This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
library(mlbench)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
data(PimaIndiansDiabetes)
View(PimaIndiansDiabetes)
#Prepare training scheme
trainControl <- trainControl(method='repeatedcv', number=10, repeats=3)
#CART
set.seed(7)
fit.cart <- train(diabetes~., data=PimaIndiansDiabetes, method='rpart', trControl=trainControl)
# LDA
set.seed(7)
fit.lda <- train(diabetes~., data=PimaIndiansDiabetes, method='lda', trControl=trainControl)
# SVM
set.seed(7)
fit.svm <- train(diabetes~., data=PimaIndiansDiabetes, method='svmRadial', trControl=trainControl)
# KNN
set.seed(7)
fit.knn <- train(diabetes~., data=PimaIndiansDiabetes, method='knn', trControl=trainControl)
# Random Forest
set.seed(7)
fit.rf <- train(diabetes~., data=PimaIndiansDiabetes, method='rf', trControl=trainControl)
# Collect resamples
results <- resamples(list(CART=fit.cart, LDA=fit.lda, SVM=fit.svm, KNN=fit.knn, RF=fit.rf))
summary(results)
##
## Call:
## summary.resamples(object = results)
##
## Models: CART, LDA, SVM, KNN, RF
## Number of resamples: 30
##
## Accuracy
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.6753247 0.7272727 0.7532468 0.7469697 0.7662338 0.7922078 0
## LDA 0.7142857 0.7508117 0.7662338 0.7791069 0.8000256 0.9078947 0
## SVM 0.7236842 0.7508117 0.7631579 0.7712919 0.7915243 0.8947368 0
## KNN 0.6753247 0.7036056 0.7272727 0.7369503 0.7662338 0.8311688 0
## RF 0.6842105 0.7305195 0.7662338 0.7638528 0.8019481 0.8421053 0
##
## Kappa
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.2762566 0.3620724 0.4241878 0.4151867 0.4861107 0.5250000 0
## LDA 0.3011551 0.4192537 0.4662541 0.4862025 0.5308596 0.7812500 0
## SVM 0.3391908 0.3997116 0.4460612 0.4621585 0.5234605 0.7475083 0
## KNN 0.2553191 0.3406000 0.3841761 0.3984995 0.4539789 0.6195363 0
## RF 0.2951613 0.3682680 0.4685583 0.4620226 0.5447483 0.6426332 0
# box and whisker plots to compare models
scales <- list(x = list(relation='free'), y = list(relation='free'))
bwplot(results, scales=scales)
# density plots of accuracy
scales <- list(x = list(relation='free'), y = list(relation='free'))
densityplot(results, scales=scales, pch = '|')
# dot plots of accuracy
scales <- list(x = list(relation='free'), y = list(relation='free'))
dotplot(results, scales=scales)
# pairwise scatter plots of predictions to compare models
splom(results)
# difference in model predictions
diffs <- diff(results)
# summarize p-values for pairwise comparisons
summary(diffs)
##
## Call:
## summary.diff.resamples(object = diffs)
##
## p-value adjustment: bonferroni
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
##
## Accuracy
## CART LDA SVM KNN RF
## CART -0.032137 -0.024322 0.010019 -0.016883
## LDA 0.0011862 0.007815 0.042157 0.015254
## SVM 0.0116401 0.9156892 0.034342 0.007439
## KNN 1.0000000 6.68e-05 0.0002941 -0.026902
## RF 0.2521949 0.3914281 1.0000000 0.0101387
##
## Kappa
## CART LDA SVM KNN RF
## CART -0.0710158 -0.0469717 0.0166872 -0.0468359
## LDA 0.0008086 0.0240440 0.0877029 0.0241799
## SVM 0.0258079 0.3562734 0.0636589 0.0001359
## KNN 1.0000000 0.0003858 0.0040823 -0.0635230
## RF 0.0250500 1.0000000 1.0000000 0.0099222
# Run algorithms using 10-fold cross-validation
trainControl <- trainControl(method='cv', number=10)
metric <- 'Accuracy'
# compare accuracy of models
dotplot(results)
# summarize Best Model
print(fit.lda)
## Linear Discriminant Analysis
##
## 768 samples
## 8 predictor
## 2 classes: 'neg', 'pos'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ...
## Resampling results:
##
## Accuracy Kappa
## 0.7791069 0.4862025
# estimate skill of LDA on the validation dataset
predictions <- predict(fit.lda, PimaIndiansDiabetes)
confusionMatrix(predictions, PimaIndiansDiabetes$diabetes)
## Confusion Matrix and Statistics
##
## Reference
## Prediction neg pos
## neg 446 112
## pos 54 156
##
## Accuracy : 0.7839
## 95% CI : (0.753, 0.8125)
## No Information Rate : 0.651
## P-Value [Acc > NIR] : 7.051e-16
##
## Kappa : 0.4992
##
## Mcnemar's Test P-Value : 9.686e-06
##
## Sensitivity : 0.8920
## Specificity : 0.5821
## Pos Pred Value : 0.7993
## Neg Pred Value : 0.7429
## Prevalence : 0.6510
## Detection Rate : 0.5807
## Detection Prevalence : 0.7266
## Balanced Accuracy : 0.7370
##
## 'Positive' Class : neg
##
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.