getwd()
[1] "/cloud/project"
NBA = read.csv("NBA_train.csv")
str(NBA)
'data.frame':   835 obs. of  20 variables:
 $ SeasonEnd: int  1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 ...
 $ Team     : chr  "Atlanta Hawks" "Boston Celtics" "Chicago Bulls" "Cleveland Cavaliers" ...
 $ Playoffs : int  1 1 0 0 0 0 0 1 0 1 ...
 $ W        : int  50 61 30 37 30 16 24 41 37 47 ...
 $ PTS      : int  8573 9303 8813 9360 8878 8933 8493 9084 9119 8860 ...
 $ oppPTS   : int  8334 8664 9035 9332 9240 9609 8853 9070 9176 8603 ...
 $ FG       : int  3261 3617 3362 3811 3462 3643 3527 3599 3639 3582 ...
 $ FGA      : int  7027 7387 6943 8041 7470 7596 7318 7496 7689 7489 ...
 $ X2P      : int  3248 3455 3292 3775 3379 3586 3500 3495 3551 3557 ...
 $ X2PA     : int  6952 6965 6668 7854 7215 7377 7197 7117 7375 7375 ...
 $ X3P      : int  13 162 70 36 83 57 27 104 88 25 ...
 $ X3PA     : int  75 422 275 187 255 219 121 379 314 114 ...
 $ FT       : int  2038 1907 2019 1702 1871 1590 1412 1782 1753 1671 ...
 $ FTA      : int  2645 2449 2592 2205 2539 2149 1914 2326 2333 2250 ...
 $ ORB      : int  1369 1227 1115 1307 1311 1226 1155 1394 1398 1187 ...
 $ DRB      : int  2406 2457 2465 2381 2524 2415 2437 2217 2326 2429 ...
 $ AST      : int  1913 2198 2152 2108 2079 1950 2028 2149 2148 2123 ...
 $ STL      : int  782 809 704 764 746 783 779 782 900 863 ...
 $ BLK      : int  539 308 392 342 404 562 339 373 530 356 ...
 $ TOV      : int  1495 1539 1684 1370 1533 1742 1492 1565 1517 1439 ...
View(NBA)
table(NBA$W, NBA$Playoffs)
    
      0  1
  11  2  0
  12  2  0
  13  2  0
  14  2  0
  15 10  0
  16  2  0
  17 11  0
  18  5  0
  19 10  0
  20 10  0
  21 12  0
  22 11  0
  23 11  0
  24 18  0
  25 11  0
  26 17  0
  27 10  0
  28 18  0
  29 12  0
  30 19  1
  31 15  1
  32 12  0
  33 17  0
  34 16  0
  35 13  3
  36 17  4
  37 15  4
  38  8  7
  39 10 10
  40  9 13
  41 11 26
  42  8 29
  43  2 18
  44  2 27
  45  3 22
  46  1 15
  47  0 28
  48  1 14
  49  0 17
  50  0 32
  51  0 12
  52  0 20
  53  0 17
  54  0 18
  55  0 24
  56  0 16
  57  0 23
  58  0 13
  59  0 14
  60  0  8
  61  0 10
  62  0 13
  63  0  7
  64  0  3
  65  0  3
  66  0  2
  67  0  4
  69  0  1
  72  0  1
NBA$PTSdiff = NBA$PTS - NBA$oppPTS
plot(NBA$PTSdiff, NBA$W)

WinsReg = lm(W ~ PTSdiff, data=NBA)
summary(WinsReg)

Call:
lm(formula = W ~ PTSdiff, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.7393 -2.1018 -0.0672  2.0265 10.6026 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 4.100e+01  1.059e-01   387.0   <2e-16 ***
PTSdiff     3.259e-02  2.793e-04   116.7   <2e-16 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.061 on 833 degrees of freedom
Multiple R-squared:  0.9423,    Adjusted R-squared:  0.9423 
F-statistic: 1.361e+04 on 1 and 833 DF,  p-value: < 2.2e-16
# Linear regression model for points scored
PointsReg = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV + STL + BLK, data=NBA)
summary(PointsReg)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV + 
    STL + BLK, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-527.40 -119.83    7.83  120.67  564.71 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.051e+03  2.035e+02 -10.078   <2e-16 ***
X2PA         1.043e+00  2.957e-02  35.274   <2e-16 ***
X3PA         1.259e+00  3.843e-02  32.747   <2e-16 ***
FTA          1.128e+00  3.373e-02  33.440   <2e-16 ***
AST          8.858e-01  4.396e-02  20.150   <2e-16 ***
ORB         -9.554e-01  7.792e-02 -12.261   <2e-16 ***
DRB          3.883e-02  6.157e-02   0.631   0.5285    
TOV         -2.475e-02  6.118e-02  -0.405   0.6859    
STL         -1.992e-01  9.181e-02  -2.169   0.0303 *  
BLK         -5.576e-02  8.782e-02  -0.635   0.5256    
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.5 on 825 degrees of freedom
Multiple R-squared:  0.8992,    Adjusted R-squared:  0.8981 
F-statistic: 817.3 on 9 and 825 DF,  p-value: < 2.2e-16
summary (NBA$PTS)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   6901    7934    8312    8370    8784   10371 
# Sum of Squared Errors
PointsReg$residuals
           1            2            3            4 
  38.5722713  142.8720040  -92.8957180   -8.3913473 
           5            6            7            8 
-258.4705615  171.4608325  150.4081623  169.3811429 
           9           10           11           12 
  40.7756197  -75.3256614  444.9088743   94.3864704 
          13           14           15           16 
-205.6809050  113.5969040   64.1993998  -76.5711999 
          17           18           19           20 
 249.4888007   28.0363236  329.4487991   96.3248342 
          21           22           23           24 
 349.2067913 -284.3765225  196.1611379  198.2493104 
          25           26           27           28 
 445.4100295   93.8946072 -316.2962802 -166.1909668 
          29           30           31           32 
  -5.8446359  211.2301997  155.7426615  -23.9248929 
          33           34           35           36 
 -77.9070033  218.9449693  164.1368602 -177.6479438 
          37           38           39           40 
  66.9205988  162.7892553   23.5961895   93.9839603 
          41           42           43           44 
 185.7015113  -50.2507837  -90.1181969  139.6866673 
          45           46           47           48 
-231.1772776  111.2200135  185.9069491  210.6753018 
          49           50           51           52 
 -47.9420913 -257.8213675  225.7399197   70.4925628 
          53           54           55           56 
 432.6468031  187.4169561  -34.3947653  112.9305359 
          57           58           59           60 
 334.4717296  222.4169937   17.6755711  165.4512882 
          61           62           63           64 
 207.9970351   56.8277093  214.6051983  -23.0235142 
          65           66           67           68 
 341.7509536  -48.3807695  304.9203623  -36.7878762 
          69           70           71           72 
 -31.0357805   61.8847883 -153.0322403  121.7423324 
          73           74           75           76 
 -61.1581185  -47.9906548 -120.3599484  245.7621368 
          77           78           79           80 
-264.3876116  161.1110819   87.3192423  426.2098591 
          81           82           83           84 
  -4.7790973  126.8613801  -97.5009340  329.9773912 
          85           86           87           88 
 -16.2338716    7.8513505  191.9280982   87.0090318 
          89           90           91           92 
-142.5397602 -216.2264974 -199.6293933   71.0810742 
          93           94           95           96 
 257.3751407 -227.1203824  -61.4866232   71.3329444 
          97           98           99          100 
-233.2637272  -34.7860771   84.9503466  108.6553543 
         101          102          103          104 
 -84.8168235  -90.0423121  341.2144522   52.8507112 
         105          106          107          108 
  47.8978397  181.0574099  160.7203318  237.0174702 
         109          110          111          112 
 314.9609845   51.9650831  300.2035074 -148.0931149 
         113          114          115          116 
 -13.3592416 -161.6184704   82.1172789  277.6080699 
         117          118          119          120 
 233.4334153 -225.7299932   69.0259972   37.3407430 
         121          122          123          124 
  18.2709681  121.8125335  217.9464858  -74.8210467 
         125          126          127          128 
  36.2611001  356.2366230  439.4127892  111.0266627 
         129          130          131          132 
  72.1377278   -6.1141295  331.6249450 -158.3642350 
         133          134          135          136 
  94.9048994  151.3242943 -284.7768411 -184.0287416 
         137          138          139          140 
-103.9972773   54.1758237  139.3176593  125.3796164 
         141          142          143          144 
 -71.4407602   83.4742245 -131.6383234  -33.5752771 
         145          146          147          148 
  98.9460909  -59.8760139 -116.6711077 -110.4055752 
         149          150          151          152 
 290.8888709   38.5758792   -6.8265554 -284.8106013 
         153          154          155          156 
 149.5419209 -185.9270381  -13.5712897  -90.2301662 
         157          158          159          160 
  21.0080300   14.5295957 -346.4091267  -54.7198161 
         161          162          163          164 
  87.6823846  203.7903006  -30.7131853 -153.9699795 
         165          166          167          168 
 194.6791232 -357.4466727  133.8696823  -21.6271760 
         169          170          171          172 
-220.4987354 -153.7269937 -383.7168614  212.2104185 
         173          174          175          176 
-100.3118791  -30.5085767  -57.7910608  205.9463003 
         177          178          179          180 
-124.1358862  -61.2169391  -93.9538879 -135.6180284 
         181          182          183          184 
  69.1245169 -435.5355494  -47.8153585  115.1051439 
         185          186          187          188 
 222.5411686  104.6516380    7.8335700  178.0759383 
         189          190          191          192 
-185.3383423  122.0537263  -29.4729351   27.1344203 
         193          194          195          196 
 189.2078833 -429.5919872   57.2397301 -170.2701567 
         197          198          199          200 
 -14.0836520   21.0147294   49.6548689 -127.4633821 
         201          202          203          204 
 -87.4084020  -77.6940715 -155.2913076    8.4930328 
         205          206          207          208 
-232.7210528   35.3384277  151.1394532  119.4563308 
         209          210          211          212 
-416.3088878  134.8599211   33.3825347   48.4541197 
         213          214          215          216 
-269.8021487  214.9045443   88.1318416  -24.0318730 
         217          218          219          220 
 188.2281015 -249.1537666  157.9872056 -146.6803006 
         221          222          223          224 
  72.9077663   31.1747176  337.2185582   69.7227713 
         225          226          227          228 
  -2.7440511  -55.2845827  -84.6255409 -151.4858821 
         229          230          231          232 
 234.7432200 -165.3909069 -172.9288404  386.6402387 
         233          234          235          236 
  34.4884530 -368.0387956  304.8349400 -173.0591889 
         237          238          239          240 
 168.9365987 -327.6509605   95.0370278  -75.5698743 
         241          242          243          244 
 -74.9702316  290.0371682  -21.8628806   72.5362398 
         245          246          247          248 
-144.3565453  -44.7765529 -155.4752429 -114.0232742 
         249          250          251          252 
  82.8841506 -306.5759686  256.9630856   75.4312937 
         253          254          255          256 
-108.9852622 -160.6985087   -1.0708625  389.4834173 
         257          258          259          260 
  48.4039145 -173.2376267  102.4859575  564.7127452 
         261          262          263          264 
-135.6781765  435.5847710 -238.8763852   93.4120332 
         265          266          267          268 
-346.4790813   84.2266238  124.2627684  157.9013909 
         269          270          271          272 
  90.9742388 -319.7738668  111.6330940 -136.0189613 
         273          274          275          276 
 179.6895020 -139.8481361  -60.2214721   21.1448936 
         277          278          279          280 
-102.4930752   87.4261255   -2.2833983  -33.1839059 
         281          282          283          284 
-313.4181662   -9.7903234  365.0041757 -170.9089658 
         285          286          287          288 
-203.2682115  -59.0783300  344.4592952 -177.2934555 
         289          290          291          292 
 278.4424923   31.1539516  -19.4217087  146.9309508 
         293          294          295          296 
  49.6437593  323.4485389   47.1034178    3.9718411 
         297          298          299          300 
-111.0589062  -40.0036081  187.1994351  134.5701059 
         301          302          303          304 
-130.3795390  227.3624370   16.4481298  -91.2556101 
         305          306          307          308 
 215.9887998   70.7747666   50.5357552  -86.7616664 
         309          310          311          312 
  66.3006293  348.5847817   69.7928527 -144.9174008 
         313          314          315          316 
  48.2485248  262.5189212  -11.0182067  276.2567984 
         317          318          319          320 
  40.2609782 -235.0009787   91.8230888  -36.7029055 
         321          322          323          324 
  66.1862316  127.1446887   34.6306466  -89.1508242 
         325          326          327          328 
 -38.0350890   74.6959695  -24.6713632 -139.6322463 
         329          330          331          332 
 120.5781319 -256.3194253   35.3325803 -238.1863124 
         333          334          335          336 
 204.2701943 -231.4333870 -242.0178081   27.3589769 
         337          338          339          340 
 442.7697537  -90.3428846 -252.6536092   31.2460678 
         341          342          343          344 
 -24.0030042 -113.6697991   74.2030422  -63.3601223 
         345          346          347          348 
  13.1314540  -58.4065092   16.5093336  -26.4233092 
         349          350          351          352 
 -49.9197611  102.5295504 -276.0762358 -171.2605451 
         353          354          355          356 
 235.4118705 -295.3696087 -259.1915277 -209.8493128 
         357          358          359          360 
 -60.3803252   40.8738668 -162.3559100   -3.1584146 
         361          362          363          364 
-252.6683460 -359.6072976  219.8480950  107.9177034 
         365          366          367          368 
-228.4285961   77.5838841   77.6092501  176.9728823 
         369          370          371          372 
  21.0277939  225.7947949   90.6177409  -95.0387148 
         373          374          375          376 
 243.8004275   63.7765295 -135.7112041  127.9942080 
         377          378          379          380 
 208.5134149 -226.2507886  -27.4427262  215.5791874 
         381          382          383          384 
  70.0554598 -220.3324085 -252.5213694 -117.0224660 
         385          386          387          388 
  36.9146043  188.5932206  -12.6241171   24.1401960 
         389          390          391          392 
  39.4113815  130.8261623  194.8028770  140.1603242 
         393          394          395          396 
 100.4917058  367.8120506  -77.1138759  190.1907177 
         397          398          399          400 
 430.4505906  243.1092461 -220.7690501 -135.3500281 
         401          402          403          404 
 182.9169784   58.1314347  -10.3705665  134.0505987 
         405          406          407          408 
 333.4363828  110.9704334   37.1431301  188.8559358 
         409          410          411          412 
 -88.4445131 -165.3268990  148.8624801   -4.7914163 
         413          414          415          416 
-114.6045335  -90.1562962  -65.1353805    9.9207366 
         417          418          419          420 
 -20.2393315  147.7163583  153.4474395   95.5889698 
         421          422          423          424 
-329.6439893  323.3019593  345.3838501 -148.5288812 
         425          426          427          428 
 166.9648145  277.3541861  162.6383840  -78.9033000 
         429          430          431          432 
-176.7932426  365.3962572  132.7242544   85.6582953 
         433          434          435          436 
 -19.3417988   95.4767236 -102.8199452  111.8183778 
         437          438          439          440 
 299.2808339 -124.0889739  -37.3805041  118.5055640 
         441          442          443          444 
  38.2173450 -122.8141423  -84.3447659  154.5643586 
         445          446          447          448 
  42.6355711   54.7178397  102.9846564   32.6861086 
         449          450          451          452 
 112.7943954 -163.3563028  150.7521084  217.5877806 
         453          454          455          456 
 -96.7133626   13.7243484  -33.1690450 -112.2550008 
         457          458          459          460 
 -15.7083565 -224.4198990   18.2593593 -393.0403979 
         461          462          463          464 
  49.2945267   52.0947949   43.2496203 -149.1223107 
         465          466          467          468 
  75.6856970  170.8878792 -257.6364448   51.6854016 
         469          470          471          472 
  11.8121415 -176.9048352 -149.5317630  -64.1990241 
         473          474          475          476 
 -71.3105611 -317.9190063  -65.8451642   97.8497015 
         477          478          479          480 
-103.1692986    3.0848318 -104.6823532 -234.7534874 
         481          482          483          484 
  50.5295490  -75.4835788 -526.1468848 -393.9784124 
         485          486          487          488 
-360.8366411  116.7193515 -321.3756304  -28.1090479 
         489          490          491          492 
-508.3250405  -39.9958738   67.9854387  -97.4641720 
         493          494          495          496 
-268.8364479  -26.0249946  188.1881640 -127.9366821 
         497          498          499          500 
 -86.3440758  133.8144538   29.4480488 -292.9821609 
         501          502          503          504 
-124.9408024  101.3655240 -186.5181083  -63.5389375 
         505          506          507          508 
-212.2015589 -323.1476886 -125.6610320   56.9083106 
         509          510          511          512 
 -39.0559074   -1.9339391 -319.9727619 -433.1243358 
         513          514          515          516 
-431.1346590  -95.8909016  120.6089792 -409.7409083 
         517          518          519          520 
-352.9341830 -527.3988939  110.6694955 -193.5043557 
         521          522          523          524 
 -92.6385367 -143.5858243 -189.7838251  172.1977457 
         525          526          527          528 
 -80.8020663 -342.9141699  124.8700974 -226.9524006 
         529          530          531          532 
 -73.5173798 -388.4868649   82.9536394  -96.7444961 
         533          534          535          536 
-114.0835553   60.0566113 -332.3804023 -175.5276633 
         537          538          539          540 
-338.7116370 -148.1422366  -45.2258816 -270.5159099 
         541          542          543          544 
-159.8389177 -420.4637398 -133.0466450  183.8988039 
         545          546          547          548 
-267.0297916   -5.2562902 -228.0471046  -11.6818058 
         549          550          551          552 
-255.6786897   -7.7244412 -115.5357863 -298.4118693 
         553          554          555          556 
-122.2961876   90.2924072  111.3930340 -245.4519945 
         557          558          559          560 
-164.6445508  -29.3651223  -41.9781581   33.4260937 
         561          562          563          564 
  15.1663563  -29.4557965   44.0659204  247.9836928 
         565          566          567          568 
 -57.4318280 -238.6989443   -8.7249850   30.9454288 
         569          570          571          572 
-343.6175905 -207.4418486 -306.4223254  157.4538406 
         573          574          575          576 
-502.4785715 -126.1415717   48.8616098  143.9835801 
         577          578          579          580 
-344.7694076 -116.5012114 -142.7898454 -127.9612584 
         581          582          583          584 
-226.7659179   67.1679765  -94.0443422 -326.2414346 
         585          586          587          588 
 -84.6517620    4.5942017  -89.9757406  -97.0958454 
         589          590          591          592 
 -34.6927947   40.9701699  -88.3066869  126.5679875 
         593          594          595          596 
-128.7529512 -166.6757304 -208.2444446 -105.4053449 
         597          598          599          600 
 -69.9961388 -104.0297252 -475.1678378 -290.6421238 
         601          602          603          604 
 195.4801727 -116.0865727 -136.0505114 -118.3811054 
         605          606          607          608 
 125.8235124 -145.2484421 -144.5655628 -435.6270621 
         609          610          611          612 
-230.6201428 -112.7403208 -243.8883351   13.9124625 
         613          614          615          616 
-392.1393056 -233.5727670   88.6125994 -203.7574893 
         617          618          619          620 
-207.3393547   36.7326516   71.7237279 -110.6124268 
         621          622          623          624 
-151.5524839   95.2365977 -227.3589026  -98.5962165 
         625          626          627          628 
-210.8715081  -53.6787512   33.2644764 -380.2334407 
         629          630          631          632 
-217.0512157 -135.7283167  208.5947156 -198.2473902 
         633          634          635          636 
-147.6362401 -282.5390059  -55.4726214    3.0618526 
         637          638          639          640 
-118.7764165  -15.9756605    1.5396468    2.2068206 
         641          642          643          644 
 -78.5559489   20.5194552 -376.9064555 -367.5790965 
         645          646          647          648 
  78.4730898   88.0528050 -178.9859105  283.6342652 
         649          650          651          652 
  18.0639226    1.4275017  -22.1910648  334.1581029 
         653          654          655          656 
 -44.6704981 -166.2133428 -112.8182784  175.7515262 
         657          658          659          660 
  60.9355144 -331.2815975 -175.1322112   34.9727118 
         661          662          663          664 
 430.8913232 -260.7815266  -99.5985786 -306.5331420 
         665          666          667          668 
-144.2463445  -71.9561309   40.4095734   -9.9170555 
         669          670          671          672 
   9.7141807   72.8730721  -61.2840291  -51.9936086 
         673          674          675          676 
-452.8596863  -81.9437393   69.2906290  254.7395766 
         677          678          679          680 
 -22.9459505  215.8931262  -16.9537293 -107.9068394 
         681          682          683          684 
 202.3017464  287.5765859  180.7757394 -305.5932029 
         685          686          687          688 
  56.2240459    4.5320328  -44.0648823 -278.0391307 
         689          690          691          692 
 -13.3280981 -112.7276708  422.1750569 -131.0023955 
         693          694          695          696 
  51.4971549  -86.9745423   28.8396258 -107.9302127 
         697          698          699          700 
 -55.3683153  -16.7225380   60.3453436    3.3520616 
         701          702          703          704 
 140.9429255  -17.9219329 -296.8381962  136.2394242 
         705          706          707          708 
 106.7244264  168.2861008   26.7860625  339.8954937 
         709          710          711          712 
 187.8922770 -202.6392008  148.7995083  268.8921528 
         713          714          715          716 
   0.6597544 -119.2916116  -23.0549542  -28.1758366 
         717          718          719          720 
 206.7679556 -138.5838793 -210.7824121  -29.6626073 
         721          722          723          724 
 210.3268820 -212.8798945   88.1962039  129.1032851 
         725          726          727          728 
  11.9530477 -166.3796048 -372.3297260   67.5130804 
         729          730          731          732 
   1.7122210 -179.0745146  -28.4404659  151.2765881 
         733          734          735          736 
-425.3360446  344.3671825  -47.2592021  136.9801455 
         737          738          739          740 
  63.4427397  203.2044716   27.7908779  251.4279736 
         741          742          743          744 
  84.5817590 -155.6577645  150.3787715  138.7921016 
         745          746          747          748 
 198.4699948  101.8590582  345.8144412   35.1336113 
         749          750          751          752 
 169.1641149  354.9998851  251.7571721   47.8412497 
         753          754          755          756 
  77.9677328   66.2799291  216.7990909  155.1577399 
         757          758          759          760 
-131.2437994  230.2449071  218.7156645  116.0349148 
         761          762          763          764 
 -78.5937100  -23.1321308   99.7713990  280.2227149 
         765          766          767          768 
  40.8527845   19.4188914   72.9388151  120.7266716 
         769          770          771          772 
 439.1035137  456.0100354   47.3239201  186.1096824 
         773          774          775          776 
  31.7505381  -54.0912550   73.0035369  234.4761589 
         777          778          779          780 
  27.9146721  -21.6493313  -75.0167664  148.4251726 
         781          782          783          784 
 106.3308316   76.0196340   37.3592068   56.5562663 
         785          786          787          788 
 -41.8917486 -200.7598142  -55.5159544  109.1518868 
         789          790          791          792 
 321.3239680  219.8866600  -73.6034103    3.1961900 
         793          794          795          796 
-171.1408177  190.8979178  101.1845265  253.1734885 
         797          798          799          800 
 263.7840087  199.5924560  463.8379676  219.1540922 
         801          802          803          804 
  52.3032317  140.7498122  195.8267787  -55.3103142 
         805          806          807          808 
 153.8564182   61.1275837   92.8158603 -108.8302808 
         809          810          811          812 
  73.3423661 -360.6001538  134.1518035   73.3435884 
         813          814          815          816 
 141.0017271  272.8259956  -33.1611977   19.7818711 
         817          818          819          820 
-149.9998706  190.0065593  261.3992751  308.7602526 
         821          822          823          824 
-135.4172110  108.2677094 -171.3410196  102.4439076 
         825          826          827          828 
 156.0829202  210.0521687  109.4908936  -20.5354175 
         829          830          831          832 
  59.2845716  175.9235274   30.6531825  262.6728011 
         833          834          835 
  70.0671862  -17.5789419   -8.3393046 
PointsReg2 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + STL + BLK, data=NBA)
summary(PointsReg2)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + STL + 
    BLK, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-526.79 -121.09    6.37  120.74  565.94 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.077e+03  1.931e+02 -10.755   <2e-16 ***
X2PA         1.044e+00  2.951e-02  35.366   <2e-16 ***
X3PA         1.263e+00  3.703e-02  34.099   <2e-16 ***
FTA          1.125e+00  3.308e-02  34.023   <2e-16 ***
AST          8.861e-01  4.393e-02  20.173   <2e-16 ***
ORB         -9.581e-01  7.758e-02 -12.350   <2e-16 ***
DRB          3.892e-02  6.154e-02   0.632   0.5273    
STL         -2.068e-01  8.984e-02  -2.301   0.0216 *  
BLK         -5.863e-02  8.749e-02  -0.670   0.5029    
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.4 on 826 degrees of freedom
Multiple R-squared:  0.8991,    Adjusted R-squared:  0.8982 
F-statistic: 920.4 on 8 and 826 DF,  p-value: < 2.2e-16
PointsReg3 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + STL + BLK, data=NBA)
summary(PointsReg3)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + STL + BLK, 
    data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-523.79 -121.64    6.07  120.81  573.64 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.015e+03  1.670e+02 -12.068  < 2e-16 ***
X2PA         1.048e+00  2.852e-02  36.753  < 2e-16 ***
X3PA         1.271e+00  3.475e-02  36.568  < 2e-16 ***
FTA          1.128e+00  3.270e-02  34.506  < 2e-16 ***
AST          8.909e-01  4.326e-02  20.597  < 2e-16 ***
ORB         -9.702e-01  7.519e-02 -12.903  < 2e-16 ***
STL         -2.276e-01  8.356e-02  -2.724  0.00659 ** 
BLK         -3.882e-02  8.165e-02  -0.475  0.63462    
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.4 on 827 degrees of freedom
Multiple R-squared:  0.8991,    Adjusted R-squared:  0.8982 
F-statistic:  1053 on 7 and 827 DF,  p-value: < 2.2e-16
PointsReg4 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + STL, data=NBA)
summary(PointsReg4)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + STL, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-523.33 -122.02    6.93  120.68  568.26 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.033e+03  1.629e+02 -12.475  < 2e-16 ***
X2PA         1.050e+00  2.829e-02  37.117  < 2e-16 ***
X3PA         1.273e+00  3.441e-02  37.001  < 2e-16 ***
FTA          1.127e+00  3.260e-02  34.581  < 2e-16 ***
AST          8.884e-01  4.292e-02  20.701  < 2e-16 ***
ORB         -9.743e-01  7.465e-02 -13.051  < 2e-16 ***
STL         -2.268e-01  8.350e-02  -2.717  0.00673 ** 
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.3 on 828 degrees of freedom
Multiple R-squared:  0.8991,    Adjusted R-squared:  0.8983 
F-statistic:  1229 on 6 and 828 DF,  p-value: < 2.2e-16
# Compute SSE and RMSE for new model
SSE_4 = sum(PointsReg4$residuals^2)
RMSE_4 = sqrt(SSE_4/nrow(NBA))
SSE_4
[1] 28421465
RMSE_4
[1] 184.493
NBA_test = read.csv("NBA_test.csv")
# Make predictions on test set
PointsPredictions = predict(PointsReg4, newdata=NBA_test)
SSE = sum((PointsPredictions - NBA_test$PTS)^2)
SST = sum((mean(NBA$PTS) - NBA_test$PTS)^2)
R2 = 1 - SSE/SST
R2
[1] 0.8127142
RMSE = sqrt(SSE/nrow(NBA_test))
RMSE 
[1] 196.3723

Activity 12

A. 825

B. On 7 occations teams with 38 wins can make it to the playoffs

C. 49

D. Yes, there is an upward sloping relationship

E. yes, p-valu is less than.05

F. According to the model no BLK is not significant at a 5% significance level

G. 10,371

H. we are satisfied with the value because the number is close to the real value

I. yes we are satisfied with the model

Activity 13

#WinsReg = lm(W ~ PTSdiff, data=NBA)
#49 = 41+0.0326*(x)
X_1=(49-41)/0.0326
X_1
[1] 245.3988

Activity 14

ThreePts_made <- c(4, 5, 3, 6, 7)
ThreePts_attmpt <- c(9, 10, 8, 11, 12)
Three_pts_pct = ThreePts_made/ThreePts_attmpt
Three_pts_pct
[1] 0.4444444 0.5000000 0.3750000 0.5454545 0.5833333
mean(Three_pts_pct)
[1] 0.4896465

The average of all games is .48

LS0tCnRpdGxlOiAiTW9kIDQ6IE5CQSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCgpgYGB7cn0KZ2V0d2QoKQpgYGAKCgoKCmBgYHtyfQpOQkEgPSByZWFkLmNzdigiTkJBX3RyYWluLmNzdiIpCnN0cihOQkEpCmBgYAoKCmBgYHtyfQojVmlldyhOQkEpCmBgYAoKCgoKYGBge3J9CnRhYmxlKE5CQSRXLCBOQkEkUGxheW9mZnMpCmBgYAoKCgoKYGBge3J9Ck5CQSRQVFNkaWZmID0gTkJBJFBUUyAtIE5CQSRvcHBQVFMKYGBgCgoKCgpgYGB7cn0KcGxvdChOQkEkUFRTZGlmZiwgTkJBJFcpCmBgYAoKCgoKCgpgYGB7cn0KV2luc1JlZyA9IGxtKFcgfiBQVFNkaWZmLCBkYXRhPU5CQSkKc3VtbWFyeShXaW5zUmVnKQpgYGAKCgoKYGBge3J9CiMgTGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgZm9yIHBvaW50cyBzY29yZWQKUG9pbnRzUmVnID0gbG0oUFRTIH4gWDJQQSArIFgzUEEgKyBGVEEgKyBBU1QgKyBPUkIgKyBEUkIgKyBUT1YgKyBTVEwgKyBCTEssIGRhdGE9TkJBKQpzdW1tYXJ5KFBvaW50c1JlZykKYGBgCgoKCmBgYHtyfQpzdW1tYXJ5IChOQkEkUFRTKQpgYGAKCgoKCgpgYGB7cn0KIyBTdW0gb2YgU3F1YXJlZCBFcnJvcnMKUG9pbnRzUmVnJHJlc2lkdWFscwoKYGBgCgoKCgoKCgpgYGB7cn0KUG9pbnRzUmVnMiA9IGxtKFBUUyB+IFgyUEEgKyBYM1BBICsgRlRBICsgQVNUICsgT1JCICsgRFJCICsgU1RMICsgQkxLLCBkYXRhPU5CQSkKc3VtbWFyeShQb2ludHNSZWcyKQpgYGAKCgoKCgpgYGB7cn0KUG9pbnRzUmVnMyA9IGxtKFBUUyB+IFgyUEEgKyBYM1BBICsgRlRBICsgQVNUICsgT1JCICsgU1RMICsgQkxLLCBkYXRhPU5CQSkKc3VtbWFyeShQb2ludHNSZWczKQpgYGAKCgoKCgoKYGBge3J9ClBvaW50c1JlZzQgPSBsbShQVFMgfiBYMlBBICsgWDNQQSArIEZUQSArIEFTVCArIE9SQiArIFNUTCwgZGF0YT1OQkEpCnN1bW1hcnkoUG9pbnRzUmVnNCkKCmBgYAoKCgoKCgpgYGB7cn0KIyBDb21wdXRlIFNTRSBhbmQgUk1TRSBmb3IgbmV3IG1vZGVsClNTRV80ID0gc3VtKFBvaW50c1JlZzQkcmVzaWR1YWxzXjIpClJNU0VfNCA9IHNxcnQoU1NFXzQvbnJvdyhOQkEpKQpTU0VfNApgYGAKCgoKYGBge3J9ClJNU0VfNApgYGAKCgoKCgpgYGB7cn0KTkJBX3Rlc3QgPSByZWFkLmNzdigiTkJBX3Rlc3QuY3N2IikKYGBgCgoKCgoKYGBge3J9CiMgTWFrZSBwcmVkaWN0aW9ucyBvbiB0ZXN0IHNldApQb2ludHNQcmVkaWN0aW9ucyA9IHByZWRpY3QoUG9pbnRzUmVnNCwgbmV3ZGF0YT1OQkFfdGVzdCkKYGBgCgoKCgpgYGB7cn0KU1NFID0gc3VtKChQb2ludHNQcmVkaWN0aW9ucyAtIE5CQV90ZXN0JFBUUyleMikKU1NUID0gc3VtKChtZWFuKE5CQSRQVFMpIC0gTkJBX3Rlc3QkUFRTKV4yKQpSMiA9IDEgLSBTU0UvU1NUClIyCmBgYAoKCgoKYGBge3J9ClJNU0UgPSBzcXJ0KFNTRS9ucm93KE5CQV90ZXN0KSkKUk1TRSAKYGBgCgoqKkFjdGl2aXR5IDEyKioKCkEuIDgyNQoKQi4gT24gNyBvY2NhdGlvbnMgdGVhbXMgd2l0aCAzOCB3aW5zIGNhbiBtYWtlIGl0IHRvIHRoZSBwbGF5b2ZmcwoKQy4gNDkKCkQuIFllcywgdGhlcmUgaXMgYW4gdXB3YXJkIHNsb3BpbmcgcmVsYXRpb25zaGlwCgpFLiB5ZXMsIHAtdmFsdSBpcyBsZXNzIHRoYW4uMDUKCkYuIEFjY29yZGluZyB0byB0aGUgbW9kZWwgbm8gQkxLIGlzIG5vdCBzaWduaWZpY2FudCBhdCBhIDUlIHNpZ25pZmljYW5jZSBsZXZlbAoKRy4gMTAsMzcxCgpILiB3ZSBhcmUgc2F0aXNmaWVkIHdpdGggdGhlIHZhbHVlIGJlY2F1c2UgdGhlIG51bWJlciBpcyBjbG9zZSB0byB0aGUgcmVhbCB2YWx1ZQoKSS4geWVzIHdlIGFyZSBzYXRpc2ZpZWQgd2l0aCB0aGUgbW9kZWwKCgoKCioqQWN0aXZpdHkgMTMqKgoKYGBge3J9CiNXaW5zUmVnID0gbG0oVyB+IFBUU2RpZmYsIGRhdGE9TkJBKQojNDkgPSA0MSswLjAzMjYqKHgpClhfMT0oNDktNDEpLzAuMDMyNgpYXzEKYGBgCgoKCioqQWN0aXZpdHkgMTQqKgoKYGBge3J9ClRocmVlUHRzX21hZGUgPC0gYyg0LCA1LCAzLCA2LCA3KQpUaHJlZVB0c19hdHRtcHQgPC0gYyg5LCAxMCwgOCwgMTEsIDEyKQpgYGAKCgoKYGBge3J9ClRocmVlX3B0c19wY3QgPSBUaHJlZVB0c19tYWRlL1RocmVlUHRzX2F0dG1wdApUaHJlZV9wdHNfcGN0CmBgYAoKCgpgYGB7cn0KbWVhbihUaHJlZV9wdHNfcGN0KQpgYGAKClRoZSBhdmVyYWdlIG9mIGFsbCBnYW1lcyBpcyAuNDgKCgoKCgoKCgoKCgoKCg==