#Load ggplot2 package for visualization
library(ggplot2)
Program 6
6. Write a R script to construct a box plot showcasing the distribution of a continuous variable , grouped by a categorical variable , using ggplot2’s fill aesthetic.
Step1: Load Required Library
Step2: Explore the Inbuilt Dataset
# Use the built-in 'iris' dataset
# 'Petal.Width' is a continuous variable
# 'Species' is a categorical grouping variable
str(iris) # View structure of the dataset
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris) # View sample data
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Step 3: Construct Box Plot with Grouping
Step 3.1: Initialize ggplot with Aesthetic Mappings
Explanation:
x = Species
: Grouping variable (categorical)y = Petal.Width
: Continuous variable to show distributionfill = Species
: Fill box colors by species# Initialize ggplot with data and aesthetic mappings <- ggplot(data = iris, aes(x = Species, y = Petal.Width, fill = Species)) p
Step 3.2: Add Box Plot Layer
# Add title and labels and use a minimal theme
<- p + labs(title = "Box Plot of Petal Width by Species", x = "Species", y = "Petal Width") + theme_minimal() p
Explanation:
labs()
adds a descriptive title and axis labels.theme_minimal()
gives a clean, modern look.
Step 3.4: Display the Plot
# Render the final plot
p