Exercise 7.2
Friedman (1991) introduced several benchmark data sets create by
simulation. The package mlbench contains a function called
mlbench.friedman1 that simulates these data,
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.4.2
## Warning: package 'readr' was built under R version 4.4.3
## Warning: package 'dplyr' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(mlbench)
## Warning: package 'mlbench' was built under R version 4.4.3
library(caret)
## Warning: package 'caret' was built under R version 4.4.3
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
library(earth)
## Warning: package 'earth' was built under R version 4.4.3
## Loading required package: Formula
## Loading required package: plotmo
## Warning: package 'plotmo' was built under R version 4.4.3
## Loading required package: plotrix
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.4.2
## corrplot 0.95 loaded
library(nnet)
set.seed(200)
trainingData <- mlbench.friedman1(200, sd = 1)
# We convert the 'x' data from a matrix to a data frame
# One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)
# Look at the data using
featurePlot(trainingData$x, trainingData$y)

# or other methods.
# This creates a list with a vector 'y' and a matrix
# of predictors 'x'. Also simulate a large test set to
# estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)
Tune several models on these data.
- We will train a few different non-linear models to the data.
7.2 Which models appear to give the best performance? Does MARS
select the informative predictors (those named X1–X5)?
- Answer: Mars model has the best performance with the highest R^2 of
0.8677298, and lowest RMSE 1.8136467. #### KNN Model
knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",
preProc = c("center", "scale"),
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 3.466085 0.5121775 2.816838
## 7 3.349428 0.5452823 2.727410
## 9 3.264276 0.5785990 2.660026
## 11 3.214216 0.6024244 2.603767
## 13 3.196510 0.6176570 2.591935
## 15 3.184173 0.6305506 2.577482
## 17 3.183130 0.6425367 2.567787
## 19 3.198752 0.6483184 2.592683
## 21 3.188993 0.6611428 2.588787
## 23 3.200458 0.6638353 2.604529
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
# The function 'postResample' can be used to get the test set
# perforamnce values
postResample(pred = knnPred, obs = testData$y)
## RMSE Rsquared MAE
## 3.2040595 0.6819919 2.5683461
Neural Network
set.seed(1234)
nnetFit <- nnet(trainingData$x, trainingData$y,
size = 5,
decay = 0.01,
linout = TRUE,
trace = FALSE,
maxit = 500,
MaxNWts = 5 * (ncol(trainingData$x) + 1) +5 +1)
nnetPred <- predict(nnetFit, newdata = testData$x)
postResample(pred = nnetPred, obs = testData$y)
## RMSE Rsquared MAE
## 2.5013620 0.7722019 1.9424460
MARs
marsFit <- earth(trainingData$x, trainingData$y)
marsFit
## Selected 12 of 18 terms, and 6 of 10 predictors
## Termination condition: Reached nk 21
## Importance: X1, X4, X2, X5, X3, X6, X7-unused, X8-unused, X9-unused, ...
## Number of terms at each degree of interaction: 1 11 (additive model)
## GCV 2.540556 RSS 397.9654 GRSq 0.8968524 RSq 0.9183982
summary(marsFit)
## Call: earth(x=trainingData$x, y=trainingData$y)
##
## coefficients
## (Intercept) 18.451984
## h(0.621722-X1) -11.074396
## h(0.601063-X2) -10.744225
## h(X3-0.281766) 20.607853
## h(0.447442-X3) 17.880232
## h(X3-0.447442) -23.282007
## h(X3-0.636458) 15.150350
## h(0.734892-X4) -10.027487
## h(X4-0.734892) 9.092045
## h(0.850094-X5) -4.723407
## h(X5-0.850094) 10.832932
## h(X6-0.361791) -1.956821
##
## Selected 12 of 18 terms, and 6 of 10 predictors
## Termination condition: Reached nk 21
## Importance: X1, X4, X2, X5, X3, X6, X7-unused, X8-unused, X9-unused, ...
## Number of terms at each degree of interaction: 1 11 (additive model)
## GCV 2.540556 RSS 397.9654 GRSq 0.8968524 RSq 0.9183982
set.seed(1234)
marsPred <- predict(marsFit, newdata = testData$x)
postResample(pred = marsPred, obs = testData$y)
## RMSE Rsquared MAE
## 1.8136467 0.8677298 1.3911836
SVMs
svmRTuned <- train(trainingData$x, trainingData$y,
method = "svmRadial",
preProc = c("center","scale"),
tuneLength = 14,
trControl = trainControl(method = "cv"))
svmRTuned
## Support Vector Machines with Radial Basis Function Kernel
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 2.488356 0.8012693 2.002699
## 0.50 2.236035 0.8154981 1.781068
## 1.00 2.069534 0.8361229 1.630495
## 2.00 1.965108 0.8519953 1.534286
## 4.00 1.881843 0.8628681 1.467129
## 8.00 1.829477 0.8699963 1.438937
## 16.00 1.815857 0.8723863 1.443647
## 32.00 1.816203 0.8723337 1.444164
## 64.00 1.816203 0.8723337 1.444164
## 128.00 1.816203 0.8723337 1.444164
## 256.00 1.816203 0.8723337 1.444164
## 512.00 1.816203 0.8723337 1.444164
## 1024.00 1.816203 0.8723337 1.444164
## 2048.00 1.816203 0.8723337 1.444164
##
## Tuning parameter 'sigma' was held constant at a value of 0.05870168
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.05870168 and C = 16.
set.seed(1234)
svmPred <- predict(svmRTuned, newdata = testData$x)
postResample(pred = svmPred, obs = testData$y)
## RMSE Rsquared MAE
## 2.0614421 0.8276666 1.5664051
Exercise 7.5
- Exercise 6.3 describes data for a chemical manufacturing process.
Use the same data imputation, data splitting, and pre-processing steps
as before and train several nonlinear regression models.
KNN Model
set.seed(1234)
knnTune <- train(x = X_train,
y = y_train,
method = "knn",
preProcess = c('scale', 'center'),
tuneGrid = data.frame(.k = 1:20),
trControl = trainControl (method = "cv"))
knnTune
## k-Nearest Neighbors
##
## 144 samples
## 57 predictor
##
## Pre-processing: scaled (57), centered (57)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 128, 129, 129, 128, 131, 130, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 1 0.7628737 0.4592019 0.5923371
## 2 0.6583938 0.5698937 0.5263008
## 3 0.6513992 0.5790112 0.5144975
## 4 0.6788856 0.5482130 0.5321965
## 5 0.6840773 0.5466160 0.5399008
## 6 0.6776610 0.5644737 0.5310965
## 7 0.6912231 0.5576849 0.5478956
## 8 0.7018618 0.5556077 0.5638154
## 9 0.7067132 0.5434831 0.5653327
## 10 0.7108070 0.5429782 0.5746481
## 11 0.7179731 0.5194462 0.5805881
## 12 0.7203870 0.5165982 0.5806824
## 13 0.7211139 0.5111691 0.5833027
## 14 0.7261908 0.5052909 0.5901406
## 15 0.7306338 0.4965346 0.5912589
## 16 0.7255281 0.5046651 0.5881941
## 17 0.7306463 0.5041565 0.5907774
## 18 0.7294443 0.5111512 0.5895441
## 19 0.7356724 0.5071330 0.5934638
## 20 0.7382388 0.5024346 0.5945759
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 3.
# predict
knn_Tune_pred<- predict(knnTune, X_test)
postResample(knn_Tune_pred, y_test)
## RMSE Rsquared MAE
## 0.7882800 0.3654029 0.6047951
Neural Network
set.seed(1234)
nnetFit2 <- nnet(x = X_train,
y = y_train,
size = 5,
decay = 0.01,
linout = TRUE,
trace = FALSE,
maxit = 500,
MaxNWts = 5 * (ncol(X_train) + 1) +5 +1)
nnetPred2 <- predict(nnetFit2, X_test)
postResample(pred = nnetPred2, y_test)
## RMSE Rsquared MAE
## 0.8320112 0.3847564 0.6393352
MARs
marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)
set.seed(1234)
mars_model2 <- train(x = X_train,
y = y_train,
method = "earth",
tuneGrid = marsGrid,
trControl = trainControl(method = "cv", number = 10))
mars_model2
## Multivariate Adaptive Regression Spline
##
## 144 samples
## 57 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 128, 129, 129, 128, 131, 130, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 0.7675568 0.4738823 0.6121352
## 1 3 0.7516802 0.5447350 0.5705153
## 1 4 0.7497016 0.5553260 0.5628076
## 1 5 0.7779992 0.5421962 0.5703480
## 1 6 0.7693626 0.5328788 0.5762011
## 1 7 0.7474847 0.5525086 0.5674871
## 1 8 0.7651705 0.5427368 0.5792841
## 1 9 0.7831465 0.5257723 0.5897752
## 1 10 0.7936691 0.5221506 0.5905885
## 1 11 0.7951054 0.5235333 0.5864710
## 1 12 0.7840970 0.5399428 0.5775351
## 1 13 0.8046604 0.5093937 0.5940410
## 1 14 0.8066035 0.5155473 0.5877888
## 1 15 0.8119800 0.5079867 0.5933908
## 1 16 0.8153536 0.5008614 0.6005393
## 1 17 0.8166875 0.5001044 0.5982156
## 1 18 0.8168565 0.4951589 0.5931901
## 1 19 0.8177741 0.4957254 0.5971500
## 1 20 0.8158374 0.4969937 0.5941887
## 1 21 0.8169297 0.4974580 0.5923729
## 1 22 0.8163222 0.4982641 0.5903786
## 1 23 0.8182532 0.4989287 0.5907249
## 1 24 0.8177144 0.4992800 0.5904695
## 1 25 0.8177144 0.4992800 0.5904695
## 1 26 0.8177144 0.4992800 0.5904695
## 1 27 0.8177144 0.4992800 0.5904695
## 1 28 0.8177144 0.4992800 0.5904695
## 1 29 0.8177144 0.4992800 0.5904695
## 1 30 0.8177144 0.4992800 0.5904695
## 1 31 0.8177144 0.4992800 0.5904695
## 1 32 0.8177144 0.4992800 0.5904695
## 1 33 0.8177144 0.4992800 0.5904695
## 1 34 0.8177144 0.4992800 0.5904695
## 1 35 0.8177144 0.4992800 0.5904695
## 1 36 0.8177144 0.4992800 0.5904695
## 1 37 0.8177144 0.4992800 0.5904695
## 1 38 0.8177144 0.4992800 0.5904695
## 2 2 0.7675568 0.4738823 0.6121352
## 2 3 0.7029712 0.5197073 0.5676264
## 2 4 0.6423391 0.5980540 0.5146905
## 2 5 0.6642737 0.5633118 0.5200468
## 2 6 0.6709763 0.5610894 0.5177239
## 2 7 0.6887979 0.5601649 0.5209233
## 2 8 0.7125698 0.5394630 0.5275259
## 2 9 0.6873078 0.5613875 0.5106934
## 2 10 0.6810222 0.5761609 0.5057340
## 2 11 0.6829619 0.5726571 0.5077006
## 2 12 0.7125824 0.5442234 0.5277827
## 2 13 0.7117664 0.5617516 0.5294530
## 2 14 0.7235275 0.5620684 0.5241750
## 2 15 0.7143309 0.5489542 0.5296150
## 2 16 0.6914242 0.5672789 0.5137883
## 2 17 0.7233190 0.5421417 0.5366361
## 2 18 0.7456471 0.5337626 0.5422029
## 2 19 0.7283536 0.5428288 0.5336557
## 2 20 0.7871940 0.5370817 0.5637773
## 2 21 0.7581053 0.5410909 0.5531074
## 2 22 0.7690479 0.5420224 0.5563203
## 2 23 0.7678725 0.5426569 0.5537249
## 2 24 0.7678725 0.5426569 0.5537249
## 2 25 0.7678725 0.5426569 0.5537249
## 2 26 0.7678725 0.5426569 0.5537249
## 2 27 0.7678725 0.5426569 0.5537249
## 2 28 0.7678725 0.5426569 0.5537249
## 2 29 0.7678725 0.5426569 0.5537249
## 2 30 0.7678725 0.5426569 0.5537249
## 2 31 0.7678725 0.5426569 0.5537249
## 2 32 0.7678725 0.5426569 0.5537249
## 2 33 0.7678725 0.5426569 0.5537249
## 2 34 0.7678725 0.5426569 0.5537249
## 2 35 0.7678725 0.5426569 0.5537249
## 2 36 0.7678725 0.5426569 0.5537249
## 2 37 0.7678725 0.5426569 0.5537249
## 2 38 0.7678725 0.5426569 0.5537249
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 4 and degree = 2.
mars_pred2 <- predict(mars_model2, X_test)
postResample(mars_pred2, y_test)
## RMSE Rsquared MAE
## 0.6842091 0.5900675 0.5622954
SVMs
set.seed(123)
svmRTuned2 <- train(x = X_train,
y = y_train,
method = "svmRadial",
preProc = c("center","scale"),
tuneLength = 14,
trControl = trainControl(method = "cv"))
svmRTuned2
## Support Vector Machines with Radial Basis Function Kernel
##
## 144 samples
## 57 predictor
##
## Pre-processing: centered (57), scaled (57)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 128, 129, 129, 130, 128, 131, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 0.7221020 0.5801363 0.5842048
## 0.50 0.6636429 0.6281290 0.5334680
## 1.00 0.6205969 0.6788291 0.4895894
## 2.00 0.6017919 0.6954916 0.4771769
## 4.00 0.6093532 0.6813266 0.4875209
## 8.00 0.5986302 0.6937148 0.4859324
## 16.00 0.5971711 0.6956875 0.4851146
## 32.00 0.5971711 0.6956875 0.4851146
## 64.00 0.5971711 0.6956875 0.4851146
## 128.00 0.5971711 0.6956875 0.4851146
## 256.00 0.5971711 0.6956875 0.4851146
## 512.00 0.5971711 0.6956875 0.4851146
## 1024.00 0.5971711 0.6956875 0.4851146
## 2048.00 0.5971711 0.6956875 0.4851146
##
## Tuning parameter 'sigma' was held constant at a value of 0.0146125
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.0146125 and C = 16.
set.seed(1234)
svmPred2 <- predict(svmRTuned2, X_test)
postResample(pred = svmPred2, y_test)
## RMSE Rsquared MAE
## 0.6639696 0.5548810 0.5603961
list(knn = postResample(knn_Tune_pred, y_test),
nnet = postResample(pred = nnetPred2, y_test),
MARS = postResample(mars_pred2, y_test),
svm = postResample(pred = svmPred2, y_test))
## $knn
## RMSE Rsquared MAE
## 0.7882800 0.3654029 0.6047951
##
## $nnet
## RMSE Rsquared MAE
## 0.8320112 0.3847564 0.6393352
##
## $MARS
## RMSE Rsquared MAE
## 0.6842091 0.5900675 0.5622954
##
## $svm
## RMSE Rsquared MAE
## 0.6639696 0.5548810 0.5603961
(b) Which predictors are most important in the optimal nonlinear
regression model? Do either the biological or process variables dominate
the list? How do the top ten important predictors compare to the top ten
predictors from the optimal linear model?
- We can see in the plot, that ManufacturingProcess32,
BiologicalMaterial06, BiologicalMaterial03, ManufacturingProcess13,
ManufacturingProcess36, ManufacturingProcess31..ect are important to
nonlinear SVM model.
plot(varImp(svmRTuned2), 10)

(c) Explore the relationships between the top predictors and the
response for the predictors that are unique to the optimal nonlinear
regression model. Do these plots reveal intuition about the biological
or process predictors and their relationship with yield?
- Strongest positive correlations with Yield is ManufacturingProcess32
(0.61), followed by BiologicalMaterial03, and BiologicalMaterial02.
top_pre_names <- varImp(svmRTuned2)$importance %>%
as.data.frame() %>%
rownames_to_column('predictors') %>%
slice_max(order_by = Overall, n = 10) %>%
pull(predictors)
correlations <- imp_df %>%
select(all_of(c("Yield", top_pre_names))) %>%
cor()
corrplot(correlations,
method = "color",
order = "hclust",
addCoef.col = "black",
tl.col = "black",
tl.cex = 0.8,
number.cex = 0.7,
main = "Correlation between Yield and Top Predictors")
