(x)
554  -4.94848061  2.339045e-01 cos(x)
555  -4.92329751  2.093484e-01 cos(x)
556  -4.89811440  1.846595e-01 cos(x)
557  -4.87293129  1.598536e-01 cos(x)
558  -4.84774818  1.349462e-01 cos(x)
559  -4.82256508  1.099533e-01 cos(x)
560  -4.79738197  8.489070e-02 cos(x)
561  -4.77219886  5.977423e-02 cos(x)
562  -4.74701575  3.461985e-02 cos(x)
563  -4.72183265  9.443525e-03 cos(x)
564  -4.69664954 -1.573879e-02 cos(x)
565  -4.67146643 -4.091113e-02 cos(x)
566  -4.64628332 -6.605752e-02 cos(x)
567  -4.62110022 -9.116202e-02 cos(x)
568  -4.59591711 -1.162087e-01 cos(x)
569  -4.57073400 -1.411817e-01 cos(x)
570  -4.54555089 -1.660652e-01 cos(x)
571  -4.52036779 -1.908433e-01 cos(x)
572  -4.49518468 -2.155005e-01 cos(x)
573  -4.47000157 -2.400209e-01 cos(x)
574  -4.44481846 -2.643892e-01 cos(x)
575  -4.41963536 -2.885898e-01 cos(x)
576  -4.39445225 -3.126074e-01 cos(x)
577  -4.36926914 -3.364267e-01 cos(x)
578  -4.34408603 -3.600327e-01 cos(x)
579  -4.31890293 -3.834104e-01 cos(x)
580  -4.29371982 -4.065449e-01 cos(x)
581  -4.26853671 -4.294216e-01 cos(x)
582  -4.24335360 -4.520260e-01 cos(x)
583  -4.21817050 -4.743438e-01 cos(x)
584  -4.19298739 -4.963607e-01 cos(x)
585  -4.16780428 -5.180629e-01 cos(x)
586  -4.14262117 -5.394365e-01 cos(x)
587  -4.11743807 -5.604681e-01 cos(x)
588  -4.09225496 -5.811442e-01 cos(x)
589  -4.06707185 -6.014518e-01 cos(x)
590  -4.04188874 -6.213780e-01 cos(x)
591  -4.01670564 -6.409101e-01 cos(x)
592  -3.99152253 -6.600358e-01 cos(x)
593  -3.96633942 -6.787430e-01 cos(x)
594  -3.94115631 -6.970197e-01 cos(x)
595  -3.91597321 -7.148543e-01 cos(x)
596  -3.89079010 -7.322357e-01 cos(x)
597  -3.86560699 -7.491527e-01 cos(x)
598  -3.84042389 -7.655946e-01 cos(x)
599  -3.81524078 -7.815510e-01 cos(x)
600  -3.79005767 -7.970118e-01 cos(x)
601  -3.76487456 -8.119672e-01 cos(x)
602  -3.73969146 -8.264076e-01 cos(x)
603  -3.71450835 -8.403240e-01 cos(x)
604  -3.68932524 -8.537075e-01 cos(x)
605  -3.66414213 -8.665496e-01 cos(x)
606  -3.63895903 -8.788421e-01 cos(x)
607  -3.61377592 -8.905774e-01 cos(x)
608  -3.58859281 -9.017479e-01 cos(x)
609  -3.56340970 -9.123465e-01 cos(x)
610  -3.53822660 -9.223666e-01 cos(x)
611  -3.51304349 -9.318017e-01 cos(x)
612  -3.48786038 -9.406460e-01 cos(x)
613  -3.46267727 -9.488937e-01 cos(x)
614  -3.43749417 -9.565396e-01 cos(x)
615  -3.41231106 -9.635790e-01 cos(x)
616  -3.38712795 -9.700073e-01 cos(x)
617  -3.36194484 -9.758205e-01 cos(x)
618  -3.33676174 -9.810149e-01 cos(x)
619  -3.31157863 -9.855871e-01 cos(x)
620  -3.28639552 -9.895344e-01 cos(x)
621  -3.26121241 -9.928541e-01 cos(x)
622  -3.23602931 -9.955442e-01 cos(x)
623  -3.21084620 -9.976029e-01 cos(x)
624  -3.18566309 -9.990291e-01 cos(x)
625  -3.16047998 -9.998216e-01 cos(x)
626  -3.13529688 -9.999802e-01 cos(x)
627  -3.11011377 -9.995046e-01 cos(x)
628  -3.08493066 -9.983951e-01 cos(x)
629  -3.05974755 -9.966526e-01 cos(x)
630  -3.03456445 -9.942779e-01 cos(x)
631  -3.00938134 -9.912728e-01 cos(x)
632  -2.98419823 -9.876390e-01 cos(x)
633  -2.95901512 -9.833790e-01 cos(x)
634  -2.93383202 -9.784953e-01 cos(x)
635  -2.90864891 -9.729911e-01 cos(x)
636  -2.88346580 -9.668698e-01 cos(x)
637  -2.85828269 -9.601354e-01 cos(x)
638  -2.83309959 -9.527922e-01 cos(x)
639  -2.80791648 -9.448447e-01 cos(x)
640  -2.78273337 -9.362981e-01 cos(x)
641  -2.75755027 -9.271576e-01 cos(x)
642  -2.73236716 -9.174293e-01 cos(x)
643  -2.70718405 -9.071191e-01 cos(x)
644  -2.68200094 -8.962337e-01 cos(x)
645  -2.65681784 -8.847799e-01 cos(x)
646  -2.63163473 -8.727650e-01 cos(x)
647  -2.60645162 -8.601967e-01 cos(x)
648  -2.58126851 -8.470829e-01 cos(x)
649  -2.55608541 -8.334319e-01 cos(x)
650  -2.53090230 -8.192523e-01 cos(x)
651  -2.50571919 -8.045533e-01 cos(x)
652  -2.48053608 -7.893440e-01 cos(x)
653  -2.45535298 -7.736341e-01 cos(x)
654  -2.43016987 -7.574337e-01 cos(x)
655  -2.40498676 -7.407529e-01 cos(x)
656  -2.37980365 -7.236024e-01 cos(x)
657  -2.35462055 -7.059930e-01 cos(x)
658  -2.32943744 -6.879358e-01 cos(x)
659  -2.30425433 -6.694425e-01 cos(x)
660  -2.27907122 -6.505245e-01 cos(x)
661  -2.25388812 -6.311941e-01 cos(x)
662  -2.22870501 -6.114634e-01 cos(x)
663  -2.20352190 -5.913449e-01 cos(x)
664  -2.17833879 -5.708514e-01 cos(x)
665  -2.15315569 -5.499959e-01 cos(x)
666  -2.12797258 -5.287916e-01 cos(x)
667  -2.10278947 -5.072520e-01 cos(x)
668  -2.07760636 -4.853907e-01 cos(x)
669  -2.05242326 -4.632216e-01 cos(x)
670  -2.02724015 -4.407588e-01 cos(x)
671  -2.00205704 -4.180164e-01 cos(x)
672  -1.97687393 -3.950090e-01 cos(x)
673  -1.95169083 -3.717510e-01 cos(x)
674  -1.92650772 -3.482573e-01 cos(x)
675  -1.90132461 -3.245428e-01 cos(x)
676  -1.87614150 -3.006224e-01 cos(x)
677  -1.85095840 -2.765114e-01 cos(x)
678  -1.82577529 -2.522251e-01 cos(x)
679  -1.80059218 -2.277788e-01 cos(x)
680  -1.77540907 -2.031880e-01 cos(x)
681  -1.75022597 -1.784684e-01 cos(x)
682  -1.72504286 -1.536356e-01 cos(x)
683  -1.69985975 -1.287054e-01 cos(x)
684  -1.67467664 -1.036936e-01 cos(x)
685  -1.64949354 -7.861600e-02 cos(x)
686  -1.62431043 -5.348857e-02 cos(x)
687  -1.59912732 -2.832721e-02 cos(x)
688  -1.57394422 -3.147883e-03 cos(x)
689  -1.54876111  2.203344e-02 cos(x)
690  -1.52357800  4.720078e-02 cos(x)
691  -1.49839489  7.233820e-02 cos(x)
692  -1.47321179  9.742974e-02 cos(x)
693  -1.44802868  1.224595e-01 cos(x)
694  -1.42284557  1.474116e-01 cos(x)
695  -1.39766246  1.722702e-01 cos(x)
696  -1.37247936  1.970196e-01 cos(x)
697  -1.34729625  2.216440e-01 cos(x)
698  -1.32211314  2.461279e-01 cos(x)
699  -1.29693003  2.704557e-01 cos(x)
700  -1.27174693  2.946119e-01 cos(x)
701  -1.24656382  3.185814e-01 cos(x)
702  -1.22138071  3.423488e-01 cos(x)
703  -1.19619760  3.658991e-01 cos(x)
704  -1.17101450  3.892174e-01 cos(x)
705  -1.14583139  4.122888e-01 cos(x)
706  -1.12064828  4.350988e-01 cos(x)
707  -1.09546517  4.576329e-01 cos(x)
708  -1.07028207  4.798768e-01 cos(x)
709  -1.04509896  5.018163e-01 cos(x)
710  -1.01991585  5.234377e-01 cos(x)
711  -0.99473274  5.447270e-01 cos(x)
712  -0.96954964  5.656710e-01 cos(x)
713  -0.94436653  5.862562e-01 cos(x)
714  -0.91918342  6.064696e-01 cos(x)
715  -0.89400031  6.262985e-01 cos(x)
716  -0.86881721  6.457301e-01 cos(x)
717  -0.84363410  6.647523e-01 cos(x)
718  -0.81845099  6.833529e-01 cos(x)
719  -0.79326788  7.015202e-01 cos(x)
720  -0.76808478  7.192426e-01 cos(x)
721  -0.74290167  7.365089e-01 cos(x)
722  -0.71771856  7.533081e-01 cos(x)
723  -0.69253545  7.696296e-01 cos(x)
724  -0.66735235  7.854631e-01 cos(x)
725  -0.64216924  8.007984e-01 cos(x)
726  -0.61698613  8.156259e-01 cos(x)
727  -0.59180302  8.299362e-01 cos(x)
728  -0.56661992  8.437202e-01 cos(x)
729  -0.54143681  8.569691e-01 cos(x)
730  -0.51625370  8.696745e-01 cos(x)
731  -0.49107060  8.818285e-01 cos(x)
732  -0.46588749  8.934232e-01 cos(x)
733  -0.44070438  9.044514e-01 cos(x)
734  -0.41552127  9.149060e-01 cos(x)
735  -0.39033817  9.247804e-01 cos(x)
736  -0.36515506  9.340684e-01 cos(x)
737  -0.33997195  9.427640e-01 cos(x)
738  -0.31478884  9.508618e-01 cos(x)
739  -0.28960574  9.583565e-01 cos(x)
740  -0.26442263  9.652436e-01 cos(x)
741  -0.23923952  9.715185e-01 cos(x)
742  -0.21405641  9.771773e-01 cos(x)
743  -0.18887331  9.822164e-01 cos(x)
744  -0.16369020  9.866326e-01 cos(x)
745  -0.13850709  9.904232e-01 cos(x)
746  -0.11332398  9.935857e-01 cos(x)
747  -0.08814088  9.961181e-01 cos(x)
748  -0.06295777  9.980188e-01 cos(x)
749  -0.03777466  9.992866e-01 cos(x)
750  -0.01259155  9.999207e-01 cos(x)
751   0.01259155  9.999207e-01 cos(x)
752   0.03777466  9.992866e-01 cos(x)
753   0.06295777  9.980188e-01 cos(x)
754   0.08814088  9.961181e-01 cos(x)
755   0.11332398  9.935857e-01 cos(x)
756   0.13850709  9.904232e-01 cos(x)
757   0.16369020  9.866326e-01 cos(x)
758   0.18887331  9.822164e-01 cos(x)
759   0.21405641  9.771773e-01 cos(x)
760   0.23923952  9.715185e-01 cos(x)
761   0.26442263  9.652436e-01 cos(x)
762   0.28960574  9.583565e-01 cos(x)
763   0.31478884  9.508618e-01 cos(x)
764   0.33997195  9.427640e-01 cos(x)
765   0.36515506  9.340684e-01 cos(x)
766   0.39033817  9.247804e-01 cos(x)
767   0.41552127  9.149060e-01 cos(x)
768   0.44070438  9.044514e-01 cos(x)
769   0.46588749  8.934232e-01 cos(x)
770   0.49107060  8.818285e-01 cos(x)
771   0.51625370  8.696745e-01 cos(x)
772   0.54143681  8.569691e-01 cos(x)
773   0.56661992  8.437202e-01 cos(x)
774   0.59180302  8.299362e-01 cos(x)
775   0.61698613  8.156259e-01 cos(x)
776   0.64216924  8.007984e-01 cos(x)
777   0.66735235  7.854631e-01 cos(x)
778   0.69253545  7.696296e-01 cos(x)
779   0.71771856  7.533081e-01 cos(x)
780   0.74290167  7.365089e-01 cos(x)
781   0.76808478  7.192426e-01 cos(x)
782   0.79326788  7.015202e-01 cos(x)
783   0.81845099  6.833529e-01 cos(x)
784   0.84363410  6.647523e-01 cos(x)
785   0.86881721  6.457301e-01 cos(x)
786   0.89400031  6.262985e-01 cos(x)
787   0.91918342  6.064696e-01 cos(x)
788   0.94436653  5.862562e-01 cos(x)
789   0.96954964  5.656710e-01 cos(x)
790   0.99473274  5.447270e-01 cos(x)
791   1.01991585  5.234377e-01 cos(x)
792   1.04509896  5.018163e-01 cos(x)
793   1.07028207  4.798768e-01 cos(x)
794   1.09546517  4.576329e-01 cos(x)
795   1.12064828  4.350988e-01 cos(x)
796   1.14583139  4.122888e-01 cos(x)
797   1.17101450  3.892174e-01 cos(x)
798   1.19619760  3.658991e-01 cos(x)
799   1.22138071  3.423488e-01 cos(x)
800   1.24656382  3.185814e-01 cos(x)
801   1.27174693  2.946119e-01 cos(x)
802   1.29693003  2.704557e-01 cos(x)
803   1.32211314  2.461279e-01 cos(x)
804   1.34729625  2.216440e-01 cos(x)
805   1.37247936  1.970196e-01 cos(x)
806   1.39766246  1.722702e-01 cos(x)
807   1.42284557  1.474116e-01 cos(x)
808   1.44802868  1.224595e-01 cos(x)
809   1.47321179  9.742974e-02 cos(x)
810   1.49839489  7.233820e-02 cos(x)
811   1.52357800  4.720078e-02 cos(x)
812   1.54876111  2.203344e-02 cos(x)
813   1.57394422 -3.147883e-03 cos(x)
814   1.59912732 -2.832721e-02 cos(x)
815   1.62431043 -5.348857e-02 cos(x)
816   1.64949354 -7.861600e-02 cos(x)
817   1.67467664 -1.036936e-01 cos(x)
818   1.69985975 -1.287054e-01 cos(x)
819   1.72504286 -1.536356e-01 cos(x)
820   1.75022597 -1.784684e-01 cos(x)
821   1.77540907 -2.031880e-01 cos(x)
822   1.80059218 -2.277788e-01 cos(x)
823   1.82577529 -2.522251e-01 cos(x)
824   1.85095840 -2.765114e-01 cos(x)
825   1.87614150 -3.006224e-01 cos(x)
826   1.90132461 -3.245428e-01 cos(x)
827   1.92650772 -3.482573e-01 cos(x)
828   1.95169083 -3.717510e-01 cos(x)
829   1.97687393 -3.950090e-01 cos(x)
830   2.00205704 -4.180164e-01 cos(x)
831   2.02724015 -4.407588e-01 cos(x)
832   2.05242326 -4.632216e-01 cos(x)
833   2.07760636 -4.853907e-01 cos(x)
834   2.10278947 -5.072520e-01 cos(x)
835   2.12797258 -5.287916e-01 cos(x)
836   2.15315569 -5.499959e-01 cos(x)
837   2.17833879 -5.708514e-01 cos(x)
838   2.20352190 -5.913449e-01 cos(x)
839   2.22870501 -6.114634e-01 cos(x)
840   2.25388812 -6.311941e-01 cos(x)
841   2.27907122 -6.505245e-01 cos(x)
842   2.30425433 -6.694425e-01 cos(x)
843   2.32943744 -6.879358e-01 cos(x)
844   2.35462055 -7.059930e-01 cos(x)
845   2.37980365 -7.236024e-01 cos(x)
846   2.40498676 -7.407529e-01 cos(x)
847   2.43016987 -7.574337e-01 cos(x)
848   2.45535298 -7.736341e-01 cos(x)
849   2.48053608 -7.893440e-01 cos(x)
850   2.50571919 -8.045533e-01 cos(x)
851   2.53090230 -8.192523e-01 cos(x)
852   2.55608541 -8.334319e-01 cos(x)
853   2.58126851 -8.470829e-01 cos(x)
854   2.60645162 -8.601967e-01 cos(x)
855   2.63163473 -8.727650e-01 cos(x)
856   2.65681784 -8.847799e-01 cos(x)
857   2.68200094 -8.962337e-01 cos(x)
858   2.70718405 -9.071191e-01 cos(x)
859   2.73236716 -9.174293e-01 cos(x)
860   2.75755027 -9.271576e-01 cos(x)
861   2.78273337 -9.362981e-01 cos(x)
862   2.80791648 -9.448447e-01 cos(x)
863   2.83309959 -9.527922e-01 cos(x)
864   2.85828269 -9.601354e-01 cos(x)
865   2.88346580 -9.668698e-01 cos(x)
866   2.90864891 -9.729911e-01 cos(x)
867   2.93383202 -9.784953e-01 cos(x)
868   2.95901512 -9.833790e-01 cos(x)
869   2.98419823 -9.876390e-01 cos(x)
870   3.00938134 -9.912728e-01 cos(x)
871   3.03456445 -9.942779e-01 cos(x)
872   3.05974755 -9.966526e-01 cos(x)
873   3.08493066 -9.983951e-01 cos(x)
874   3.11011377 -9.995046e-01 cos(x)
875   3.13529688 -9.999802e-01 cos(x)
876   3.16047998 -9.998216e-01 cos(x)
877   3.18566309 -9.990291e-01 cos(x)
878   3.21084620 -9.976029e-01 cos(x)
879   3.23602931 -9.955442e-01 cos(x)
880   3.26121241 -9.928541e-01 cos(x)
881   3.28639552 -9.895344e-01 cos(x)
882   3.31157863 -9.855871e-01 cos(x)
883   3.33676174 -9.810149e-01 cos(x)
884   3.36194484 -9.758205e-01 cos(x)
885   3.38712795 -9.700073e-01 cos(x)
886   3.41231106 -9.635790e-01 cos(x)
887   3.43749417 -9.565396e-01 cos(x)
888   3.46267727 -9.488937e-01 cos(x)
889   3.48786038 -9.406460e-01 cos(x)
890   3.51304349 -9.318017e-01 cos(x)
891   3.53822660 -9.223666e-01 cos(x)
892   3.56340970 -9.123465e-01 cos(x)
893   3.58859281 -9.017479e-01 cos(x)
894   3.61377592 -8.905774e-01 cos(x)
895   3.63895903 -8.788421e-01 cos(x)
896   3.66414213 -8.665496e-01 cos(x)
897   3.68932524 -8.537075e-01 cos(x)
898   3.71450835 -8.403240e-01 cos(x)
899   3.73969146 -8.264076e-01 cos(x)
900   3.76487456 -8.119672e-01 cos(x)
901   3.79005767 -7.970118e-01 cos(x)
902   3.81524078 -7.815510e-01 cos(x)
903   3.84042389 -7.655946e-01 cos(x)
904   3.86560699 -7.491527e-01 cos(x)
905   3.89079010 -7.322357e-01 cos(x)
906   3.91597321 -7.148543e-01 cos(x)
907   3.94115631 -6.970197e-01 cos(x)
908   3.96633942 -6.787430e-01 cos(x)
909   3.99152253 -6.600358e-01 cos(x)
910   4.01670564 -6.409101e-01 cos(x)
911   4.04188874 -6.213780e-01 cos(x)
912   4.06707185 -6.014518e-01 cos(x)
913   4.09225496 -5.811442e-01 cos(x)
914   4.11743807 -5.604681e-01 cos(x)
915   4.14262117 -5.394365e-01 cos(x)
916   4.16780428 -5.180629e-01 cos(x)
917   4.19298739 -4.963607e-01 cos(x)
918   4.21817050 -4.743438e-01 cos(x)
919   4.24335360 -4.520260e-01 cos(x)
920   4.26853671 -4.294216e-01 cos(x)
921   4.29371982 -4.065449e-01 cos(x)
922   4.31890293 -3.834104e-01 cos(x)
923   4.34408603 -3.600327e-01 cos(x)
924   4.36926914 -3.364267e-01 cos(x)
925   4.39445225 -3.126074e-01 cos(x)
926   4.41963536 -2.885898e-01 cos(x)
927   4.44481846 -2.643892e-01 cos(x)
928   4.47000157 -2.400209e-01 cos(x)
929   4.49518468 -2.155005e-01 cos(x)
930   4.52036779 -1.908433e-01 cos(x)
931   4.54555089 -1.660652e-01 cos(x)
932   4.57073400 -1.411817e-01 cos(x)
933   4.59591711 -1.162087e-01 cos(x)
934   4.62110022 -9.116202e-02 cos(x)
935   4.64628332 -6.605752e-02 cos(x)
936   4.67146643 -4.091113e-02 cos(x)
937   4.69664954 -1.573879e-02 cos(x)
938   4.72183265  9.443525e-03 cos(x)
939   4.74701575  3.461985e-02 cos(x)
940   4.77219886  5.977423e-02 cos(x)
941   4.79738197  8.489070e-02 cos(x)
942   4.82256508  1.099533e-01 cos(x)
943   4.84774818  1.349462e-01 cos(x)
944   4.87293129  1.598536e-01 cos(x)
945   4.89811440  1.846595e-01 cos(x)
946   4.92329751  2.093484e-01 cos(x)
947   4.94848061  2.339045e-01 cos(x)
948   4.97366372  2.583122e-01 cos(x)
949   4.99884683  2.825562e-01 cos(x)
950   5.02402993  3.066210e-01 cos(x)
951   5.04921304  3.304913e-01 cos(x)
952   5.07439615  3.541520e-01 cos(x)
953   5.09957926  3.775882e-01 cos(x)
954   5.12476236  4.007849e-01 cos(x)
955   5.14994547  4.237274e-01 cos(x)
956   5.17512858  4.464013e-01 cos(x)
957   5.20031169  4.687920e-01 cos(x)
958   5.22549479  4.908855e-01 cos(x)
959   5.25067790  5.126676e-01 cos(x)
960   5.27586101  5.341247e-01 cos(x)
961   5.30104412  5.552430e-01 cos(x)
962   5.32622722  5.760092e-01 cos(x)
963   5.35141033  5.964102e-01 cos(x)
964   5.37659344  6.164329e-01 cos(x)
965   5.40177655  6.360647e-01 cos(x)
966   5.42695965  6.552932e-01 cos(x)
967   5.45214276  6.741061e-01 cos(x)
968   5.47732587  6.924915e-01 cos(x)
969   5.50250898  7.104377e-01 cos(x)
970   5.52769208  7.279335e-01 cos(x)
971   5.55287519  7.449676e-01 cos(x)
972   5.57805830  7.615292e-01 cos(x)
973   5.60324141  7.776080e-01 cos(x)
974   5.62842451  7.931936e-01 cos(x)
975   5.65360762  8.082762e-01 cos(x)
976   5.67879073  8.228463e-01 cos(x)
977   5.70397384  8.368945e-01 cos(x)
978   5.72915694  8.504120e-01 cos(x)
979   5.75434005  8.633903e-01 cos(x)
980   5.77952316  8.758210e-01 cos(x)
981   5.80470627  8.876962e-01 cos(x)
982   5.82988937  8.990086e-01 cos(x)
983   5.85507248  9.097508e-01 cos(x)
984   5.88025559  9.199162e-01 cos(x)
985   5.90543870  9.294981e-01 cos(x)
986   5.93062180  9.384906e-01 cos(x)
987   5.95580491  9.468880e-01 cos(x)
988   5.98098802  9.546848e-01 cos(x)
989   6.00617113  9.618763e-01 cos(x)
990   6.03135423  9.684578e-01 cos(x)
991   6.05653734  9.744251e-01 cos(x)
992   6.08172045  9.797745e-01 cos(x)
993   6.10690356  9.845026e-01 cos(x)
994   6.13208666  9.886063e-01 cos(x)
995   6.15726977  9.920831e-01 cos(x)
996   6.18245288  9.949308e-01 cos(x)
997   6.20763598  9.971475e-01 cos(x)
998   6.23281909  9.987319e-01 cos(x)
999   6.25800220  9.996829e-01 cos(x)
1000  6.28318531  1.000000e+00 cos(x)

Step 3.1 : Initialize the ggplot Object

p <- ggplot(df, aes(x = x, y = y, color = group, linetype = group))
p

Step 3.2 : Add the line geometry

p <- p + geom_line(size = 1.2)
p

Step 3.3 : Add plot labels

p <- p + theme_minimal()
p