Tugas Prak 8 TPM
Ghonniyu Hiban Saputra
G1401221012
About The Data
Dataset EUROJOBS Dataset Eurojobs.csv terdiri dari persentase populasi pekerja pada lapangan usaha (industri) yang berbeda di 26 negera di Eropa pada tahun 1979. Dataset ini memiliki 10 variabel.
Country : nama negara
Agr : % dari pekerja di Agriculture
Min : % dari pekerja di Mining
Man : % dari pekerja di Manufacturing
PS : % dari pekerja di Power Supplies Industries
Con : % dari pekerja di Construction
SI : % dari pekerja di Service Industries
Fin : % dari pekerja di Finance
SPS : % dari pekerja di Social and Personal Services
TC : % dari pekerja di Transportation and Communications
Library
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
## Warning: package 'parameters' was built under R version 4.4.3
## Warning: package 'clusterSim' was built under R version 4.4.2
## Loading required package: MASS
## Warning: package 'fpc' was built under R version 4.4.3
Eksplorasi
ejobs <- read.csv(
file = "C:\\Users\\Ghonniyu\\Downloads\\Eurojobs.csv",
header = TRUE,
row.names = 1
)
head(ejobs)
## Agr Min Man PS Con SI Fin SPS TC
## Belgium 3.3 0.9 27.6 0.9 8.2 19.1 6.2 26.6 7.2
## Denmark 9.2 0.1 21.8 0.6 8.3 14.6 6.5 32.2 7.1
## France 10.8 0.8 27.5 0.9 8.9 16.8 6.0 22.6 5.7
## West Germany 6.7 1.3 35.8 0.9 7.3 14.4 5.0 22.3 6.1
## Ireland 23.2 1.0 20.7 1.3 7.5 16.8 2.8 20.8 6.1
## Italy 15.9 0.6 27.6 0.5 10.0 18.1 1.6 20.1 5.7
## 'data.frame': 26 obs. of 9 variables:
## $ Agr: num 3.3 9.2 10.8 6.7 23.2 15.9 7.7 6.3 2.7 12.7 ...
## $ Min: num 0.9 0.1 0.8 1.3 1 0.6 3.1 0.1 1.4 1.1 ...
## $ Man: num 27.6 21.8 27.5 35.8 20.7 27.6 30.8 22.5 30.2 30.2 ...
## $ PS : num 0.9 0.6 0.9 0.9 1.3 0.5 0.8 1 1.4 1.4 ...
## $ Con: num 8.2 8.3 8.9 7.3 7.5 10 9.2 9.9 6.9 9 ...
## $ SI : num 19.1 14.6 16.8 14.4 16.8 18.1 18.5 18 16.9 16.8 ...
## $ Fin: num 6.2 6.5 6 5 2.8 1.6 4.6 6.8 5.7 4.9 ...
## $ SPS: num 26.6 32.2 22.6 22.3 20.8 20.1 19.2 28.5 28.3 16.8 ...
## $ TC : num 7.2 7.1 5.7 6.1 6.1 5.7 6.2 6.8 6.4 7 ...
## Agr Min Man PS
## Min. : 2.70 Min. :0.100 Min. : 7.90 Min. :0.1000
## 1st Qu.: 7.70 1st Qu.:0.525 1st Qu.:23.00 1st Qu.:0.6000
## Median :14.45 Median :0.950 Median :27.55 Median :0.8500
## Mean :19.13 Mean :1.254 Mean :27.01 Mean :0.9077
## 3rd Qu.:23.68 3rd Qu.:1.800 3rd Qu.:30.20 3rd Qu.:1.1750
## Max. :66.80 Max. :3.100 Max. :41.20 Max. :1.9000
## Con SI Fin SPS
## Min. : 2.800 Min. : 5.20 Min. : 0.500 Min. : 5.30
## 1st Qu.: 7.525 1st Qu.: 9.25 1st Qu.: 1.225 1st Qu.:16.25
## Median : 8.350 Median :14.40 Median : 4.650 Median :19.65
## Mean : 8.165 Mean :12.96 Mean : 4.000 Mean :20.02
## 3rd Qu.: 8.975 3rd Qu.:16.88 3rd Qu.: 5.925 3rd Qu.:24.12
## Max. :11.500 Max. :19.10 Max. :11.300 Max. :32.40
## TC
## Min. :3.200
## 1st Qu.:5.700
## Median :6.700
## Mean :6.546
## 3rd Qu.:7.075
## Max. :9.400
par(mfrow = c(3,3))
for(i in 1:ncol(ejobs)) {
hist(ejobs[,i],
main = paste("Histogram of", colnames(ejobs)[i]),
xlab = "%",
col = "skyblue",
border = "white")
}
Agr dan PS sangat tidak merata (banyak negara rendah, sedikit yang sangat tinggi). Man, Con, SPS menunjukkan distribusi yang lebih seragam dan terpusat. Ada sektor yang secara umum tidak dominan (Min, PS, Fin), tapi tetap penting untuk mengidentifikasi karakteristik negara tertentu
## Agr Min Man PS Con SI Fin SPS TC
## Agr 1.00 0.04 -0.67 -0.40 -0.54 -0.74 -0.22 -0.75 -0.56
## Min 0.04 1.00 0.45 0.41 -0.03 -0.40 -0.44 -0.28 0.16
## Man -0.67 0.45 1.00 0.39 0.49 0.20 -0.16 0.15 0.35
## PS -0.40 0.41 0.39 1.00 0.06 0.20 0.11 0.13 0.38
## Con -0.54 -0.03 0.49 0.06 1.00 0.36 0.02 0.16 0.39
## SI -0.74 -0.40 0.20 0.20 0.36 1.00 0.37 0.57 0.19
## Fin -0.22 -0.44 -0.16 0.11 0.02 0.37 1.00 0.11 -0.25
## SPS -0.75 -0.28 0.15 0.13 0.16 0.57 0.11 1.00 0.57
## TC -0.56 0.16 0.35 0.38 0.39 0.19 -0.25 0.57 1.00
## corrplot 0.94 loaded
- Korelasi yang mendekati 1:
Man – Con, SI, SPS → artinya negara yang kuat di sektor manufaktur biasanya juga kuat di sektor jasa publik.
- Korelasi yang mendekati -1:
Agr – Man, SPS, TC → negara yang agraris umumnya lemah di sektor-sektor modern/industri.
Pada dataset ini tidak perlu melakukan standardisasi data karena semua variabel memiliki satuan yang sama yaitu persen (%).
Hierarchical Clustering
Satu variable
Transport & Communication
Per Sector
# Buat data hanya dari kolom numerik (exclude Country)
sector_data <- ejobs[, sapply(ejobs, is.numeric)]
stripchart(sector_data,
method = "stack",
vertical = TRUE,
pch = 19,
cex = 1,
col = rainbow(ncol(sector_data)),
group.names = colnames(sector_data),
main = "Stripchart per Sector",
ylab = "Percentage",
las = 2)
Agr dan SPS adalah dua sektor dengan sebaran paling luas, menunjukkan kontras besar antar negara.
Min dan PS adalah sektor yang konsisten kecil di semua negara.
Dua Variabel
par(mfrow = c(2, 2))
plot(ejobs$Agr,ejobs$Man,pch=19,cex=1,ylab="Manufactur",xlab="Agriculture",col=2)
plot(ejobs$Agr,ejobs$Fin,pch=19,cex=1,ylab="Financial",xlab="Agriculture",col=2)
plot(ejobs$PS,ejobs$Min,pch=19,cex=1,ylab="Mining",xlab="PS",col=2)
plot(ejobs$Man,ejobs$SPS,pch=19,cex=1,ylab="SPS",xlab="Agriculture",col=2)
Matriks Jarak
Euclidean
## Belgium Denmark France West Germany Ireland Italy
## Belgium 0.000000 9.278470 4.908156 10.556515 9.998500 8.375560
## Denmark 9.278470 0.000000 11.516944 17.315600 12.354756 14.880188
## France 4.908156 11.516944 0.000000 8.871866 7.876547 5.359104
## West Germany 10.556515 17.315600 8.871866 0.000000 15.529005 10.267911
## Ireland 9.998500 12.354756 7.876547 15.529005 0.000000 7.644606
## Italy 8.375560 14.880188 5.359104 10.267911 7.644606 0.000000
## Luxembourg 8.646965 16.717655 5.739338 7.645260 10.874741 5.238320
## Netherlands 5.906776 5.351635 8.037413 15.499355 9.333810 11.195535
## United Kingdom 4.191658 9.822423 6.706713 8.637708 12.471568 10.188229
## Austria 10.523783 17.811794 6.646804 8.448077 10.664896 5.829237
## Finland 5.407402 9.048204 4.036087 10.275213 7.321885 7.638717
## Greece 20.396078 22.224986 16.594879 21.810089 11.630563 15.219396
## Norway 6.348228 5.969087 8.160270 15.073818 8.083935 10.492378
## Portugal 12.500000 16.299693 8.218272 12.961867 6.742403 6.933974
## Spain 18.092264 22.413389 13.458826 14.702721 15.540270 13.792752
## Sweden 7.751129 4.309292 10.422572 14.224627 13.371238 14.014635
## Switzerland 15.404220 23.484889 12.634872 8.217664 18.258149 11.860860
## Turkey 29.482876 27.728866 26.482636 31.876010 20.310835 26.081603
## Bulgaria 15.733404 19.672570 12.297561 9.469952 14.999667 11.646029
## Czechoslovakia 16.388411 21.472541 13.269891 8.289753 17.166537 12.494399
## East Germany 17.279468 22.989780 15.996562 7.872738 21.558525 15.990935
## Hungary 14.866741 18.861336 11.243220 10.720075 12.625767 10.263040
## Poland 16.709279 19.028663 12.750294 14.427751 11.876447 11.841875
## Rumania 20.811776 24.503877 16.394511 15.319595 17.221498 15.171684
## USSR 14.814857 14.337015 12.733028 14.310136 12.938702 13.226867
## Yugoslavia 27.913438 29.364434 23.863152 27.639465 21.150177 24.428058
## Luxembourg Netherlands United Kingdom Austria Finland
## Belgium 8.646965 5.906776 4.191658 10.523783 5.407402
## Denmark 16.717655 5.351635 9.822423 17.811794 9.048204
## France 5.739338 8.037413 6.706713 6.646804 4.036087
## West Germany 7.645260 15.499355 8.637708 8.448077 10.275213
## Ireland 10.874741 9.333810 12.471568 10.664896 7.321885
## Italy 5.238320 11.195535 10.188229 5.829237 7.638717
## Luxembourg 0.000000 13.052203 9.773433 3.760319 8.832327
## Netherlands 13.052203 0.000000 8.529947 14.256227 6.989278
## United Kingdom 9.773433 8.529947 0.000000 11.737121 6.486139
## Austria 3.760319 14.256227 11.737121 0.000000 9.106591
## Finland 8.832327 6.989278 6.486139 9.106591 0.000000
## Greece 17.408906 19.887936 22.381019 15.117209 16.354204
## Norway 12.690548 3.884585 8.682742 13.570925 5.793099
## Portugal 9.239048 13.630847 13.914022 7.274613 8.638866
## Spain 12.797656 19.786359 18.911372 10.016986 14.790199
## Sweden 15.121839 6.913031 6.576473 16.521199 8.178019
## Switzerland 8.583705 20.239071 15.288558 7.967434 15.395129
## Turkey 28.688848 27.378641 30.879281 26.926381 25.088244
## Bulgaria 11.494781 18.621224 14.581152 10.199510 12.243366
## Czechoslovakia 11.182576 20.074113 14.982323 10.316492 13.886684
## East Germany 13.751727 22.000682 14.796283 14.188376 16.631296
## Hungary 10.362915 17.349640 14.500000 8.784646 11.036304
## Poland 13.107631 17.807021 16.865646 11.216506 12.097107
## Rumania 15.136710 22.923787 20.548966 12.787494 16.831815
## USSR 15.082109 14.992998 14.123385 14.335620 10.347947
## Yugoslavia 24.627018 27.574445 29.326268 22.067850 23.807562
## Greece Norway Portugal Spain Sweden Switzerland
## Belgium 20.396078 6.348228 12.500000 18.092264 7.751129 15.404220
## Denmark 22.224986 5.969087 16.299693 22.413389 4.309292 23.484889
## France 16.594879 8.160270 8.218272 13.458826 10.422572 12.634872
## West Germany 21.810089 15.073818 12.961867 14.702721 14.224627 8.217664
## Ireland 11.630563 8.083935 6.742403 15.540270 13.371238 18.258149
## Italy 15.219396 10.492378 6.933974 13.792752 14.014635 11.860860
## Luxembourg 17.408906 12.690548 9.239048 12.797656 15.121839 8.583705
## Netherlands 19.887936 3.884585 13.630847 19.786359 6.913031 20.239071
## United Kingdom 22.381019 8.682742 13.914022 18.911372 6.576473 15.288558
## Austria 15.117209 13.570925 7.274613 10.016986 16.521199 7.967434
## Finland 16.354204 5.793099 8.638866 14.790199 8.178019 15.395129
## Greece 0.000000 18.456435 9.198369 13.151046 23.433310 21.793806
## Norway 18.456435 0.000000 12.409271 19.412625 7.208329 20.032723
## Portugal 9.198369 12.409271 0.000000 9.824459 16.224981 14.291256
## Spain 13.151046 19.412625 9.824459 0.000000 21.904566 13.226489
## Sweden 23.433310 7.208329 16.224981 21.904566 0.000000 21.148286
## Switzerland 21.793806 20.032723 14.291256 13.226489 21.148286 0.000000
## Turkey 13.299624 26.061466 20.119394 24.098340 29.762392 33.571863
## Bulgaria 16.876018 17.069271 9.949372 11.608187 17.732456 12.489596
## Czechoslovakia 19.536120 18.738196 12.304064 12.608331 19.082977 10.467569
## East Germany 26.279650 20.891146 18.162874 18.743265 19.562208 11.462548
## Hungary 14.097518 15.517087 7.718160 10.587256 17.512281 13.116783
## Poland 10.663020 16.007498 6.711930 10.170054 18.580097 16.559287
## Rumania 13.957435 21.601620 10.812030 8.867920 23.428402 15.110261
## USSR 16.351758 12.769495 10.990450 15.607370 13.706933 19.462014
## Yugoslavia 12.527570 26.951809 18.101105 15.631059 30.393091 26.982402
## Turkey Bulgaria Czechoslovakia East Germany Hungary
## Belgium 29.48288 15.733404 16.388411 17.279468 14.866741
## Denmark 27.72887 19.672570 21.472541 22.989780 18.861336
## France 26.48264 12.297561 13.269891 15.996562 11.243220
## West Germany 31.87601 9.469952 8.289753 7.872738 10.720075
## Ireland 20.31083 14.999667 17.166537 21.558525 12.625767
## Italy 26.08160 11.646029 12.494399 15.990935 10.263040
## Luxembourg 28.68885 11.494781 11.182576 13.751727 10.362915
## Netherlands 27.37864 18.621224 20.074113 22.000682 17.349640
## United Kingdom 30.87928 14.581152 14.982323 14.796283 14.500000
## Austria 26.92638 10.199510 10.316492 14.188376 8.784646
## Finland 25.08824 12.243366 13.886684 16.631296 11.036304
## Greece 13.29962 16.876018 19.536120 26.279650 14.097518
## Norway 26.06147 17.069271 18.738196 20.891146 15.517087
## Portugal 20.11939 9.949372 12.304064 18.162874 7.718160
## Spain 24.09834 11.608187 12.608331 18.743265 10.587256
## Sweden 29.76239 17.732456 19.082977 19.562208 17.512281
## Switzerland 33.57186 12.489596 10.467569 11.462548 13.116783
## Turkey 0.00000 26.134269 29.480502 36.128936 24.038719
## Bulgaria 26.13427 0.000000 3.728270 10.458489 3.898718
## Czechoslovakia 29.48050 3.728270 0.000000 7.576279 6.092618
## East Germany 36.12894 10.458489 7.576279 0.000000 12.760094
## Hungary 24.03872 3.898718 6.092618 12.760094 0.000000
## Poland 19.71649 7.000000 10.125216 17.124252 4.758151
## Rumania 23.10130 7.445133 9.146037 16.533905 7.406079
## USSR 23.18146 9.152049 12.020815 16.493029 8.586035
## Yugoslavia 15.32775 23.200862 25.492352 32.113860 21.276748
## Poland Rumania USSR Yugoslavia
## Belgium 16.709279 20.811776 14.814857 27.91344
## Denmark 19.028663 24.503877 14.337015 29.36443
## France 12.750294 16.394511 12.733028 23.86315
## West Germany 14.427751 15.319595 14.310136 27.63946
## Ireland 11.876447 17.221498 12.938702 21.15018
## Italy 11.841875 15.171684 13.226867 24.42806
## Luxembourg 13.107631 15.136710 15.082109 24.62702
## Netherlands 17.807021 22.923787 14.992998 27.57444
## United Kingdom 16.865646 20.548966 14.123385 29.32627
## Austria 11.216506 12.787494 14.335620 22.06785
## Finland 12.097107 16.831815 10.347947 23.80756
## Greece 10.663020 13.957435 16.351758 12.52757
## Norway 16.007498 21.601620 12.769495 26.95181
## Portugal 6.711930 10.812030 10.990450 18.10110
## Spain 10.170054 8.867920 15.607370 15.63106
## Sweden 18.580097 23.428402 13.706933 30.39309
## Switzerland 16.559287 15.110261 19.462014 26.98240
## Turkey 19.716491 23.101299 23.181458 15.32775
## Bulgaria 7.000000 7.445133 9.152049 23.20086
## Czechoslovakia 10.125216 9.146037 12.020815 25.49235
## East Germany 17.124252 16.533905 16.493029 32.11386
## Hungary 4.758151 7.406079 8.586035 21.27675
## Poland 0.000000 6.737210 8.128961 18.08093
## Rumania 6.737210 0.000000 13.416781 18.27977
## USSR 8.128961 13.416781 0.000000 24.07198
## Yugoslavia 18.080929 18.279770 24.071975 0.00000
Euclidean (scaled)
## Belgium Denmark France West Germany Ireland Italy
## Belgium 0.000000 1.913380 1.398099 2.024304 2.314730 2.687861
## Denmark 1.913380 0.000000 2.280847 3.071147 3.139385 3.142171
## France 1.398099 2.280847 0.000000 1.760833 2.071338 2.071850
## West Germany 2.024304 3.071147 1.760833 0.000000 2.611834 2.832038
## Ireland 2.314730 3.139385 2.071338 2.611834 0.000000 2.885474
## Italy 2.687861 3.142171 2.071850 2.832038 2.885474 0.000000
## Luxembourg 2.797269 4.125789 2.590611 2.527962 3.194806 3.003237
## Netherlands 1.615921 1.728998 1.729461 3.131611 2.704444 2.852434
## United Kingdom 1.857198 3.064551 2.176238 1.911463 2.128854 3.739920
## Austria 2.174809 3.584441 1.939532 2.204076 2.017716 3.010821
## Finland 1.695412 2.406994 2.086228 2.296645 1.870234 3.441709
## Greece 3.565205 3.598793 3.049447 3.510200 2.750969 2.809650
## Norway 1.971916 2.084009 2.924175 3.401170 3.100368 3.389147
## Portugal 2.766680 2.876070 1.972610 2.495986 2.367563 1.676145
## Spain 3.925897 4.145629 2.919303 3.647972 4.264841 3.476381
## Sweden 1.621321 1.117308 2.078270 2.344783 2.728719 3.257727
## Switzerland 2.722247 3.699448 1.985831 2.190709 3.376774 2.290328
## Turkey 6.975945 6.470535 6.423003 6.392958 5.882189 6.390488
## Bulgaria 3.681015 4.047691 3.310189 2.500259 3.422288 3.084621
## Czechoslovakia 4.017661 4.951754 3.748105 2.888136 3.565864 3.975108
## East Germany 4.075999 5.178487 4.296125 3.087630 4.121792 4.709833
## Hungary 4.751438 5.767370 4.715206 4.164232 3.773670 5.325247
## Poland 3.900430 4.363259 3.508984 3.101222 3.118327 3.535860
## Rumania 4.584458 4.903991 3.723544 3.305269 3.929457 3.478610
## USSR 4.000701 3.811592 4.139482 3.899066 4.102031 3.878408
## Yugoslavia 5.751929 5.936472 5.068101 5.135482 5.012223 6.329129
## Luxembourg Netherlands United Kingdom Austria Finland Greece
## Belgium 2.797269 1.615921 1.857198 2.174809 1.695412 3.565205
## Denmark 4.125789 1.728998 3.064551 3.584441 2.406994 3.598793
## France 2.590611 1.729461 2.176238 1.939532 2.086228 3.049447
## West Germany 2.527962 3.131611 1.911463 2.204076 2.296645 3.510200
## Ireland 3.194806 2.704444 2.128854 2.017716 1.870234 2.750969
## Italy 3.003237 2.852434 3.739920 3.010821 3.441709 2.809650
## Luxembourg 0.000000 3.754659 3.106050 2.723963 3.682594 3.930071
## Netherlands 3.754659 0.000000 2.784278 2.679966 2.172200 3.758823
## United Kingdom 3.106050 2.784278 0.000000 2.197096 1.710339 4.266752
## Austria 2.723963 2.679966 2.197096 0.000000 1.887206 3.349992
## Finland 3.682594 2.172200 1.710339 1.887206 0.000000 3.317867
## Greece 3.930071 3.758823 4.266752 3.349992 3.317867 0.000000
## Norway 3.959648 2.281092 3.239779 3.115320 2.185745 3.548572
## Portugal 3.416434 2.980749 3.492823 2.840624 2.841405 1.574046
## Spain 3.848529 3.653089 4.630820 3.417022 4.125931 3.526701
## Sweden 3.832322 2.081390 2.183799 3.210012 1.885289 3.727973
## Switzerland 3.243016 3.117831 3.406561 2.373048 3.203635 3.633781
## Turkey 7.154294 7.322203 7.005417 7.257127 6.689246 4.745617
## Bulgaria 3.135473 4.448289 3.799724 3.430151 3.614566 2.876548
## Czechoslovakia 2.819866 4.809966 3.564331 3.024492 3.795910 4.053181
## East Germany 3.413218 5.141248 3.481326 3.398859 3.845834 4.983846
## Hungary 4.049772 5.367946 3.878780 3.380534 3.999684 4.869442
## Poland 3.032606 4.496571 3.842104 3.251652 3.611736 2.733098
## Rumania 3.516261 5.064422 4.625750 3.944939 4.511161 2.976682
## USSR 4.326760 4.344614 4.548803 4.083766 3.732499 3.353008
## Yugoslavia 5.788866 6.052692 5.417066 5.340476 5.249552 4.709772
## Norway Portugal Spain Sweden Switzerland Turkey
## Belgium 1.971916 2.766680 3.925897 1.621321 2.722247 6.975945
## Denmark 2.084009 2.876070 4.145629 1.117308 3.699448 6.470535
## France 2.924175 1.972610 2.919303 2.078270 1.985831 6.423003
## West Germany 3.401170 2.495986 3.647972 2.344783 2.190709 6.392958
## Ireland 3.100368 2.367563 4.264841 2.728719 3.376774 5.882189
## Italy 3.389147 1.676145 3.476381 3.257727 2.290328 6.390488
## Luxembourg 3.959648 3.416434 3.848529 3.832322 3.243016 7.154294
## Netherlands 2.281092 2.980749 3.653089 2.081390 3.117831 7.322203
## United Kingdom 3.239779 3.492823 4.630820 2.183799 3.406561 7.005417
## Austria 3.115320 2.840624 3.417022 3.210012 2.373048 7.257127
## Finland 2.185745 2.841405 4.125931 1.885289 3.203635 6.689246
## Greece 3.548572 1.574046 3.526701 3.727973 3.633781 4.745617
## Norway 0.000000 3.342825 4.641898 2.341445 3.943175 7.316513
## Portugal 3.342825 0.000000 3.104232 2.866156 2.465606 5.129281
## Spain 4.641898 3.104232 0.000000 4.361890 2.862956 7.056781
## Sweden 2.341445 2.866156 4.361890 0.000000 3.495983 6.332430
## Switzerland 3.943175 2.465606 2.862956 3.495983 0.000000 7.174045
## Turkey 7.316513 5.129281 7.056781 6.332430 7.174045 0.000000
## Bulgaria 4.002133 2.542873 3.990036 3.679657 3.549299 5.709432
## Czechoslovakia 4.517483 3.787175 4.432895 4.427430 3.997172 7.145495
## East Germany 4.441425 4.631191 5.442631 4.499453 4.454183 8.020179
## Hungary 4.969826 4.969085 5.570656 5.209386 5.279530 7.919549
## Poland 4.083596 2.928918 4.004394 4.070353 4.136405 5.805518
## Rumania 5.184721 2.787273 3.494919 4.654024 3.816895 5.333140
## USSR 3.109906 3.515949 4.662901 3.852573 4.695428 6.795206
## Yugoslavia 6.626604 4.997056 4.909996 5.655063 5.775981 5.052574
## Bulgaria Czechoslovakia East Germany Hungary Poland Rumania
## Belgium 3.681015 4.017661 4.075999 4.751438 3.900430 4.584458
## Denmark 4.047691 4.951754 5.178487 5.767370 4.363259 4.903991
## France 3.310189 3.748105 4.296125 4.715206 3.508984 3.723544
## West Germany 2.500259 2.888136 3.087630 4.164232 3.101222 3.305269
## Ireland 3.422288 3.565864 4.121792 3.773670 3.118327 3.929457
## Italy 3.084621 3.975108 4.709833 5.325247 3.535860 3.478610
## Luxembourg 3.135473 2.819866 3.413218 4.049772 3.032606 3.516261
## Netherlands 4.448289 4.809966 5.141248 5.367946 4.496571 5.064422
## United Kingdom 3.799724 3.564331 3.481326 3.878780 3.842104 4.625750
## Austria 3.430151 3.024492 3.398859 3.380534 3.251652 3.944939
## Finland 3.614566 3.795910 3.845834 3.999684 3.611736 4.511161
## Greece 2.876548 4.053181 4.983846 4.869442 2.733098 2.976682
## Norway 4.002133 4.517483 4.441425 4.969826 4.083596 5.184721
## Portugal 2.542873 3.787175 4.631191 4.969085 2.928918 2.787273
## Spain 3.990036 4.432895 5.442631 5.570656 4.004394 3.494919
## Sweden 3.679657 4.427430 4.499453 5.209386 4.070353 4.654024
## Switzerland 3.549299 3.997172 4.454183 5.279530 4.136405 3.816895
## Turkey 5.709432 7.145495 8.020179 7.919549 5.805518 5.333140
## Bulgaria 0.000000 2.042874 2.917277 3.826906 1.459455 1.741331
## Czechoslovakia 2.042874 0.000000 1.664958 2.198753 1.734211 2.692212
## East Germany 2.917277 1.664958 0.000000 2.494510 3.004719 4.090286
## Hungary 3.826906 2.198753 2.494510 0.000000 2.931830 4.359212
## Poland 1.459455 1.734211 3.004719 2.931830 0.000000 1.911946
## Rumania 1.741331 2.692212 4.090286 4.359212 1.911946 0.000000
## USSR 2.458499 3.294087 3.660471 4.238674 2.540305 3.695740
## Yugoslavia 5.645526 6.063399 6.876221 6.329391 5.302411 5.018509
## USSR Yugoslavia
## Belgium 4.000701 5.751929
## Denmark 3.811592 5.936472
## France 4.139482 5.068101
## West Germany 3.899066 5.135482
## Ireland 4.102031 5.012223
## Italy 3.878408 6.329129
## Luxembourg 4.326760 5.788866
## Netherlands 4.344614 6.052692
## United Kingdom 4.548803 5.417066
## Austria 4.083766 5.340476
## Finland 3.732499 5.249552
## Greece 3.353008 4.709772
## Norway 3.109906 6.626604
## Portugal 3.515949 4.997056
## Spain 4.662901 4.909996
## Sweden 3.852573 5.655063
## Switzerland 4.695428 5.775981
## Turkey 6.795206 5.052574
## Bulgaria 2.458499 5.645526
## Czechoslovakia 3.294087 6.063399
## East Germany 3.660471 6.876221
## Hungary 4.238674 6.329391
## Poland 2.540305 5.302411
## Rumania 3.695740 5.018509
## USSR 0.000000 6.837729
## Yugoslavia 6.837729 0.000000
Manhattan
## Belgium Denmark France West Germany Ireland Italy Luxembourg
## Belgium 0.0 17.5 8.9 20.8 20.7 16.1 17.1
## Denmark 17.5 0.0 21.0 29.1 21.8 30.0 32.8
## France 8.9 21.0 0.0 14.5 14.2 10.0 13.0
## West Germany 20.8 29.1 14.5 0.0 22.1 21.7 16.5
## Ireland 20.7 21.8 14.2 22.1 0.0 14.2 19.6
## Italy 16.1 30.0 10.0 21.7 14.2 0.0 11.6
## Luxembourg 17.1 32.8 13.0 16.5 19.6 11.6 0.0
## Netherlands 11.7 10.4 15.8 29.5 19.0 21.0 24.8
## United Kingdom 10.1 19.6 12.6 16.1 21.4 21.6 17.2
## Austria 17.7 30.2 11.8 16.9 18.2 14.2 8.6
## Finland 11.2 15.5 10.1 15.6 15.7 18.7 21.1
## Greece 38.2 33.7 32.7 37.4 20.9 29.5 34.9
## Norway 13.0 12.5 15.9 27.0 15.9 22.5 24.9
## Portugal 24.9 25.0 17.0 23.1 14.2 14.4 20.2
## Spain 32.7 39.6 24.4 31.5 35.0 26.6 27.8
## Sweden 14.4 6.9 17.1 22.8 24.5 26.5 28.9
## Switzerland 27.5 39.8 20.2 16.1 29.4 20.4 16.2
## Turkey 63.8 59.5 56.3 60.2 44.1 51.5 59.5
## Bulgaria 31.8 39.5 26.7 20.4 27.7 22.1 20.1
## Czechoslovakia 34.8 42.9 29.3 18.2 31.3 25.3 20.9
## East Germany 35.2 43.7 31.1 17.2 33.3 31.1 28.5
## Hungary 30.4 38.9 26.3 26.0 27.1 22.3 19.9
## Poland 31.4 35.7 26.1 30.4 24.5 22.3 25.1
## Rumania 39.7 47.2 31.6 32.1 35.0 27.0 27.0
## USSR 27.4 31.5 23.7 29.6 26.9 23.7 30.9
## Yugoslavia 57.2 53.3 50.3 55.2 43.7 55.3 55.1
## Netherlands United Kingdom Austria Finland Greece Norway
## Belgium 11.7 10.1 17.7 11.2 38.2 13.0
## Denmark 10.4 19.6 30.2 15.5 33.7 12.5
## France 15.8 12.6 11.8 10.1 32.7 15.9
## West Germany 29.5 16.1 16.9 15.6 37.4 27.0
## Ireland 19.0 21.4 18.2 15.7 20.9 15.9
## Italy 21.0 21.6 14.2 18.7 29.5 22.5
## Luxembourg 24.8 17.2 8.6 21.1 34.9 24.9
## Netherlands 0.0 15.2 25.0 16.1 36.1 8.7
## United Kingdom 15.2 0.0 15.4 13.5 41.7 15.7
## Austria 25.0 15.4 0.0 17.5 28.7 22.9
## Finland 16.1 13.5 17.5 0.0 30.4 13.4
## Greece 36.1 41.7 28.7 30.4 0.0 32.6
## Norway 8.7 15.7 22.9 13.4 32.6 0.0
## Portugal 25.8 28.0 15.0 16.9 16.3 22.9
## Spain 36.6 35.0 22.4 30.3 24.5 40.1
## Sweden 14.9 13.5 26.7 10.4 37.6 16.2
## Switzerland 32.2 26.6 13.4 28.5 36.5 33.7
## Turkey 61.9 64.3 54.3 54.8 27.6 58.4
## Bulgaria 40.5 28.7 19.5 27.6 28.6 37.2
## Czechoslovakia 42.7 32.3 20.3 30.6 32.4 39.6
## East Germany 44.5 31.7 30.3 28.8 41.4 38.4
## Hungary 39.7 29.1 16.7 25.2 27.0 34.4
## Poland 36.1 34.5 21.1 24.4 21.4 32.8
## Rumania 47.4 36.8 23.8 36.1 23.7 44.3
## USSR 31.3 31.1 29.9 19.6 32.6 24.2
## Yugoslavia 54.3 57.3 49.5 49.6 27.8 55.4
## Portugal Spain Sweden Switzerland Turkey Bulgaria Czechoslovakia
## Belgium 24.9 32.7 14.4 27.5 63.8 31.8 34.8
## Denmark 25.0 39.6 6.9 39.8 59.5 39.5 42.9
## France 17.0 24.4 17.1 20.2 56.3 26.7 29.3
## West Germany 23.1 31.5 22.8 16.1 60.2 20.4 18.2
## Ireland 14.2 35.0 24.5 29.4 44.1 27.7 31.3
## Italy 14.4 26.6 26.5 20.4 51.5 22.1 25.3
## Luxembourg 20.2 27.8 28.9 16.2 59.5 20.1 20.9
## Netherlands 25.8 36.6 14.9 32.2 61.9 40.5 42.7
## United Kingdom 28.0 35.0 13.5 26.6 64.3 28.7 32.3
## Austria 15.0 22.4 26.7 13.4 54.3 19.5 20.3
## Finland 16.9 30.3 10.4 28.5 54.8 27.6 30.6
## Greece 16.3 24.5 37.6 36.5 27.6 28.6 32.4
## Norway 22.9 40.1 16.2 33.7 58.4 37.2 39.6
## Portugal 0.0 22.2 24.1 22.8 40.1 19.7 22.9
## Spain 22.2 0.0 36.5 26.8 44.3 25.7 28.1
## Sweden 24.1 36.5 0.0 36.3 61.6 34.8 39.0
## Switzerland 22.8 26.8 36.3 0.0 60.3 26.9 22.7
## Turkey 40.1 44.3 61.6 60.3 0.0 44.2 50.8
## Bulgaria 19.7 25.7 34.8 26.9 44.2 0.0 7.6
## Czechoslovakia 22.9 28.1 39.0 22.7 50.8 7.6 0.0
## East Germany 32.5 41.3 38.6 28.3 63.0 20.2 14.8
## Hungary 17.9 23.7 35.0 30.1 45.8 9.4 9.2
## Poland 13.1 23.3 32.0 31.9 36.4 11.0 14.4
## Rumania 22.2 17.4 43.3 30.6 32.9 14.1 18.7
## USSR 23.1 32.9 28.4 41.7 44.8 18.4 23.8
## Yugoslavia 41.5 33.5 56.0 56.1 31.6 47.2 52.8
## East Germany Hungary Poland Rumania USSR Yugoslavia
## Belgium 35.2 30.4 31.4 39.7 27.4 57.2
## Denmark 43.7 38.9 35.7 47.2 31.5 53.3
## France 31.1 26.3 26.1 31.6 23.7 50.3
## West Germany 17.2 26.0 30.4 32.1 29.6 55.2
## Ireland 33.3 27.1 24.5 35.0 26.9 43.7
## Italy 31.1 22.3 22.3 27.0 23.7 55.3
## Luxembourg 28.5 19.9 25.1 27.0 30.9 55.1
## Netherlands 44.5 39.7 36.1 47.4 31.3 54.3
## United Kingdom 31.7 29.1 34.5 36.8 31.1 57.3
## Austria 30.3 16.7 21.1 23.8 29.9 49.5
## Finland 28.8 25.2 24.4 36.1 19.6 49.6
## Greece 41.4 27.0 21.4 23.7 32.6 27.8
## Norway 38.4 34.4 32.8 44.3 24.2 55.4
## Portugal 32.5 17.9 13.1 22.2 23.1 41.5
## Spain 41.3 23.7 23.3 17.4 32.9 33.5
## Sweden 38.6 35.0 32.0 43.3 28.4 56.0
## Switzerland 28.3 30.1 31.9 30.6 41.7 56.1
## Turkey 63.0 45.8 36.4 32.9 44.8 31.6
## Bulgaria 20.2 9.4 11.0 14.1 18.4 47.2
## Czechoslovakia 14.8 9.2 14.4 18.7 23.8 52.8
## East Germany 0.0 20.4 28.6 32.9 27.4 64.8
## Hungary 20.4 0.0 9.8 15.7 19.2 47.8
## Poland 28.6 9.8 0.0 13.7 14.0 38.8
## Rumania 32.9 15.7 13.7 0.0 22.7 36.1
## USSR 27.4 19.2 14.0 22.7 0.0 48.6
## Yugoslavia 64.8 47.8 38.8 36.1 48.6 0.0
Manhattan (scaled)
## Belgium Denmark France West Germany Ireland Italy
## Belgium 0.000000 4.492820 2.780393 5.004385 5.930244 6.353646
## Denmark 4.492820 0.000000 5.767818 7.386368 7.618614 7.930704
## France 2.780393 5.767818 0.000000 3.884401 4.781720 4.170068
## West Germany 5.004385 7.386368 3.884401 0.000000 5.176846 7.225460
## Ireland 5.930244 7.618614 4.781720 5.176846 0.000000 6.144297
## Italy 6.353646 7.930704 4.170068 7.225460 6.144297 0.000000
## Luxembourg 6.101492 9.535152 5.017609 5.553915 7.287261 5.964866
## Netherlands 3.871218 3.742790 4.510355 7.819824 6.758544 6.528136
## United Kingdom 4.488326 7.377880 5.014636 4.364269 4.767327 8.898666
## Austria 4.936946 8.159087 4.259799 5.379696 4.616797 6.763799
## Finland 4.142746 5.196117 4.866946 5.079067 4.432831 8.268354
## Greece 8.253042 6.766360 7.760740 8.248320 6.247035 6.626099
## Norway 4.406061 4.682420 5.361371 7.593613 6.821618 7.617363
## Portugal 7.022196 5.566021 4.849489 6.276613 5.359839 3.928632
## Spain 9.031317 9.808582 6.421987 8.884014 10.676585 7.431272
## Sweden 3.866765 2.561146 4.689577 5.005328 6.738207 7.915683
## Switzerland 6.621259 8.174550 4.175400 5.104315 7.931167 5.106804
## Turkey 18.307615 17.027109 16.377983 16.468197 14.709986 14.347815
## Bulgaria 8.656357 9.443511 8.398771 6.242486 8.170343 7.077850
## Czechoslovakia 9.760197 12.020642 9.326124 7.228864 8.475166 9.600032
## East Germany 10.459818 12.985533 10.920897 7.401108 8.582119 11.780495
## Hungary 11.171222 13.696937 11.632301 10.611202 9.642047 11.906209
## Poland 8.218923 9.937112 7.977189 7.798499 7.842731 8.279636
## Rumania 11.088818 11.754434 8.786215 8.805035 10.105018 7.465294
## USSR 8.998191 9.293824 8.872815 9.389665 9.901705 7.947935
## Yugoslavia 14.708155 15.221045 13.127222 12.899170 12.264022 16.565176
## Luxembourg Netherlands United Kingdom Austria Finland
## Belgium 6.101492 3.871218 4.488326 4.936946 4.142746
## Denmark 9.535152 3.742790 7.377880 8.159087 5.196117
## France 5.017609 4.510355 5.014636 4.259799 4.866946
## West Germany 5.553915 7.819824 4.364269 5.379696 5.079067
## Ireland 7.287261 6.758544 4.767327 4.616797 4.432831
## Italy 5.964866 6.528136 8.898666 6.763799 8.268354
## Luxembourg 0.000000 7.920126 7.048450 5.268551 8.809583
## Netherlands 7.920126 0.000000 6.274318 6.535943 5.485449
## United Kingdom 7.048450 6.274318 0.000000 4.007368 4.214333
## Austria 5.268551 6.535943 4.007368 0.000000 4.775470
## Finland 8.809583 5.485449 4.214333 4.775470 0.000000
## Greece 9.534739 8.994423 10.583163 8.100829 8.074780
## Norway 8.158592 4.737204 7.283539 6.968763 5.203468
## Portugal 7.342153 7.472769 9.042654 6.626908 6.553118
## Spain 9.262302 9.146877 11.151225 8.576347 10.370951
## Sweden 8.456912 4.609739 4.962731 7.368313 3.455241
## Switzerland 5.554476 6.413479 8.161964 5.345753 7.861333
## Turkey 18.870646 19.255172 18.748089 18.155401 17.484768
## Bulgaria 6.963018 11.471796 8.970487 7.759740 9.338725
## Czechoslovakia 6.360218 11.723806 9.275310 6.573212 9.212349
## East Germany 8.804242 13.318579 9.001563 8.866326 8.076204
## Hungary 8.596519 14.029983 10.081820 7.782417 9.516832
## Poland 6.777800 10.392764 9.927165 7.411282 8.780726
## Rumania 7.856553 13.296570 11.364900 9.203071 12.135798
## USSR 10.040818 10.659473 11.137632 9.740141 8.985062
## Yugoslavia 15.705922 15.108886 13.410836 14.006769 13.733272
## Greece Norway Portugal Spain Sweden Switzerland
## Belgium 8.253042 4.406061 7.022196 9.031317 3.866765 6.621259
## Denmark 6.766360 4.682420 5.566021 9.808582 2.561146 8.174550
## France 7.760740 5.361371 4.849489 6.421987 4.689577 4.175400
## West Germany 8.248320 7.593613 6.276613 8.884014 5.005328 5.104315
## Ireland 6.247035 6.821618 5.359839 10.676585 6.738207 7.931167
## Italy 6.626099 7.617363 3.928632 7.431272 7.915683 5.106804
## Luxembourg 9.534739 8.158592 7.342153 9.262302 8.456912 5.554476
## Netherlands 8.994423 4.737204 7.472769 9.146877 4.609739 6.413479
## United Kingdom 10.583163 7.283539 9.042654 11.151225 4.962731 8.161964
## Austria 8.100829 6.968763 6.626908 8.576347 7.368313 5.345753
## Finland 8.074780 5.203468 6.553118 10.370951 3.455241 7.861333
## Greece 0.000000 7.994278 3.529780 7.639966 7.590969 8.384861
## Norway 7.994278 0.000000 6.913516 11.251748 5.034271 7.844088
## Portugal 3.529780 6.913516 0.000000 6.950498 6.069307 5.235779
## Spain 7.639966 11.251748 6.950498 0.000000 9.530832 6.942669
## Sweden 7.590969 5.034271 6.069307 9.530832 0.000000 7.508663
## Switzerland 8.384861 7.844088 5.235779 6.942669 7.508663 0.000000
## Turkey 10.524310 18.255027 12.353199 15.212185 16.757882 17.208279
## Bulgaria 5.984308 10.500191 5.875625 9.079968 8.854914 8.885302
## Czechoslovakia 9.147860 11.649491 8.674565 10.982686 11.142442 9.343138
## East Germany 11.243360 11.110464 11.134677 14.463111 11.400305 11.511446
## Hungary 10.641359 12.396801 10.411139 13.083871 12.840932 13.128170
## Poland 6.393475 9.809036 6.095887 9.392027 8.972258 9.750263
## Rumania 6.634811 12.446502 6.188413 7.305735 11.651987 9.080654
## USSR 8.233994 6.823765 7.760699 10.763317 9.651115 11.653163
## Yugoslavia 11.376408 16.668452 13.255073 11.213820 14.244907 15.194135
## Turkey Bulgaria Czechoslovakia East Germany Hungary
## Belgium 18.30761 8.656357 9.760197 10.459818 11.171222
## Denmark 17.02711 9.443511 12.020642 12.985533 13.696937
## France 16.37798 8.398771 9.326124 10.920897 11.632301
## West Germany 16.46820 6.242486 7.228864 7.401108 10.611202
## Ireland 14.70999 8.170343 8.475166 8.582119 9.642047
## Italy 14.34782 7.077850 9.600032 11.780495 11.906209
## Luxembourg 18.87065 6.963018 6.360218 8.804242 8.596519
## Netherlands 19.25517 11.471796 11.723806 13.318579 14.029983
## United Kingdom 18.74809 8.970487 9.275310 9.001563 10.081820
## Austria 18.15540 7.759740 6.573212 8.866326 7.782417
## Finland 17.48477 9.338725 9.212349 8.076204 9.516832
## Greece 10.52431 5.984308 9.147860 11.243360 10.641359
## Norway 18.25503 10.500191 11.649491 11.110464 12.396801
## Portugal 12.35320 5.875625 8.674565 11.134677 10.411139
## Spain 15.21218 9.079968 10.982686 14.463111 13.083871
## Sweden 16.75788 8.854914 11.142442 11.400305 12.840932
## Switzerland 17.20828 8.885302 9.343138 11.511446 13.128170
## Turkey 0.00000 13.339437 17.270624 19.703968 18.851550
## Bulgaria 13.33944 0.000000 4.161564 7.014189 6.718056
## Czechoslovakia 17.27062 4.161564 0.000000 3.912777 4.077451
## East Germany 19.70397 7.014189 3.912777 0.000000 5.326174
## Hungary 18.85155 6.718056 4.077451 5.326174 0.000000
## Poland 13.77311 3.293365 3.497513 7.045678 5.321514
## Rumania 11.07266 3.852517 6.399054 10.098046 8.730365
## USSR 15.00164 5.378727 8.136794 8.807357 9.093067
## Yugoslavia 11.46685 13.732085 15.005224 17.367307 16.586150
## Poland Rumania USSR Yugoslavia
## Belgium 8.218923 11.088818 8.998191 14.70815
## Denmark 9.937112 11.754434 9.293824 15.22105
## France 7.977189 8.786215 8.872815 13.12722
## West Germany 7.798499 8.805035 9.389665 12.89917
## Ireland 7.842731 10.105018 9.901705 12.26402
## Italy 8.279636 7.465294 7.947935 16.56518
## Luxembourg 6.777800 7.856553 10.040818 15.70592
## Netherlands 10.392764 13.296570 10.659473 15.10889
## United Kingdom 9.927165 11.364900 11.137632 13.41084
## Austria 7.411282 9.203071 9.740141 14.00677
## Finland 8.780726 12.135798 8.985062 13.73327
## Greece 6.393475 6.634811 8.233994 11.37641
## Norway 9.809036 12.446502 6.823765 16.66845
## Portugal 6.095887 6.188413 7.760699 13.25507
## Spain 9.392027 7.305735 10.763317 11.21382
## Sweden 8.972258 11.651987 9.651115 14.24491
## Switzerland 9.750263 9.080654 11.653163 15.19413
## Turkey 13.773110 11.072662 15.001641 11.46685
## Bulgaria 3.293365 3.852517 5.378727 13.73208
## Czechoslovakia 3.497513 6.399054 8.136794 15.00522
## East Germany 7.045678 10.098046 8.807357 17.36731
## Hungary 5.321514 8.730365 9.093067 16.58615
## Poland 0.000000 4.521902 5.703287 12.57093
## Rumania 4.521902 0.000000 6.800515 11.48279
## USSR 5.703287 6.800515 0.000000 15.73161
## Yugoslavia 12.570930 11.482786 15.731606 0.00000
Visualisasi Dendogram
clustsingle1 <- hclust(jarak1, method="single")
clustcomp1 <- hclust(jarak1, method="complete")
clustsingle1sc <- hclust(jarak1sc, method="single")
clustcomp1sc <- hclust(jarak1sc, method="complete")
clustsingle2 <- hclust(jarak2, method="single")
clustcomp2 <- hclust(jarak2, method="complete")
clustsingle2sc <- hclust(jarak2sc, method="single")
clustcomp2sc <- hclust(jarak2sc, method="complete")
Single Linkage
Single Linkage (Scaled)
par(mfrow=c(1,2))
plot(clustsingle1sc, main = "Eucledian Scaled")
plot(clustsingle2sc, main = "Manhattan Scaled")
Complete Linkage
Non Hierachical
Berikutnya kita akan melakukan k-means clustering dengan 2 klaster.
## K-means clustering with 2 clusters of sizes 21, 5
##
## Cluster means:
## Agr Min Man PS Con SI Fin SPS TC
## 1 13.08095 1.20 28.76667 0.9666667 8.542857 14.30476 4.142857 22.12381 6.87619
## 2 44.54000 1.48 19.62000 0.6600000 6.580000 7.30000 3.400000 11.20000 5.16000
##
## Clustering vector:
## Belgium Denmark France West Germany Ireland
## 1 1 1 1 1
## Italy Luxembourg Netherlands United Kingdom Austria
## 1 1 1 1 1
## Finland Greece Norway Portugal Spain
## 1 2 1 1 1
## Sweden Switzerland Turkey Bulgaria Czechoslovakia
## 1 1 2 1 1
## East Germany Hungary Poland Rumania USSR
## 1 1 2 2 1
## Yugoslavia
## 2
##
## Within cluster sum of squares by cluster:
## [1] 2953.174 1301.360
## (between_SS / total_SS = 54.3 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
## Belgium Denmark France West Germany Ireland
## 1 1 1 1 1
## Italy Luxembourg Netherlands United Kingdom Austria
## 1 1 1 1 1
## Finland Greece Norway Portugal Spain
## 1 2 1 1 1
## Sweden Switzerland Turkey Bulgaria Czechoslovakia
## 1 1 2 1 1
## East Germany Hungary Poland Rumania USSR
## 1 1 2 2 1
## Yugoslavia
## 2
##
## 1 2
## 21 5
Klaster pada masing-masing amatan dapat disimpan langsung ke dalam dataset menjadi sebuah kolom.
## Agr Min Man PS Con SI Fin SPS TC cluster
## Belgium 3.3 0.9 27.6 0.9 8.2 19.1 6.2 26.6 7.2 1
## Denmark 9.2 0.1 21.8 0.6 8.3 14.6 6.5 32.2 7.1 1
## France 10.8 0.8 27.5 0.9 8.9 16.8 6.0 22.6 5.7 1
## West Germany 6.7 1.3 35.8 0.9 7.3 14.4 5.0 22.3 6.1 1
## Ireland 23.2 1.0 20.7 1.3 7.5 16.8 2.8 20.8 6.1 1
## Italy 15.9 0.6 27.6 0.5 10.0 18.1 1.6 20.1 5.7 1
## Luxembourg 7.7 3.1 30.8 0.8 9.2 18.5 4.6 19.2 6.2 1
## Netherlands 6.3 0.1 22.5 1.0 9.9 18.0 6.8 28.5 6.8 1
## United Kingdom 2.7 1.4 30.2 1.4 6.9 16.9 5.7 28.3 6.4 1
## Austria 12.7 1.1 30.2 1.4 9.0 16.8 4.9 16.8 7.0 1
## Finland 13.0 0.4 25.9 1.3 7.4 14.7 5.5 24.3 7.6 1
## Greece 41.4 0.6 17.6 0.6 8.1 11.5 2.4 11.0 6.7 2
## Norway 9.0 0.5 22.4 0.8 8.6 16.9 4.7 27.6 9.4 1
## Portugal 27.8 0.3 24.5 0.6 8.4 13.3 2.7 16.7 5.7 1
## Spain 22.9 0.8 28.5 0.7 11.5 9.7 8.5 11.8 5.5 1
## Sweden 6.1 0.4 25.9 0.8 7.2 14.4 6.0 32.4 6.8 1
## Switzerland 7.7 0.2 37.8 0.8 9.5 17.5 5.3 15.4 5.7 1
## Turkey 66.8 0.7 7.9 0.1 2.8 5.2 1.1 11.9 3.2 2
## Bulgaria 23.6 1.9 32.3 0.6 7.9 8.0 0.7 18.2 6.7 1
## Czechoslovakia 16.5 2.9 35.5 1.2 8.7 9.2 0.9 17.9 7.0 1
## East Germany 4.2 2.9 41.2 1.3 7.6 11.2 1.2 22.1 8.4 1
## Hungary 21.7 3.1 29.6 1.9 8.2 9.4 0.9 17.2 8.0 1
## Poland 31.1 2.5 25.7 0.9 8.4 7.5 0.9 16.1 6.9 2
## Rumania 34.7 2.1 30.1 0.6 8.7 5.9 1.3 11.7 5.0 2
## USSR 23.7 1.4 25.8 0.6 9.2 6.1 0.5 23.6 9.3 1
## Yugoslavia 48.7 1.5 16.8 1.1 4.9 6.4 11.3 5.3 4.0 2
Kualitas dari K-Means Partition dapat dilihat dengan menghitung persentase dari Total Sum of Squares (TSS) “explained” dengan formula: (BSS/TSS) x 100% di mana BSS merupakan Between Sum of Squares. Semakin tinggi persentase maka semakin baik kualitas dari K-Means Partition karena BSS yang besar atau WSS (Within Sum of Squares) yang kecil.
## [1] 5045.056
## [1] 9299.59
## [1] 54.2503
Selanjutkan kita akan melihat bagaimana K-Means Clustering dengan 3 klaster.
## K-means clustering with 3 clusters of sizes 9, 14, 3
##
## Cluster means:
## Agr Min Man PS Con SI Fin SPS
## 1 25.022222 1.7777778 28.07778 0.9333333 8.722222 9.544444 2.133333 17.11111
## 2 8.235714 0.9857143 29.08571 0.9571429 8.428571 16.278571 5.000000 24.17143
## 3 52.300000 0.9333333 14.10000 0.6000000 5.266667 7.700000 4.933333 9.40000
## TC
## 1 6.688889
## 2 6.864286
## 3 4.633333
##
## Clustering vector:
## Belgium Denmark France West Germany Ireland
## 2 2 2 2 1
## Italy Luxembourg Netherlands United Kingdom Austria
## 2 2 2 2 2
## Finland Greece Norway Portugal Spain
## 2 3 2 1 1
## Sweden Switzerland Turkey Bulgaria Czechoslovakia
## 2 2 3 1 1
## East Germany Hungary Poland Rumania USSR
## 2 1 1 1 1
## Yugoslavia
## 3
##
## Within cluster sum of squares by cluster:
## [1] 691.3022 1139.6936 531.6067
## (between_SS / total_SS = 74.6 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
## Belgium Denmark France West Germany Ireland
## 2 2 2 2 1
## Italy Luxembourg Netherlands United Kingdom Austria
## 2 2 2 2 2
## Finland Greece Norway Portugal Spain
## 2 3 2 1 1
## Sweden Switzerland Turkey Bulgaria Czechoslovakia
## 2 2 3 1 1
## East Germany Hungary Poland Rumania USSR
## 2 1 1 1 1
## Yugoslavia
## 3
##
## 1 2 3
## 9 14 3
## [1] 74.59455
Dapat dilihat bahwa pengklasteran dengan 3 klaster memiliki nilai kualitas partition yang lebih tinggi.
Hal yang akan selalu terjadi: dengan lebih banyak kelas, partisi akan menjadi lebih halus, dan kontribusi BSS akan lebih tinggi. Di sisi lain, “model” akan menjadi lebih kompleks, memerlukan lebih banyak kelas. Dalam kasus ekstrem di mana k = n (setiap observasi adalah kelas singleton), kita memiliki BSS = TSS, tetapi partisi tersebut kehilangan semua kepentingannya.
## [1] 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 1 2 2 2 2 2 2 2 1
## Warning: package 'see' was built under R version 4.4.3
Keuntungan dari fungsi ini adalah dapat memvisualisasikan titik tengah atau rata-rata dari masing-masing variabel pada masing-masing klaster. Dimana terlihat pada hasil cluster 1 dominan ke arah AGR dan CON sementar rendah di MIN
Optimal K
Elbow Method
# Elbow method
fviz_nbclust(ejobs, kmeans, method = "wss") +
geom_vline(xintercept = 4, linetype = 2) + # add line for better visualisation
labs(subtitle = "Elbow method") # add subtitle
Lokasi lengkungan/siku dalam plot biasanya dianggap sebagai indikator jumlah klaster yang sesuai karena ini berarti penambahan klaster lainnya tidak banyak meningkatkan partisi. Metode ini menyarankan 4 klaster.
Namun Elbow Method ini kadang-kadang juga ambigu.
Silhouette Method
# Silhouette method
fviz_nbclust(ejobs, kmeans, method = "silhouette") +
labs(subtitle = "Silhouette method")
Gap Statistic Method
# Gap statistic
set.seed(123)
fviz_nbclust(ejobs, kmeans,
nstart = 25,
method = "gap_stat",
nboot = 500 # reduce it for lower computation time (but less precise results)
) +
labs(subtitle = "Gap statistic method")
Consensus-based algorithm
n_clust <- n_clusters(ejobs,
package = c("easystats", "NbClust", "mclust"),
standardize = FALSE
)
n_clust
## # Method Agreement Procedure:
##
## The choice of 3 clusters is supported by 15 (51.72%) methods out of 29 (kl, Ch, Hartigan, CCC, Scott, Marriot, trcovw, Tracew, Rubin, Beale, Ratkowsky, Ball, PtBiserial, Dunn, SDindex).
Visualisasi
Untuk memastikan bahwa jumlah klaster memang benar-benar optimal, ada cara untuk mengevaluasi kualitas pengklasteran melalui plot silhouette.
Kita akan buat plot silhouette untuk 2 klaster sebagaimana yang disarankan oleh metode silhouette.
set.seed(123)
km_res <- kmeans(ejobs, centers = 2)
sil <- silhouette(km_res$cluster, dist(ejobs))
fviz_silhouette(sil)
## cluster size ave.sil.width
## 1 1 5 0.33
## 2 2 21 0.54
Interpretasi dari koefisien silhouette:
Koefisien > 0 artinya amatan diklasterkan dengan baik. Semakin mendekati nilai 1 maka semakin baik pengklasteran.
Koefisien < 0 artinya amatan ditempatkan pada klaster yang salah.
Koefisien = 0 artinya amatan berada di antara dua klaster.
Dilihat pada plot, jika sebagian besar koefisien silhouette positif maka ini menunjukkan bahwa amatan ditempatkan dalam klaster yang benar.
Misal kita pilih klaster sebanyak 3.
K Medoids Clustering
## Medoids:
## ID Agr Min Man PS Con SI Fin SPS TC
## France 3 10.8 0.8 27.5 0.9 8.9 16.8 6.0 22.6 5.7
## Poland 23 31.1 2.5 25.7 0.9 8.4 7.5 0.9 16.1 6.9
## Clustering vector:
## Belgium Denmark France West Germany Ireland
## 1 1 1 1 2
## Italy Luxembourg Netherlands United Kingdom Austria
## 1 1 1 1 1
## Finland Greece Norway Portugal Spain
## 1 2 1 2 2
## Sweden Switzerland Turkey Bulgaria Czechoslovakia
## 1 1 2 2 1
## East Germany Hungary Poland Rumania USSR
## 1 2 2 2 2
## Yugoslavia
## 2
## Objective function:
## build swap
## 11.82808 11.35165
##
## Available components:
## [1] "medoids" "id.med" "clustering" "objective" "isolation"
## [6] "clusinfo" "silinfo" "diss" "call" "data"
## Agr Min Man PS Con SI Fin SPS TC
## France 10.8 0.8 27.5 0.9 8.9 16.8 6.0 22.6 5.7
## Poland 31.1 2.5 25.7 0.9 8.4 7.5 0.9 16.1 6.9
## Belgium Denmark France West Germany Ireland
## 1 1 1 1 2
## Italy Luxembourg Netherlands United Kingdom Austria
## 1 1 1 1 1
## Finland Greece Norway Portugal Spain
## 1 2 1 2 2
## Sweden Switzerland Turkey Bulgaria Czechoslovakia
## 1 1 2 2 1
## East Germany Hungary Poland Rumania USSR
## 1 2 2 2 2
## Yugoslavia
## 2
K-Means Clustering
## Belgium Denmark France West Germany Ireland
## 2 2 2 2 2
## Italy Luxembourg Netherlands United Kingdom Austria
## 2 2 2 2 2
## Finland Greece Norway Portugal Spain
## 2 1 2 2 2
## Sweden Switzerland Turkey Bulgaria Czechoslovakia
## 2 2 1 2 2
## East Germany Hungary Poland Rumania USSR
## 2 2 1 1 2
## Yugoslavia
## 1
Evaluasi
CH Index
## [1] 28.45936
## [1] 25.86314
DB Index
## [1] 0.7919587
## [1] 0.9554143
Simpulan Evaluasi
clust.eval<-data.frame(
Method=c("K-Means", "K-Medoids"),
CH=c(ch.km, ch.pam),
DB=c(db.km, db.pam),
ASW=c(colMeans(sil.km$data[3]), colMeans(sil.pam$data[3]))
)
clust.eval
## Method CH DB ASW
## 1 K-Means 28.45936 0.7919587 0.4975544
## 2 K-Medoids 25.86314 0.9554143 0.4222865
Secara keseluruhan, K-Means lebih unggul dari K-Medoids pada seluruh metrik evaluasi ini:
Klaster lebih terpisah dan kompak (CH lebih tinggi).
Jarak antar klaster lebih optimal (DB lebih rendah).
Struktur klaster lebih sesuai dengan data (ASW lebih tinggi).
## Linking to GEOS 3.12.1, GDAL 3.8.4, PROJ 9.3.1; sf_use_s2() is TRUE
##
## Attaching package: 'rnaturalearthdata'
## The following object is masked from 'package:rnaturalearth':
##
## countries110
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Baca data dari file CSV
ejobs <- read.csv(
file = "C:\\Users\\Ghonniyu\\Downloads\\Eurojobs.csv",
header = TRUE,
)
# Menambahkan hasil clustering ke data ejobs
ejobs$cluster <- km$cluster # km$cluster adalah hasil clustering yang sudah dibuat sebelumnya
# Ambil data peta Eropa
europe_map <- ne_countries(scale = "medium", continent = "Europe", returnclass = "sf")
# Gabungkan data ejobs dengan peta Eropa berdasarkan nama negara
map_data <- left_join(europe_map, ejobs, by = c("name" = "Country"))
# Visualisasi dengan ggplot
ggplot(data = map_data) +
geom_sf(aes(fill = factor(cluster)), color = "black", size = 0.1) +
scale_fill_manual(values = c("steelblue", "darkorange")) +
labs(title = "Visualisasi Cluster di Peta Eropa",
fill = "Cluster") +
theme_minimal() +
theme(legend.position = "bottom")
Percobaan dengan k=3
Karena semua nilai metrik sama persis, maka kedua metode menghasilkan kualitas klaster yang identik pada data yang digunakan.
Social Infrastructure