Data Attrition

## [1] "Original dataset has 231 rows"
##                                Condition Rows_Remaining Rows_Discarded
## 1                      2. Do not consent            228              3
## 2                3. Tech_screener failed            205             23
## 3                       4. Not in the US            205              0
## 4                          5. Not Female            198              7
## 5 6. Use cream less than 3 times a week             171             27
## 6                7. Fail attention check            170              1
## 7                                  TOTAL            170             61
## [1] "Percentage of records kept: 73.59 %"
## [1] "Percentage of records discarded: 26.41 %"
## [1] "Final filtered dataset (df_cp) dimensions: 170 rows x 80 columns"

Those who didn’t do shopping task - thus do not procced to claim question

Survey - product choice

##                                        Column Non_NA_Count Percent_Complete
## age...22                             age...22          165           100.00
## use_frequency                   use_frequency          165           100.00
## edu                                       edu          165           100.00
## race...57                           race...57          165           100.00
## income                                 income          165           100.00
## employ                                 employ          165           100.00
## purchase_frequency         purchase_frequency          165           100.00
## purchase_amount               purchase_amount          165           100.00
## importance                         importance          165           100.00
## participantId                   participantId          165           100.00
## Mec_benchmark_1               Mec_benchmark_1           36            21.82
## Mec_study_effet_b_1       Mec_study_effet_b_1           23            13.94
## Mec_clinical_study_b_1 Mec_clinical_study_b_1           20            12.12
## Mec_clinical_study_a_1 Mec_clinical_study_a_1           14             8.48
## disclaimer_1_b_1             disclaimer_1_b_1           14             8.48
## disclaimer_3_b_1             disclaimer_3_b_1           14             8.48
## Mec_study_effet_a_1       Mec_study_effet_a_1           13             7.88
## disclaimer_2_b_1             disclaimer_2_b_1           12             7.27
## disclaimer_1_a_1             disclaimer_1_a_1            7             4.24
## disclaimer_2_a_1             disclaimer_2_a_1            6             3.64
## disclaimer_3_a_1             disclaimer_3_a_1            6             3.64

The proportion that choose 1

## [1] "Proportions of Value = 1 with 95% Confidence Intervals:"
##                   Column Proportion Count Total         SE  CI_Lower  CI_Upper
## 1        Mec_benchmark_1  0.4444444    16    36 0.08281733 0.2821225 0.6067664
## 2    Mec_study_effet_b_1  0.6521739    15    23 0.09931135 0.4575237 0.8468242
## 3 Mec_clinical_study_b_1  0.8500000    17    20 0.07984360 0.6935065 1.0000000
## 4       disclaimer_1_b_1  0.7142857    10    14 0.12073632 0.4776425 0.9509289
## 5       disclaimer_2_b_1  0.9166667    11    12 0.07978559 0.7602869 1.0000000
## 6       disclaimer_3_b_1  0.8571429    12    14 0.09352195 0.6738398 1.0000000

## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.444)
##  - Mec_study_effet_b_1 (p2 = 0.652)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 88.90845
##              p1 = 0.4444444
##              p2 = 0.6521739
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.444)
##  - Mec_clinical_study_b_1 (p2 = 0.850)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 20.57188
##              p1 = 0.4444444
##              p2 = 0.85
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.444)
##  - disclaimer_1_b_1 (p2 = 0.714)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 51.34368
##              p1 = 0.4444444
##              p2 = 0.7142857
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_study_effet_b_1 (p1 = 0.652)
##  - Mec_clinical_study_b_1 (p2 = 0.850)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 73.80086
##              p1 = 0.6521739
##              p2 = 0.85
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_b_1 (p1 = 0.850)
##  - disclaimer_1_b_1 (p2 = 0.714)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 144.0414
##              p1 = 0.85
##              p2 = 0.7142857
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_b_1 (p1 = 0.850)
##  - disclaimer_2_b_1 (p2 = 0.917)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 362.8106
##              p1 = 0.85
##              p2 = 0.9166667
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_b_1 (p1 = 0.850)
##  - disclaimer_3_b_1 (p2 = 0.857)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 38454.41
##              p1 = 0.85
##              p2 = 0.8571429
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group

The proportion that choose 2

## [1] "Proportions of Value = 2 with 95% Confidence Intervals:"
##                   Column Proportion Count Total         SE   CI_Lower  CI_Upper
## 1        Mec_benchmark_1  0.5555556    20    36 0.08281733 0.39323358 0.7178775
## 2    Mec_study_effet_a_1  0.3846154     5    13 0.13493200 0.12014866 0.6490821
## 3 Mec_clinical_study_a_1  0.6428571     9    14 0.12806021 0.39185913 0.8938552
## 4       disclaimer_1_a_1  0.5714286     4     7 0.18704391 0.20482252 0.9380346
## 5       disclaimer_2_a_1  0.6666667     4     6 0.19245009 0.28946449 1.0000000
## 6       disclaimer_3_a_1  0.5000000     3     6 0.20412415 0.09991668 0.9000833

## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.556)
##  - Mec_study_effet_a_1 (p2 = 0.385)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 132.6383
##              p1 = 0.5555556
##              p2 = 0.3846154
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.556)
##  - Mec_clinical_study_a_1 (p2 = 0.643)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 493.461
##              p1 = 0.5555556
##              p2 = 0.6428571
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_benchmark_1 (p1 = 0.556)
##  - disclaimer_1_a_1 (p2 = 0.571)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 15323.76
##              p1 = 0.5555556
##              p2 = 0.5714286
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_study_effet_a_1 (p1 = 0.385)
##  - Mec_clinical_study_a_1 (p2 = 0.643)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 57.60947
##              p1 = 0.3846154
##              p2 = 0.6428571
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_a_1 (p1 = 0.643)
##  - disclaimer_1_a_1 (p2 = 0.571)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 732.6902
##              p1 = 0.6428571
##              p2 = 0.5714286
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_a_1 (p1 = 0.643)
##  - disclaimer_2_a_1 (p2 = 0.667)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 6258.303
##              p1 = 0.6428571
##              p2 = 0.6666667
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study_a_1 (p1 = 0.643)
##  - disclaimer_3_a_1 (p2 = 0.500)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 187.1898
##              p1 = 0.6428571
##              p2 = 0.5
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group

Combine both

##                Column Proportion         SE  CI_Lower  CI_Upper Count Total               Label
## 1           Benchmark  0.4444444 0.08281733 0.2821225 0.6067664    16    36           Benchmark
## 2     Mec_study_effet  0.5555556 0.08281733 0.3932336 0.7178775    20    36               Study
## 3  Mec_clinical_study  0.7647059 0.07274670 0.6221224 0.9072894    26    34      Clinical Study
## 4 disclaimer_clinical  0.6666667 0.10286890 0.4650436 0.8682897    14    21 Clinical Disclaimer
## 5   disclaimer_degree  0.8333333 0.08784105 0.6611649 1.0000000    15    18   Degree Disclaimer
## 6 disclaimer_consumer  0.7500000 0.09682458 0.5602238 0.9397762    15    20 Consumer Disclaimer

## Power analysis to detect difference between:
##  - Benchmark (p1 = 0.444)
##  - Mec_study_effet (p2 = 0.556)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 316.6981
##              p1 = 0.4444444
##              p2 = 0.5555556
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Benchmark (p1 = 0.444)
##  - Mec_clinical_study (p2 = 0.765)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 35.38599
##              p1 = 0.4444444
##              p2 = 0.7647059
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Benchmark (p1 = 0.444)
##  - disclaimer_clinical (p2 = 0.667)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 77.29929
##              p1 = 0.4444444
##              p2 = 0.6666667
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_study_effet (p1 = 0.556)
##  - Mec_clinical_study (p2 = 0.765)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 79.3231
##              p1 = 0.5555556
##              p2 = 0.7647059
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study (p1 = 0.765)
##  - disclaimer_clinical (p2 = 0.667)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 331.1402
##              p1 = 0.7647059
##              p2 = 0.6666667
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study (p1 = 0.765)
##  - disclaimer_degree (p2 = 0.833)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 534.0651
##              p1 = 0.7647059
##              p2 = 0.8333333
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group
## Power analysis to detect difference between:
##  - Mec_clinical_study (p1 = 0.765)
##  - disclaimer_consumer (p2 = 0.750)
##  Required sample size per group to detect this difference with 80% power (α = 0.05):
## 
## 
##      Two-sample comparison of proportions power calculation 
## 
##               n = 13337.99
##              p1 = 0.7647059
##              p2 = 0.75
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number in *each* group

Claim credibility

## [1] "Mean values with 95% confidence intervals:"
##                 Column     Mean        SD        SE CI_Lower CI_Upper   n
## 1      claim_benchmark 4.654545 1.3373369 0.1041115 4.450487 4.858604 165
## 2       Original claim 4.966667 0.9994251 0.1824692 4.609027 5.324306  30
## 3  Consumer perception 4.407407 1.3085300 0.2518267 3.913827 4.900988  27
## 4           High price 4.807692 1.4427538 0.2829473 4.253116 5.362269  26
## 5            Low price 4.750000 0.9279607 0.1753681 4.406279 5.093721  28
## 6 Smaller participants 4.538462 1.2721877 0.2494965 4.049448 5.027475  26
## 7  Big efficacy number 5.321429 1.2187903 0.2303297 4.869982 5.772875  28

Consensus and magnitude confusion

## [1] "Mean values with 95% confidence intervals for confidence degree variables:"
##            Column     Mean        SD         SE CI_Lower CI_Upper  n
## 1 Con-degree-high 2.843373 1.0179119 0.11173034 2.624382 3.062365 83
## 2  Con-degree-low 2.609756 0.7818323 0.08633893 2.440532 2.778980 82

## Basic statistics:
## Con-degree-high: Mean = 2.843373 , SD = 1.017912 , n = 83
## Con-degree-low: Mean = 2.609756 , SD = 0.7818323 , n = 82
## Difference (high - low): 0.2336174
## One-sided t-test (Con-degree-high > Con-degree-low):
## 
##  Welch Two Sample t-test
## 
## data:  high_confidence and low_confidence
## t = 1.6545, df = 153.69, p-value = 0.05003
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  -4.814539e-05           Inf
## sample estimates:
## mean of x mean of y 
##  2.843373  2.609756
## 
## Hypothesis Test Summary:
## -------------------------
## Null Hypothesis: Mean of Con-degree-high is less than or equal to mean of Con-degree-low
## Alternative Hypothesis: Mean of Con-degree-high is greater than mean of Con-degree-low
## Test statistic (t): 1.654
## Degrees of freedom: 153.691
## p-value: 0.05003
## Decision: Fail to reject the null hypothesis at the 0.05 significance level.
## Conclusion: There is insufficient evidence to conclude that the mean of Con-degree-high
## is significantly greater than the mean of Con-degree-low.
## 
## Effect size (Cohen's d): 0.257
## Interpretation: Medium effect size