What is / and hov is MQPA (Molecular Quantum Particle Algorithm) represents in mathe and how itt’s applied in fidelity calculations :

\[ F(\rho, \sigma) = \left( \text{Tr} \left[ \sqrt{ \sqrt{\rho} \sigma \sqrt{\rho} } \right] \right)^2 \quad \text{or for pure states:} \quad F = |\langle \psi_{\text{real}} | \psi_{\text{MQPA}} \rangle|^2 \]

ψₘ𝓺ₚₐ


MQPA Formula: What Is \(\psi_{\text{MQPA}}\)?

1. Formal Representation of MQPA Quantum State

\[ |\psi_{\text{MQPA}}(\vec{x}, \boldsymbol{\theta})\rangle = U_{\text{MQPA}}(\vec{x}, \boldsymbol{\theta}) |0\rangle^{\otimes n} \]

Where:

  • \(\vec{x}\) = classical molecular/environmental input features
  • \(\boldsymbol{\theta}\) = trainable variational parameters
  • \(U_{\text{MQPA}}\) = parameterized unitary composed of:
    • Quantum encoding (angle or amplitude)
    • Entangling layers (e.g., CZ, CNOT)
    • Variational evolution (e.g., RealAmplitudes, VQE ansatz)
    • Symmetry-preserving layers (for particle conservation)
  • \(|0\rangle^{\otimes n}\) = initial quantum state of n qubits

###fidelity equation:

\[ F = |\langle \psi_{\text{real}} | \psi_{\text{MQPA}}(\vec{x}, \boldsymbol{\theta}) \rangle|^2 \]

-when we’’re com paring:

  • \(\psi_{\text{real}}\): reference state (e.g., from DFT, experimental ground truth, or simulator)
  • \(\psi_{\text{MQPA}}\): learned/predicted state from MQPA circuit

2. What is \(U_{\text{MQPA}}\) Exactly?

\[ U_{\text{MQPA}}(\vec{x}, \boldsymbol{\theta}) = U_{\text{evolution}}(\boldsymbol{\theta}) \cdot U_{\text{encoding}}(\vec{x}) \]

Where:

a. Encoding Layer

\[ U_{\text{encoding}}(\vec{x}) = \bigotimes_i R_y(x_i) \quad \text{or} \quad U_{\text{encoding}}(\vec{x}) = ZZFeatureMap(\vec{x}) \]

b. Variational Evolution (Trainable Layers)

\[ U_{\text{evolution}}(\boldsymbol{\theta}) = \prod_{l=1}^{L} \left( \prod_{i=1}^{n} R_y(\theta_{l,i}) \cdot \text{Entangle} \right) \]

Entangle = a layer of CNOT, CZ, or custom Hamiltonian-based gates.


3. When MQPA Is Measured

After applying \(U_{\text{MQPA}}\), we measure:

  • observables \(O_j\)
  • or collapse the full statevector \(\psi_{\text{MQPA}}\)

Then compare with ground truth using:

Fidelity:

\[ F = |\langle \psi_{\text{real}} | \psi_{\text{MQPA}} \rangle|^2 \]

or Density Matrices:

\[ F(\rho, \sigma) = \left( \text{Tr} \left[ \sqrt{ \sqrt{\rho} \sigma \sqrt{\rho} } \right] \right)^2 \quad \text{where } \rho = |\psi_{\text{real}}\rangle\langle\psi_{\text{real}}| ,\quad \sigma = |\psi_{\text{MQPA}}\rangle\langle\psi_{\text{MQPA}}| \]


PLain Summary


LS0tDQp0aXRsZTogIk1RUEEiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KV2hhdCBpcyAvIGFuZCBob3YgaXMgTVFQQSAoTW9sZWN1bGFyIFF1YW50dW0gUGFydGljbGUgQWxnb3JpdGhtKSByZXByZXNlbnRzIGluIG1hdGhlIGFuZCBob3cgaXR0J3MgYXBwbGllZCBpbiBmaWRlbGl0eSBjYWxjdWxhdGlvbnMgOg0KDQpcWw0KRihccmhvLCBcc2lnbWEpID0gXGxlZnQoIFx0ZXh0e1RyfSBcbGVmdFsgXHNxcnR7IFxzcXJ0e1xyaG99IFxzaWdtYSBcc3FydHtccmhvfSB9IFxyaWdodF0gXHJpZ2h0KV4yDQpccXVhZCBcdGV4dHtvciBmb3IgcHVyZSBzdGF0ZXM6fSBccXVhZA0KRiA9IHxcbGFuZ2xlIFxwc2lfe1x0ZXh0e3JlYWx9fSB8IFxwc2lfe1x0ZXh0e01RUEF9fSBccmFuZ2xlfF4yDQpcXQ0KIA0KICoqz4jigpjwnZO64oKa4oKQKiogDQoNCi0tLQ0KDQojIyAgTVFQQSBGb3JtdWxhOiBXaGF0IElzIFwoIFxwc2lfe1x0ZXh0e01RUEF9fSBcKT8NCg0KIyMjIDEuICoqRm9ybWFsIFJlcHJlc2VudGF0aW9uIG9mIE1RUEEgUXVhbnR1bSBTdGF0ZSoqDQoNClxbDQp8XHBzaV97XHRleHR7TVFQQX19KFx2ZWN7eH0sIFxib2xkc3ltYm9se1x0aGV0YX0pXHJhbmdsZSA9IFVfe1x0ZXh0e01RUEF9fShcdmVje3h9LCBcYm9sZHN5bWJvbHtcdGhldGF9KSB8MFxyYW5nbGVee1xvdGltZXMgbn0NClxdDQoNCldoZXJlOg0KDQotIFwoIFx2ZWN7eH0gXCkgPSBjbGFzc2ljYWwgbW9sZWN1bGFyL2Vudmlyb25tZW50YWwgaW5wdXQgZmVhdHVyZXMgIA0KLSBcKCBcYm9sZHN5bWJvbHtcdGhldGF9IFwpID0gdHJhaW5hYmxlIHZhcmlhdGlvbmFsIHBhcmFtZXRlcnMgIA0KLSBcKCBVX3tcdGV4dHtNUVBBfX0gXCkgPSBwYXJhbWV0ZXJpemVkIHVuaXRhcnkgY29tcG9zZWQgb2Y6DQogIC0gKipRdWFudHVtIGVuY29kaW5nKiogKGFuZ2xlIG9yIGFtcGxpdHVkZSkNCiAgLSAqKkVudGFuZ2xpbmcgbGF5ZXJzKiogKGUuZy4sIENaLCBDTk9UKQ0KICAtICoqVmFyaWF0aW9uYWwgZXZvbHV0aW9uKiogKGUuZy4sIFJlYWxBbXBsaXR1ZGVzLCBWUUUgYW5zYXR6KQ0KICAtICoqU3ltbWV0cnktcHJlc2VydmluZyBsYXllcnMqKiAoZm9yIHBhcnRpY2xlIGNvbnNlcnZhdGlvbikNCi0gXCggfDBccmFuZ2xlXntcb3RpbWVzIG59IFwpID0gaW5pdGlhbCBxdWFudHVtIHN0YXRlIG9mIG4gcXViaXRzDQoNCiMjI2ZpZGVsaXR5IGVxdWF0aW9uOg0KDQpcWw0KRiA9IHxcbGFuZ2xlIFxwc2lfe1x0ZXh0e3JlYWx9fSB8IFxwc2lfe1x0ZXh0e01RUEF9fShcdmVje3h9LCBcYm9sZHN5bWJvbHtcdGhldGF9KSBccmFuZ2xlfF4yDQpcXQ0KDQotd2hlbiB3ZScncmUgY29tICBwYXJpbmc6IA0KDQoNCi0gXCggXHBzaV97XHRleHR7cmVhbH19IFwpOiByZWZlcmVuY2Ugc3RhdGUgKGUuZy4sIGZyb20gREZULCBleHBlcmltZW50YWwgZ3JvdW5kIHRydXRoLCBvciBzaW11bGF0b3IpDQotIFwoIFxwc2lfe1x0ZXh0e01RUEF9fSBcKTogbGVhcm5lZC9wcmVkaWN0ZWQgc3RhdGUgZnJvbSBNUVBBIGNpcmN1aXQNCg0KLS0tDQoNCiMjIyAyLiAqKldoYXQgaXMgXCggVV97XHRleHR7TVFQQX19IFwpIEV4YWN0bHk/KioNCg0KXFsNClVfe1x0ZXh0e01RUEF9fShcdmVje3h9LCBcYm9sZHN5bWJvbHtcdGhldGF9KSA9IFVfe1x0ZXh0e2V2b2x1dGlvbn19KFxib2xkc3ltYm9se1x0aGV0YX0pIFxjZG90IFVfe1x0ZXh0e2VuY29kaW5nfX0oXHZlY3t4fSkNClxdDQoNCldoZXJlOg0KDQojIyMjIGEuICoqRW5jb2RpbmcgTGF5ZXIqKg0KXFsNClVfe1x0ZXh0e2VuY29kaW5nfX0oXHZlY3t4fSkgPSBcYmlnb3RpbWVzX2kgUl95KHhfaSkNClxxdWFkIFx0ZXh0e29yfSBccXVhZA0KVV97XHRleHR7ZW5jb2Rpbmd9fShcdmVje3h9KSA9IFpaRmVhdHVyZU1hcChcdmVje3h9KQ0KXF0NCg0KIyMjIyBiLiAqKlZhcmlhdGlvbmFsIEV2b2x1dGlvbiAoVHJhaW5hYmxlIExheWVycykqKg0KDQpcWw0KVV97XHRleHR7ZXZvbHV0aW9ufX0oXGJvbGRzeW1ib2x7XHRoZXRhfSkgPSBccHJvZF97bD0xfV57TH0gXGxlZnQoIFxwcm9kX3tpPTF9XntufSBSX3koXHRoZXRhX3tsLGl9KSBcY2RvdCBcdGV4dHtFbnRhbmdsZX0gXHJpZ2h0KQ0KXF0NCg0KRW50YW5nbGUgPSBhIGxheWVyIG9mIENOT1QsIENaLCBvciBjdXN0b20gSGFtaWx0b25pYW4tYmFzZWQgZ2F0ZXMuDQoNCi0tLQ0KDQojIyMgMy4gKipXaGVuIE1RUEEgSXMgTWVhc3VyZWQqKg0KDQpBZnRlciBhcHBseWluZyBcKCBVX3tcdGV4dHtNUVBBfX0gXCksIHdlIG1lYXN1cmU6DQoNCi0gb2JzZXJ2YWJsZXMgXCggT19qIFwpDQotIG9yIGNvbGxhcHNlIHRoZSBmdWxsIHN0YXRldmVjdG9yIFwoIFxwc2lfe1x0ZXh0e01RUEF9fSBcKQ0KDQpUaGVuIGNvbXBhcmUgd2l0aCBncm91bmQgdHJ1dGggdXNpbmc6DQoNCiMjIyMgRmlkZWxpdHk6DQpcWw0KRiA9IHxcbGFuZ2xlIFxwc2lfe1x0ZXh0e3JlYWx9fSB8IFxwc2lfe1x0ZXh0e01RUEF9fSBccmFuZ2xlfF4yDQpcXQ0KDQojIyMjIG9yIERlbnNpdHkgTWF0cmljZXM6DQpcWw0KRihccmhvLCBcc2lnbWEpID0gXGxlZnQoIFx0ZXh0e1RyfSBcbGVmdFsgXHNxcnR7IFxzcXJ0e1xyaG99IFxzaWdtYSBcc3FydHtccmhvfSB9IFxyaWdodF0gXHJpZ2h0KV4yDQpccXVhZCBcdGV4dHt3aGVyZSB9IFxyaG8gPSB8XHBzaV97XHRleHR7cmVhbH19XHJhbmdsZVxsYW5nbGVccHNpX3tcdGV4dHtyZWFsfX18DQosXHF1YWQgXHNpZ21hID0gfFxwc2lfe1x0ZXh0e01RUEF9fVxyYW5nbGVcbGFuZ2xlXHBzaV97XHRleHR7TVFQQX19fA0KXF0NCg0KLS0tDQoNCiMjIFBMYWluIFN1bW1hcnkNCg0KLSBcKCBccHNpX3tcdGV4dHtNUVBBfX0gXCkgaXMgYSBxdWFudHVtIHN0YXRlIHByb2R1Y2VkIGJ5IGFwcGx5aW5nIGEgKipxdWFudHVtIGNpcmN1aXQqKiB0byB0aGUgKippbnB1dCB2ZWN0b3IqKiBcKCBcdmVje3h9IFwpDQotIFRoYXQgY2lyY3VpdCBlbmNvZGVzIG1vbGVjdWxhci9lbnZpcm9ubWVudGFsIGRhdGEgYW5kIGV2b2x2ZXMgaXQgdmlhIHRyYWluYWJsZSBwYXJhbWV0ZXJzIFwoIFxib2xkc3ltYm9se1x0aGV0YX0gXCkNCi0gVGhlIHJlc3VsdCBpcyBhIHF1YW50dW0gc3RhdGUgYXBwcm94aW1hdGluZyB0aGUgcmVhbC13b3JsZCBwYXJ0aWNsZSBiZWhhdmlvcg0KLSBXZSBjb21wYXJlIFwoIFxwc2lfe1x0ZXh0e01RUEF9fSBcKSB0byBrbm93biByZWZlcmVuY2Ugc3RhdGVzIChzaW11bGF0aW9uLCBERlQsIG9yIGV4cGVyaW1lbnRhbCBkYXRhKSB1c2luZyAqKmZpZGVsaXR5KioNCi0gSWYgXCggRiBcdG8gMSBcKSwgTVFQQSBpcyBhICoqaGlnaC1maWRlbGl0eSBzaW11bGF0aW9uKiogb2YgcmVhbGl0eQ0KDQotLS0NCg0K