Import Data
exped <- read_excel("../00_data/expedData.xlsx")
Variation
Visualizing distributions
ggplot(data = exped) +
geom_bar(mapping = aes(x = SEASON_FACTOR))

ggplot(data = exped) +
geom_histogram(mapping = aes(x = TOTMEMBERS), binwidth = 1)

exped %>% count(YEAR)
## # A tibble: 5 × 2
## YEAR n
## <dbl> <int>
## 1 2020 22
## 2 2021 207
## 3 2022 279
## 4 2023 274
## 5 2024 100
ggplot(data = exped, mapping = aes(x = YEAR, color = HOST_FACTOR)) +
geom_freqpoly(binwidth = 1)

Typical values
ggplot(data = exped, mapping = aes(x = SMTDAYS)) +
geom_histogram(binwidth = 0.5)

Unusual values
ggplot(exped) +
geom_histogram(mapping = aes(x = SMTDAYS), binwidth = 0.5) +
coord_cartesian(ylim = c(0, 25))

Covariation
A categorical and continuous variable
ggplot(data = exped, mapping = aes(x = HIGHPOINT)) +
geom_freqpoly(mapping = aes(color = HOST_FACTOR), binwidth = 100) +
coord_cartesian(xlim = c(5000, 9000))

Two categorical variables
ggplot(data = exped) +
geom_count(mapping = aes(x = HIGHPOINT, y = MDEATHS))

Two continous variables
ggplot(data = exped) +
geom_point(mapping = aes(x = HIGHPOINT, y = TOTMEMBERS))

Patterns and models
ggplot(data = exped) +
geom_boxplot(mapping = aes(x = O2USED, y = HIGHPOINT))
