Problems 3, 8 and 9 from Chapter 8 of ISLR2

library(ISLR2)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'caret'
## 
## The following object is masked from 'package:purrr':
## 
##     lift
library(tree)
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
## 
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(BART)
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## 
## The following object is masked from 'package:dplyr':
## 
##     collapse
## 
## Loading required package: survival
## 
## Attaching package: 'survival'
## 
## The following object is masked from 'package:caret':
## 
##     cluster

Problem 3

Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of pˆm1. The x-axis should display pˆm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

Hint: In a setting with two classes, pˆm1 = 1 − pˆm2. You could make this plot by hand, but it will be much easier to make in R.

class_1 = seq(0, 1 , 0.0001)
class_2 = 1 - class_1

classification_error = 1 - pmax(class_1, class_2)

gini = class_1 * (1 - class_1) + class_2 * (1 - class_2)

entropy = - class_1 * log(class_1) - class_2 * log(class_2)
data.frame(class_1, class_2, classification_error, gini, entropy) %>% 
  pivot_longer(cols = c(classification_error, gini, entropy), names_to = "measure") %>% 
  ggplot(aes(x = class_1, y = value, col = factor(measure))) +
  geom_line() + 
  labs(col = "Measure") +
  theme_minimal()
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_line()`).

Problem 8

In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.

(a) Split the data set into a training set and a test set.
attach(Carseats)
Carseats = Carseats
set.seed(23)

train_index = sample(1:nrow(Carseats), nrow(Carseats) * 0.6)

train = Carseats[train_index, ]
test = Carseats[-train_index, ]
(b) Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?
tree_model = tree(Sales ~ ., data = train)
summary(tree_model)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "CompPrice"   "Income"      "Advertising"
## [6] "Age"        
## Number of terminal nodes:  19 
## Residual mean deviance:  2.146 = 474.3 / 221 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -4.13000 -0.74940  0.05118  0.00000  0.89410  3.67600
plot(tree_model)
text(tree_model, pretty = 0, cex = 0.5)

ShelveLoc and Price seem to be the most important factors.

preds = predict(tree_model, newdata = test)
mse = mean((preds - test$Sales)^2)
mse
## [1] 4.460833
(c) Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?
trimed_tree_model = cv.tree(tree_model)
plot(trimed_tree_model$size, trimed_tree_model$dev, type = "b")

pruned_tree_model = prune.tree(tree_model, best = 18)
preds = predict(pruned_tree_model, newdata = test)
mse = mean((preds - test$Sales)^2)
mse
## [1] 4.35041

Pruning the tree does slightly improve our MSE.

(d) Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.
set.seed(23)
bag_model = randomForest(Sales ~ ., data = train, mtry = 10, importance = TRUE)
bag_model
## 
## Call:
##  randomForest(formula = Sales ~ ., data = train, mtry = 10, importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##           Mean of squared residuals: 2.599092
##                     % Var explained: 67.9
preds = predict(bag_model, newdata = test)
plot(preds, test$Sales)

mean((preds - test$Sales)^2)
## [1] 2.216528
importance(bag_model)
##               %IncMSE IncNodePurity
## CompPrice   24.830717     197.79619
## Income      11.809758     109.84085
## Advertising 26.428868     222.20544
## Population   1.103274      75.86258
## Price       61.496419     547.48336
## ShelveLoc   58.711603     498.43603
## Age         16.490336     162.72249
## Education    4.166045      50.03900
## Urban       -2.213879       8.06940
## US           2.804635      12.51660
(e) Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.
set.seed(23)
rf_model = randomForest(Sales ~ ., data = train, mtry = 3, importance = TRUE)
preds = predict(rf_model, newdata = test)
mean((preds - test$Sales)^2)
## [1] 3.031801

When we increase m the error rate gets lower but the model becomes more complex.

importance(rf_model)
##                %IncMSE IncNodePurity
## CompPrice   12.5185007     180.06666
## Income       9.6930436     148.82291
## Advertising 20.7103898     223.94149
## Population   2.6644176     134.22415
## Price       37.5611920     440.18254
## ShelveLoc   41.4239942     389.67498
## Age         11.3496972     185.55786
## Education   -0.2200384      81.58845
## Urban       -0.3943959      17.24848
## US           4.5631140      39.63352
(f) Now analyze the data using BART, and report your results.
x = Carseats[, 2:11]
y = Carseats[, 1]
xtrain = x[train_index, ]
ytrain = y[train_index]
xtest = x[-train_index, ]
ytest = y[-train_index]

set.seed(23)
bart_model = gbart(xtrain, ytrain, x.test = xtest)
## *****Calling gbart: type=1
## *****Data:
## data:n,p,np: 240, 14, 160
## y1,yn: -2.322875, 2.757125
## x1,x[n*p]: 135.000000, 1.000000
## xp1,xp[np*p]: 138.000000, 1.000000
## *****Number of Trees: 200
## *****Number of Cut Points: 64 ... 1
## *****burn,nd,thin: 100,1000,1
## *****Prior:beta,alpha,tau,nu,lambda,offset: 2,0.95,0.281075,3,0.192662,7.68288
## *****sigma: 0.994520
## *****w (weights): 1.000000 ... 1.000000
## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,14,0
## *****printevery: 100
## 
## MCMC
## done 0 (out of 1100)
## done 100 (out of 1100)
## done 200 (out of 1100)
## done 300 (out of 1100)
## done 400 (out of 1100)
## done 500 (out of 1100)
## done 600 (out of 1100)
## done 700 (out of 1100)
## done 800 (out of 1100)
## done 900 (out of 1100)
## done 1000 (out of 1100)
## time: 5s
## trcnt,tecnt: 1000,1000
preds = bart_model$yhat.test.mean
mean((ytest - preds)^2)
## [1] 1.471902

The lowest MSE of all our models.

Problem 9

This problem involves the OJ data set which is part of the ISLR2 package.

attach(OJ)
oj = OJ
(a) Create a training set containing a random sample of 800 obser- vations, and a test set containing the remaining observations.
set.seed(23)

train_index = sample(1:nrow(oj), 800)

train = oj[train_index, ]
test = oj[-train_index, ]
(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?
tree_model = tree(Purchase ~ ., data = train)
summary(tree_model)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = train)
## Variables actually used in tree construction:
## [1] "LoyalCH"   "PriceDiff" "SpecialCH"
## Number of terminal nodes:  10 
## Residual mean deviance:  0.7116 = 562.2 / 790 
## Misclassification error rate: 0.145 = 116 / 800

Training error rate is 14.5% and there are ten terminal nodes.

(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.
tree_model
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1064.00 CH ( 0.61750 0.38250 )  
##    2) LoyalCH < 0.48285 298  327.20 MM ( 0.23826 0.76174 )  
##      4) LoyalCH < 0.142213 101   55.92 MM ( 0.07921 0.92079 ) *
##      5) LoyalCH > 0.142213 197  246.90 MM ( 0.31980 0.68020 )  
##       10) PriceDiff < 0.31 154  169.80 MM ( 0.24026 0.75974 )  
##         20) SpecialCH < 0.5 137  136.00 MM ( 0.19708 0.80292 ) *
##         21) SpecialCH > 0.5 17   23.03 CH ( 0.58824 0.41176 ) *
##       11) PriceDiff > 0.31 43   57.71 CH ( 0.60465 0.39535 ) *
##    3) LoyalCH > 0.48285 502  437.00 CH ( 0.84263 0.15737 )  
##      6) LoyalCH < 0.705699 208  258.40 CH ( 0.68750 0.31250 )  
##       12) PriceDiff < -0.165 27   25.87 MM ( 0.18519 0.81481 ) *
##       13) PriceDiff > -0.165 181  198.50 CH ( 0.76243 0.23757 )  
##         26) PriceDiff < 0.265 97  125.70 CH ( 0.64948 0.35052 )  
##           52) LoyalCH < 0.6864 92  114.70 CH ( 0.68478 0.31522 ) *
##           53) LoyalCH > 0.6864 5    0.00 MM ( 0.00000 1.00000 ) *
##         27) PriceDiff > 0.265 84   57.20 CH ( 0.89286 0.10714 ) *
##      7) LoyalCH > 0.705699 294  112.60 CH ( 0.95238 0.04762 )  
##       14) PriceDiff < -0.39 14   19.12 CH ( 0.57143 0.42857 ) *
##       15) PriceDiff > -0.39 280   72.65 CH ( 0.97143 0.02857 ) *

Node 21, is when 0.142213 < Loyal < 0.48285 and PriceDiff < 0.31 and SpecialCH > 0.5 and the prediction is CH with confidence of 58.8% there are 17 observations in the node.

(d) Create a plot of the tree, and interpret the results.
plot(tree_model)
text(tree_model, pretty = 0, cex = 0.5)

(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?
preds = predict(tree_model, test, type = "class")
table(preds, test$Purchase)
##      
## preds  CH  MM
##    CH 139  37
##    MM  20  74
1 - mean(preds == test$Purchase)
## [1] 0.2111111
(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.
set.seed(23)
trimed_tree_model = cv.tree(tree_model, K = 10, FUN = prune.misclass)
trimed_tree_model
## $size
## [1] 10  9  7  6  4  2  1
## 
## $dev
## [1] 147 146 147 145 162 169 306
## 
## $k
## [1]  -Inf   0.0   2.5   3.0   4.5   8.5 156.0
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
plot(trimed_tree_model$size, trimed_tree_model$dev, type = "b")

pruned_tree_model = prune.tree(tree_model, best = 18)
## Warning in prune.tree(tree_model, best = 18): best is bigger than tree size
preds = predict(pruned_tree_model, newdata = test)
mse = mean((preds - test$Sales)^2)
mse
## [1] NaN
(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
data.frame(size = trimed_tree_model$size, CV_Error = trimed_tree_model$dev / nrow(train)) %>%
  mutate(min_CV_Error = as.numeric(min(CV_Error) == CV_Error)) %>%
  ggplot(aes(x = size, y = CV_Error)) +
  geom_line(col = "grey55") +
  geom_point(size = 2, aes(col = factor(min_CV_Error))) +
  scale_y_continuous(labels = scales::percent_format()) +
  theme_minimal() +
  theme(legend.position = "none") 

(h) Which tree size corresponds to the lowest cross-validated classification error rate?

Size 6 is the best.

(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
pruned_tree_model = prune.tree(tree_model, best = 6)
pruned_tree_model
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1064.00 CH ( 0.61750 0.38250 )  
##    2) LoyalCH < 0.48285 298  327.20 MM ( 0.23826 0.76174 )  
##      4) LoyalCH < 0.142213 101   55.92 MM ( 0.07921 0.92079 ) *
##      5) LoyalCH > 0.142213 197  246.90 MM ( 0.31980 0.68020 ) *
##    3) LoyalCH > 0.48285 502  437.00 CH ( 0.84263 0.15737 )  
##      6) LoyalCH < 0.705699 208  258.40 CH ( 0.68750 0.31250 )  
##       12) PriceDiff < -0.165 27   25.87 MM ( 0.18519 0.81481 ) *
##       13) PriceDiff > -0.165 181  198.50 CH ( 0.76243 0.23757 ) *
##      7) LoyalCH > 0.705699 294  112.60 CH ( 0.95238 0.04762 )  
##       14) PriceDiff < -0.39 14   19.12 CH ( 0.57143 0.42857 ) *
##       15) PriceDiff > -0.39 280   72.65 CH ( 0.97143 0.02857 ) *
(j) Compare the training error rates between the pruned and un- pruned trees. Which is higher?

Un-pruned

mean(predict(tree_model, type = "class") != train$Purchase)
## [1] 0.145

Pruned

mean(predict(pruned_tree_model, type = "class") != train$Purchase)
## [1] 0.16625
(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?

Un-pruned

mean(predict(tree_model, type = "class", newdata = test) != test$Purchase)
## [1] 0.2111111

Pruned

mean(predict(pruned_tree_model, type = "class", newdata = test) != test$Purchase)
## [1] 0.1925926

The pruned version did better on the test data.