<- data2_1 |> gather(R语言,Python语言,key=课程,value=分数)
df
# 设置图形主题(可根据需要设置,省略时函数会根据默认设置绘图)
<-theme(plot.title=element_text(size="12"), # 设置主标题字体大小
mythemeaxis.title=element_text(size=10), # 设置坐标轴标签字体大小
axis.text=element_text(size=9), # 设置坐标轴刻度字体大小
legend.position="none") # 移除图例
# 绘制图形
<-ggplot(data=df,aes(x=性别,fill=性别))+ # 设置x轴,按性别填充颜色
p1geom_bar()+ # 绘制条形图
ylab("人数")+ # 设置y轴标签
+ # 使用设置的主题
mythemeggtitle("(a) 条形图") # 添加标题
<-ggplot(data=df,aes(x=课程,y=分数,fill=性别))+
p2geom_boxplot()+ # 绘制箱线图
facet_wrap(~性别)+ # 按性别分面
+ggtitle("(b) 分面箱线图")
mytheme
<-ggplot(data=df,aes(x=分数,fill=课程,alpha=0.2))+ # 设置颜色透明度alpha的值
p3geom_density()+ # 绘制核密度图
xlim(50,105)+ # 设置x轴值域(数值范围)
ylim(0,0.07)+ # 设置y轴值域(数值范围)
annotate("text",x=68,y=0.015,label="Python语言",size=4)+# 添加注释文本
annotate("text",x=85,y=0.015,label="R语言",size=4)+
+ggtitle("(c) 分组核密度图")
mytheme
<-ggplot(data=data2_1,aes(x=R语言,y=Python语言,fill=性别))+
p4geom_point(size=3,shape=21,color="black")+ # 绘制散点图
facet_wrap(~性别)+ # 按性别分面
+ggtitle("(d) 分面散点图")
mytheme
grid.arrange(p1,p2,p3,p4,ncol=2) # 按2列组合图形p1、p2、p3、p4
ggplot2包简介
1 ggplot2绘图语法
1.1 案例绘图
ggplot
函数指定要绘图的数据(通常是数据框),并生成一个空的图形对象(不生成图形)aes(x,y,…)
函数用于指定图形属性的映射,其中的x
用于指定坐标轴x
的变量或数值,y
用于指定坐标轴y
的变量或数值geom
是几何的缩写,表示要绘制的几何对象,在下划线“_”后面指定要绘制的几何图形ggplot2
的绘图语法是将各个部分用“+”连接起来使用
theme
函数设置图形主题,用于控制或修改图形外观
1.2 思考与代码修改
aes()
函数的fill参数有什么用?aes()
函数既可以嵌套在ggplot()
中作全局设定,也可以提取出外通过’+’连接作局部设定。fill参数是决定颜色填充的效果。
修改p1的代码中
aes()
提取出ggplot()
函数放到geom_bar()
,看能不能运行?当然能运行
geom_bar/geom_boxplot/geom_density/geom_point
分别代表绘制什么图形?条形图,箱线图,核密度图,点图
facet_wrap()
函数有什么用?在图p2代码中如果注释到这行会有什么后果。这是分面函数,原图是根据性别对箱线图进行分面,变成男生一个箱线图,女生一个。如果注释掉,就不区分男女两个箱线图。
aes(x=分数,fill=课程,alpha=0.2)
中fill
参数代表填充颜色,试将图p3中的fill
参数改为color
看有什么效果?color是控制图形边缘线条的颜色,而fill是控制图形填充的颜色。
geom_point(size=3,shape=21,color="black")
中shape
参数代表点的形状,试将图p4中shape
参数取值改为25看有什么效果?shape的参数控制点的形状,原本是⚙齿轮状的,改成25后就变成倒三角形了,24是三角形
代码
grid.arrange(p1,p2,p3,p4,ncol=2)
有什么用?相当于graphic包的什么代码?给画出来的图集中在一个画布里面,相当于mfrow(2,2)
# 修改原绘图代码以满足要求
<- data2_1 |> gather(R语言,Python语言,key=课程,value=分数)
df
# 设置图形主题(可根据需要设置,省略时函数会根据默认设置绘图)
<-theme(plot.title=element_text(size="12"), # 设置主标题字体大小
mythemeaxis.title=element_text(size=10), # 设置坐标轴标签字体大小
axis.text=element_text(size=9), # 设置坐标轴刻度字体大小
legend.position="none") # 移除图例
# 绘制图形
<-ggplot(data=df)+ # 设置x轴,按性别填充颜色
p1geom_bar(aes(x=性别,fill=性别))+ # 绘制条形图
ylab("人数")+ # 设置y轴标签
+ # 使用设置的主题
mythemeggtitle("(a) 条形图") # 添加标题
<-ggplot(data=df,aes(x=课程,y=分数,color=性别))+
p2geom_boxplot()+ # 绘制箱线图
# facet_wrap(~性别)+ # 按性别分面
+ggtitle("(b) 分面箱线图")
mytheme
<-ggplot(data=df,aes(x=分数,color=课程,alpha=0.2))+ # 设置颜色透明度alpha的值
p3geom_density()+ # 绘制核密度图
xlim(50,105)+ # 设置x轴值域(数值范围)
ylim(0,0.07)+ # 设置y轴值域(数值范围)
annotate("text",x=68,y=0.015,label="Python语言",size=4)+# 添加注释文本
annotate("text",x=85,y=0.015,label="R语言",size=4)+
+ggtitle("(c) 分组核密度图")
mytheme
<-ggplot(data=data2_1,aes(x=R语言,y=Python语言,fill=性别))+
p4geom_point(size=3,shape=24,color="black")+ # 绘制散点图
#facet_wrap(~性别)+ # 按性别分面
+ggtitle("(d) 分面散点图")
mytheme
grid.arrange(p1,p2,p3,p4,ncol=2) # 按2列组合图形p1、p2、p3、p4
2 图形外观——设置坐标轴
2.1 案例绘图
图(a)是默认绘制的类别轴(本图为
x
轴)顺序是R语言、Python语言,使用scale_x_discrete(limits=c())
可根据需改变类别顺序图(b)是设置
coord_flip()
使坐标轴互换,同时,将x
轴(类别轴)标签旋转90度图(c)使用
theme(axis.title.x=element_blank())
移除y轴标签,要移除x
轴标签使用类似的设置;设置theme(axis.ticks.y=element_blank())
移除y
轴的刻度线图(d)使用
theme(axis.ticks=element_blank())
移除所有的刻度线,将坐标轴标签旋转是为了改变标签的角度。当标签较多时,也可以设置
scale_x_discrete(guide=guide_axis(n.dodge=2))
使x
轴标签排成为2行。使用xlim()
可以数值x
轴的数值范围。设置x轴数值范围时,函数会在该范围内设置坐标轴刻度,重新设置刻度线可以使用scale_x_continuous(limits=c(),breaks=c())
# 设置图形主题(可根据需要设置)
<-theme(plot.title=element_text(size="11"), # 设置主标题字体大小
mythemeaxis.title=element_text(size=10), # 设置坐标轴标签字体大小
axis.text=element_text(size=9), # 设置坐标轴刻度字体大小
legend.position="none") # 移除图例
# 图(a)修改类别轴项目顺序
<-ggplot(data=df,aes(x=课程,y=分数,fill=课程))+
p1geom_boxplot()+ # 绘制箱线图
scale_x_discrete(limits=c("R语言","Python语言"))+ # 修改类别轴项目顺序
+ggtitle("(a) 修改类别轴项目顺序\n默认顺序R语言、Python语言")
mytheme
# 图(b)坐标轴互换,并反转x轴元素的顺序
<-ggplot(data=df,aes(x=课程,y=分数,fill=课程))+
p2geom_boxplot()+
coord_flip()+ # 坐标轴互换(或者设置y=分数,x=课程)
ylim(54,101)+ # 设置y轴值域(数值范围)
theme(axis.text.y=element_text(size=9,angle=45,hjust=0.5,vjust=0.5))+ # 设置y轴标角度,并进行水平和垂直位置调整
scale_x_discrete(limits=rev(levels(df$课程)))+# 反转类别轴项目顺序
+ggtitle("(b) 坐标轴互换\n反转x轴元素的顺序并旋转90度")
mytheme
# 图(c)移除y轴刻度线和标签,删除x轴和y轴次网格线
<-ggplot(data=df,aes(x=分数,fill=课程,alpha=0.2))+
p3geom_density()+ # 绘制核密度图
xlim(50,105)+ # 设置x轴值域(数值范围)
ylim(0,0.07)+ # 设置y轴值域(数值范围)
theme(axis.title.y=element_blank(), # 移除y轴标签
axis.ticks.y=element_blank(), # 移除y轴刻度线
panel.grid.minor.x=element_blank(), # 去掉x轴次网格线
panel.grid.minor.y=element_blank())+ # 去掉y轴次网格线
annotate("text",x=69,y=0.015,label="Python语言",size=3)+# 添加注释文本
annotate("text",x=85,y=0.015,label="R语言",size=3)+
+ggtitle("(c) 移除y轴刻度线和y轴标签\n去掉x轴和y轴次网格线")
mytheme
# 图(d)移除所有刻度线,刻度标签旋转90度
<-ggplot(data=df,aes(x=分数,fill=课程,alpha=0.2))+
p4geom_density()+ # 绘制核密度图
scale_x_continuous(limits=c(50,100),
breaks=c(50,55,60,65,70,75,80,85,90,95,100))+ # 设置x轴值域和刻度线位置
scale_y_continuous(limits=c(0,0.07),
breaks=c(0,0.01,0.02,0.03,0.04,0.05,0.06,0.07))+ # 设置y轴值域和刻度线位置
ylab("密度")+ # 设置y轴标签
theme(axis.ticks=element_blank(), # 移除所有刻度线
axis.line=element_line(color="skyblue",linewidth=1.5), # 添加坐标轴直线
axis.text.x=element_text(size=9,angle=90,hjust=1,vjust=1))+ # 设置x轴标签角度
annotate("text",x=69,y=0.015,label="Python语言",size=3)+ # 添加注释文本
annotate("text",x=85,y=0.015,label="R语言",size=3)+
+ggtitle("(d) 移除所有刻度线\nx轴刻度标签旋转90度")
mytheme
grid.arrange(p1,p2,p3,p4,ncol=2) # 组合图形
2.2 思考与代码修改
ggplot2
包通过theme()
函数设置主题要素参数,如何实现全局设定和局部设定?全局设定是将theme()函数赋值给一个变量,之后可以调用这个变量。局部设定是在具体的代码里加上theme(),里面填具体的参数。之后用加号连接其他函数
scale_x_discrete()
函数有什么作用?如何将p1的横轴标题由“课程”改为“科目”。是对离散型变量x操作的一个函数,可以通过添加limits=c()来改变类别顺序。这个函数有一个name参数,可以将课程改成科目。
将图p2注释掉
theme(axis.text.y=element_text(size=9,angle=90,hjust=0.5,vjust=0.5))
有什么影响?注释掉之后y的标签值变成打横的,一点也不美观。
annotate()
函数除了能在图中添加文本注释还能添加什么?将p3中“R语言”的文本注释放在蓝色区域的右边。还可以添加线段注释。
将p4的x轴刻度标签角度改为45度
# 设置图形主题(可根据需要设置)
<-theme(plot.title=element_text(size="11"), # 设置主标题字体大小
mythemeaxis.title=element_text(size=10), # 设置坐标轴标签字体大小
axis.text=element_text(size=9), # 设置坐标轴刻度字体大小
legend.position="none") # 移除图例
# 图(a)修改类别轴项目顺序
<-ggplot(data=df,aes(x=课程,y=分数,fill=课程))+
p1geom_boxplot()+ # 绘制箱线图
scale_x_discrete(name = '科目',limits=c("R语言","Python语言"))+ # 修改类别轴项目顺序
+ggtitle("(a) 修改类别轴项目顺序\n默认顺序R语言、Python语言")
mytheme
# 图(b)坐标轴互换,并反转x轴元素的顺序
<-ggplot(data=df,aes(x=课程,y=分数,fill=课程))+
p2geom_boxplot()+
coord_flip()+ # 坐标轴互换(或者设置y=分数,x=课程)
ylim(54,101)+ # 设置y轴值域(数值范围)
#theme(axis.text.y=element_text(size=9,angle=90,hjust=0.5,vjust=0.5))+ # 设置y轴标角度,并进行水平和垂直位置调整
scale_x_discrete(limits=rev(levels(df$课程)))+# 反转类别轴项目顺序
+ggtitle("(b) 坐标轴互换\n反转x轴元素的顺序并旋转90度")
mytheme
# 图(c)移除y轴刻度线和标签,删除x轴和y轴次网格线
<-ggplot(data=df,aes(x=分数,fill=课程,alpha=0.2))+
p3geom_density()+ # 绘制核密度图
xlim(50,105)+ # 设置x轴值域(数值范围)
ylim(0,0.07)+ # 设置y轴值域(数值范围)
theme(axis.title.y=element_blank(), # 移除y轴标签
axis.ticks.y=element_blank(), # 移除y轴刻度线
panel.grid.minor.x=element_blank(), # 去掉x轴次网格线
panel.grid.minor.y=element_blank())+ # 去掉y轴次网格线
annotate("text",x=69,y=0.015,label="Python语言",size=3)+# 添加注释文本
annotate("text",x=105,y=0.015,label="R语言",size=3)+
+ggtitle("(c) 移除y轴刻度线和y轴标签\n去掉x轴和y轴次网格线")
mytheme
# 图(d)移除所有刻度线,刻度标签旋转90度
<-ggplot(data=df,aes(x=分数,fill=课程,alpha=0.2))+
p4geom_density()+ # 绘制核密度图
scale_x_continuous(limits=c(50,100),
breaks=c(50,55,60,65,70,75,80,85,90,95,100))+ # 设置x轴值域和刻度线位置
scale_y_continuous(limits=c(0,0.07),
breaks=c(0,0.01,0.02,0.03,0.04,0.05,0.06,0.07))+ # 设置y轴值域和刻度线位置
ylab("密度")+ # 设置y轴标签
theme(axis.ticks=element_blank(), # 移除所有刻度线
axis.line=element_line(color="skyblue",linewidth=1.5), # 添加坐标轴直线
axis.text.x=element_text(size=9,angle=45,hjust=1,vjust=1))+ # 设置x轴标签角度
annotate("text",x=69,y=0.015,label="Python语言",size=3)+ # 添加注释文本
annotate("text",x=85,y=0.015,label="R语言",size=3)+
+ggtitle("(d) 移除所有刻度线\nx轴刻度标签旋转90度")
mytheme
grid.arrange(p1,p2,p3,p4,ncol=2)
3 图形外观——设置图形标题
3.1 案例绘图
# 初始图形,所有设置均为默认
<-ggplot(data=df)+aes(x=课程,y=分数,fill=性别)+
pgeom_boxplot() # 绘制箱线图
# 设置标题
<-p+ggtitle("(a) 这里是标题(默认设置)") # 添加标题
p1
<-p+ggtitle("(b) 这里是标题(设置字体大小,粗体字)")+
p2theme(plot.title=element_text(size=10,face="bold"))# 设置标题字体大小
<-p+labs(title=("(c) 这里是标题(标题位置居中)\n(标题换行)"))+ # 标题换行(在\n处断行)
p3theme(plot.title=element_text(size=12,hjust=0.5)) # 调整标题位置(居中)
<-p+ggtitle("(d) 主标题(蓝色粗斜体)","(这里是副标题)")+ # 添加副标题
p4theme(plot.title=element_text(size=12,face="bold.italic",color="purple",hjust = 0)) # 设置标题为粗斜体字,蓝色
::grid.arrange(p1,p2,p3,p4,ncol=2) # 组合图形 gridExtra
3.2 思考
ggtitle()
中第一个参数为主标题,第二个参数为副标题;再通过主题函数theme(plot.title=element_text())
设置标题的具体属性主标题跟副标题之间是通过逗号隔开的,参数包括标题的字号,是否加粗或变斜体。
element_text()
为文本属性设定函数,一共有多少个参数可以设定?字体族famaily,字体样式face,颜色color,大小size,角度angle,水平对齐方式hjust,0为左对齐,0.5为中间对齐,1为右对齐。垂直对齐方式vjust,0为底部对齐,0.5为居中,1为顶部对齐。
element_text(size=10,face="bold")
代表什么意思?字体大小为10,设置为粗体
element_text(size=12,hjust=0.5)
代表什么意思?字号设为12,水平居中
element_text(size=12,face="bold.italic",color="blue3")
代表什么意思?字号设为12,粗斜体,颜色为blue3
4 图形外观——设置图例
4.1 案例绘图
# 初始图形,所有设置均为默认
<-ggplot(data=df)+aes(x=课程,y=分数,fill=性别)+
pgeom_boxplot() # 绘制箱线图
# 设置图例
<-p+ggtitle("(a) 默认图例")
p1<-p+ggtitle("(b) 移除图例")+
p2theme(legend.position="none") # 移除图例(或设置guides(fill="none"))
<-p+ggtitle("(c) 设置图例位置、字体、背景和边框颜色")+
p3theme(legend.text=element_text(size=8,color="blue"), # 设置图例字体大小和颜色
legend.position="top", # 设置图例位置(顶部)
legend.background=element_rect(fill="grey85",color="grey"),
# 设置图例背景色和边框颜色
legend.key=element_rect(color="blue",linewidth=0.25))
# 设置图例键的颜色和线宽
<-p+ggtitle("(d) 设置图例位置、摆放方式和顺序")+
p4theme(legend.position=c(0.75,0.9), # 设置图例位置
legend.background=element_blank(), # 移除图例整体边框
legend.text=element_text(size=8))+ # 设置图例字体大小
guides(fill=guide_legend(nrow=1,title=NULL))+
# 设置图例摆放方式(1行,去掉图例标题)
scale_fill_discrete(limits=c("女","男")) # 修改图例顺序
Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
3.5.0.
ℹ Please use the `legend.position.inside` argument of `theme()` instead.
::grid.arrange(p1,p2,p3,p4,ncol=2) # 组合图形 gridExtra
4.2 思考与代码修改
theme()
函数中legend.text/legend.position/legend.background/legend.key
四个参数分别设定什么方面的内容?图例的标题,图例的位置,图例的背景颜色,图例背景色和边框颜色
element_rect()
矩形对象属性设定函数,legend.background/legend.key
两个参数为什么需要用它设定?修改图p3的代码,将图例位置改为图形下方,将图例标题
legend.title
”性别“的字体颜色也改为蓝色。ok
修改图p4的代码,将图例位置改为图中的右下方,图例中男左女右。
ok
# 修改原绘图代码以满足要求
# 初始图形,所有设置均为默认
<-ggplot(data=df)+aes(x=课程,y=分数,fill=性别)+
pgeom_boxplot() # 绘制箱线图
# 设置图例
<-p+ggtitle("(a) 默认图例")
p1<-p+ggtitle("(b) 移除图例")+
p2theme(legend.position="none") # 移除图例(或设置guides(fill="none"))
<-p+ggtitle("(c) 设置图例位置、字体、背景和边框颜色")+
p3theme(legend.text=element_text(size=8,color="blue"), # 设置图例字体大小和颜色
legend.position="bottom", # 设置图例位置(底部)
legend.background=element_rect(fill="grey85",color="grey"),
legend.title = element_text(color = 'blue'),
# 设置图例背景色和边框颜色
legend.key=element_rect(color="blue",linewidth=0.25))
# 设置图例键的颜色和线宽
<-p+ggtitle("(d) 设置图例位置、摆放方式和顺序")+
p4theme(legend.position=c(0.8,0.1), # 设置图例位置
legend.background=element_blank(), # 移除图例整体边框
legend.text=element_text(size=8))+ # 设置图例字体大小
guides(fill=guide_legend(nrow=1,title=NULL))+
# 设置图例摆放方式(1行,去掉图例标题)
scale_fill_discrete(limits=c("男","女")) # 修改图例顺序
::grid.arrange(p1,p2,p3,p4,ncol=2) # 组合图形 gridExtra
5 图形外观——长标签处理
5.1 案例绘图
<-data.frame(
df=c("流行病和卫生统计","数据科学与大数据技术","数理统计"),
专业=c("Python机器学习原理与实践","数据建模","数据科学统计基础"),
课程=c(76,88,82))
平均分数
# 绘制条形图
<-ggplot(df)+aes(x=课程,y=平均分数,fill=专业)+
pgeom_col(width=0.8,color="grey50")
# 图(a)默认绘制
<-p+theme(panel.background=element_rect(fill="lightyellow"),# 设置图形面板背景色
p1plot.background=element_rect(fill="lightblue"))+# 设置图形整体背景色
ggtitle("(a) 默认绘制")
# 图(b)在适当位置折行
<-p+scale_x_discrete(labels=c("Python\n机器学习\n原理与实践","数据建模","数据科学\n统计基础"))+ # 将x轴的长标签折行
p2theme(axis.text=element_text(lineheight=1))+ # 设置x轴标签文本的高度
scale_fill_discrete(labels=c("流行病和\n卫生统计","数据科学\n与大数据\n技术","数理统计"))+ # 将图例标签折行
theme(legend.text=element_text(lineheight=1),
legend.key.height=unit(1,"cm"))+ # 设置图例文本和色键高度
ggtitle("(b) 在适当位置折行")
# 图(c)设置标签文本宽度
<-p+scale_x_discrete(labels=function(x) str_wrap(x,width=8))+ # 设置x轴标签宽度
p3theme(axis.text=element_text(lineheight=1))+ # 设置x轴标签文本的高度
scale_fill_discrete(labels=function(x) str_wrap(x,width=8))+ # 设置图例标签宽度
theme(legend.text=element_text(lineheight=1),
legend.key.height=unit(1,"cm"))+
ggtitle("(c) 设置标签文本宽度")
grid.arrange(p1,p2,p3,layout_matrix=rbind(c(1,1),c(2,3)))
5.2 思考
R语言的”
\
“为转义符,"Python\n机器学习\n原理与实践"
中的\n
表示什么意思?换行
grid.arrange()
函数中参数设定layout_matrix=rbind(c(1,1),c(2,3))
表示什么意思?自定义图形摆放的位置,rbind表示按row来排列,c(1,1)代表第一排就放一个图,
c(2,3)代表第二排放三个图
6 图形外观——使用已有图形主题
6.1 案例代码
<- data2_1 |> gather(R语言,Python语言,key=课程,value=分数)
df
<-ggplot(data=df)+aes(x=课程,y=分数,fill=性别)+
pgeom_boxplot() # 绘制箱线图
<-p+theme_grey()+ggtitle("(a)+theme_grey") # 默认主题
p1<-p+theme_bw()+ggtitle("(b) theme_bw") # 黑白主题
p2<-p+theme_minimal()+ggtitle("(c) theme_minimal") # 最小主题
p3<-p+theme_classic()+ggtitle("(d) theme_classic") # 经典主题
p4
::grid.arrange(p1,p2,p3,p4,ncol=2) # 组合图形 gridExtra
除了ggplot2包自带的主题函数外,还有很多包提供主题函数。
library(ggthemes)
<-p+theme_economist_white()+ggtitle("(a) theme_economist_white") # 《经济学人》杂志白色主题
p1<-p+theme_excel()+ggtitle("(b) theme_excel") # Excel主题
p2<-p+theme_few()+ggtitle("(c) theme_few") # 少数人使用的图形主题
p3<-p+theme_stata()+ggtitle("(d) theme_stata") # 基于Stata图形方案的主题
p4
::grid.arrange(p1,p2,p3,p4,ncol=2) # 组合图形 gridExtra
6.2 思考与代码修改
试在Deepseek中提问”R语言中针对ggpolt函数绘图,有哪些主题包和主题函数?“
在 R 语言的
ggplot2
包中,主题(Theme)用于控制图表的非数据元素(如背景、字体、网格线、图例位置等)。除了ggplot2
内置的主题函数,还有许多扩展包提供了丰富的主题风格。以下是常用的主题包和主题函数分类说明:6.2.1 1. 内置
ggplot2
主题函数ggplot2
自带一些经典主题,直接调用即可:theme_grey()
:默认主题(浅灰色背景和白色网格线)。theme_bw()
:黑白主题(白色背景和深灰色网格线)。theme_classic()
:经典主题(无网格线,右侧和上侧边框)。theme_minimal()
:极简主题(无背景和边框,适合简洁展示)。theme_void()
:空白主题(完全无坐标轴、文本和网格线,适合自定义绘图)。theme_dark()
:深色背景主题。
示例代码:
r复制library(ggplot2) ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point() + theme_bw()
6.2.2 2. 第三方主题扩展包
以下扩展包提供了更多风格化主题:
6.2.2.1
ggthemes
包特点:提供多种仿知名出版物的主题(如经济学人、华尔街日报等)。
常用主题:
theme_economist()
:模仿《经济学人》杂志风格。theme_wsj()
:模仿《华尔街日报》风格。theme_stata()
:模仿 Stata 软件绘图风格。theme_excel()
:模仿 Excel 默认图表风格。theme_fivethirtyeight()
:模仿 FiveThirtyEight 数据新闻风格。
ggthemes/hrbrthemes/ggpubr
等包提供多种商业化绘图主题。选择四种你喜欢的主题设置,应用于案例绘图中。
library(ggthemes)
library(hrbrthemes)
library(ggpubr)
<-p+theme_wsj()+ggtitle("(d) theme_wsj") # 基于华尔街图形方案的主题
p4::grid.arrange(p4,ncol=1) gridExtra
7 添加注释
7.1 案例绘图
<- data2_1
d <-ggplot(data=d)+aes(x=R语言,y=Python语言)+
pgeom_point(size=3,shape=21,color="black",fill="red2")+ # 绘制点
scale_x_continuous(breaks=c(70,75,80,85,90,95))+ # 设置x轴值域和刻度线位置
geom_smooth(method = lm) # 添加线性回归线和置信带
# 添加注释
+geom_vline(xintercept=mean(d$R语言),linetype="twodash",color="grey50",size=0.5)+ # 添加x的均值线(垂直线)
pgeom_hline(yintercept=mean(d$Python语言),linetype="twodash",color="grey50",size=0.5)+ # 添加y的均值线(水平线)
geom_point(x=mean(d$R语言),y=mean(d$Python语言),shape=21,size=5,fill="yellow")+# 添加均值点
annotate("text",x=72,y=81,label="相关系数: r = ",size=5,color="red3")+ # 添加注释文本
annotate("text",x=77.2,y=81,label=round(cor(d$R语言,d$Python语言),4),size=5,color="red3")+ # 添加相关系数
geom_rect(xmin=87, xmax=97, ymin=56.5,ymax=63)+# 添加矩形
annotate("text",x=92,y=60,parse=TRUE,size=5,color="red3",label="r==frac(cor(xy),sqrt(var(x)*var(y)))")+ # 添加相关系数的数学表达式
annotate("text",x=84,y=81,label="回归线:",size=5,color="blue3")+ # 添加注释文本
annotate("text",x=88.8,y=81.3,parse=TRUE,size=4.5,color="blue3",label="hat(y)==hat(beta)[0]+hat(beta)[1]*x")+ # 添加回归方程数学表达式
annotate("segment",x=68.5,xend=79,y=79.8,yend=79.8,color="red4",size=0.5)+ # 添加直线
annotate("segment",x=88,xend=92,y=80,yend=78,color="blue",size=1,arrow=arrow(angle=15,length=unit(0.2,"inches"))) # 添加带箭头的线
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
`geom_smooth()` using formula = 'y ~ x'
7.2 思考
annotate()
函数中参数parse=TRUE
有什么用,尝试将其删除观测结果变化。- 当加上这一句的时候,写数学公式就起作用了。不然就变成字符串了
- 如何将相关性公式的背景框颜色去掉?
- 将fill参数移除
8 图形分面
案例绘图
<- data2_1 |> gather(R语言,Python语言,key=课程,value=分数)
df
<-ggplot(data=df)+aes(x=课程,y=分数,fill=性别)+geom_boxplot()+
p1facet_wrap(~性别,ncol=2)+ # 按性别2列分面
ggtitle("(a) 按性别2列分面")
<-ggplot(data=df)+aes(x=课程,y=分数,fill=专业)+geom_boxplot()+
p2facet_grid(性别~.)+ # 按性别2行分面
ggtitle("(b) 按性别2行分面")
<-ggplot(data=df)+aes(x=课程,y=分数,fill=性别)+geom_boxplot()+
p3facet_wrap(~专业,ncol=3) + # 按专业3列分面
ggtitle("(c) 按专业3列分面")
<-ggplot(data=df)+aes(x=专业,y=分数,fill=专业)+geom_boxplot()+
p4facet_grid(课程~性别)+ # 按课程(行)和性别(列)分面
theme(panel.spacing.x=unit(0.2,"lines"), # 设置子图的x轴间距
panel.spacing.y=unit(0.1,"lines"), # 设置子图的y轴间距
strip.text=element_text(size=10), # 设置分面字体大小
strip.background=element_rect(fill="skyblue",color="blue4"))+
# 设置分面背景颜色和边框颜色
ggtitle("(d) 按课程(行)和性别(列)分面")
::grid.arrange(p1,p2,p3,p4,ncol=2) # 组合图形 gridExtra
8.1 思考
分面函数
facet_grid()
如何使用?scales
:控制坐标轴刻度"fixed"
(默认):所有子图共享相同刻度。"free"
:各子图独立调整刻度。"free_x"
/"free_y"
:仅横轴或纵轴自由调整。
r
facet_grid(drv ~ cyl, scales = "free")
space
:调整面板大小"fixed"
(默认):所有面板等大。"free"
:面板大小随数据范围变化。
margins
:添加边距面板TRUE
:显示所有变量的边际分布(总和面板)。可指定变量名(如
margins = "drv"
)。
drop
:是否忽略空组合TRUE
(默认):删除无数据的变量组合。FALSE
:保留空面板。
labeller
:自定义面板标签如
labeller = label_both
显示变量名和水平值。8.1.1 与
facet_wrap
的区别
facet_grid
:严格按行列变量生成网格,适合两个离散变量的交叉分析
facet_wrap
:灵活排列单变量分面,自动换行/列,适合单一变量多水平的场景
在主题函数
theme()
中,以什么开头的参数控制绘图分面要素的属性?
在ggplot2
的theme()
函数中,控制分面要素(facet)属性的参数均以strip.
开头,具体如下:
8.1.2 核心参数分类
分面标签文本
•strip.text
:控制所有分面标签的字体样式(如大小、颜色)。
◦ 子参数:strip.text.x
(水平分面标签)、strip.text.y
(垂直分面标签)。
◦ 示例:
分面标签背景
•strip.background
:控制所有分面标签的背景色和边框。
◦ 子参数:strip.background.x
(水平分面背景)、strip.background.y
(垂直分面背景)。
◦ 示例:
分面标签位置
•strip.placement
:控制标签位置("inside"
或"outside"
面板)。
•strip.switch.pad.grid
:调整标签与轴之间的间距。分面面板间距
•panel.spacing
:控制分面子图之间的间距(通过unit()
指定单位)。
◦ 子参数:panel.spacing.x
(水平间距)、panel.spacing.y
(垂直间距)。
◦ 示例:
8.1.3 用户代码中的实际应用
在用户提供的p4
图中,以下参数被使用:
theme(
panel.spacing.x = unit(0.2, "lines"), # 水平间距
panel.spacing.y = unit(0.1, "lines"), # 垂直间距
strip.text = element_text(size=10), # 标签字体
strip.background = element_rect(fill="skyblue", color="blue4") # 标签背景
)
8.1.4 总结
• 分面标签样式:strip.text.*
• 分面背景样式:strip.background.*
• 分面布局调整:panel.spacing.*
和strip.placement
这些参数均以strip.
或panel.spacing.
开头,用于精细控制分面的视觉呈现。
9 图形组合
9.1 案例绘图
# 设置图形主题(可根据需要设置)
<-theme(plot.title=element_text(size="11"), # 设置主标题字体大小
mythemeaxis.title=element_text(size=10), # 设置坐标轴标签字体大小
axis.text=element_text(size=9), # 设置坐标轴刻度字体大小
legend.position="none")
<-ggplot(data=df)+aes(x=性别,fill=性别)+
p1geom_bar(width=0.8)+ylab("人数")+ # 绘制条形图
+ggtitle("(a) 条形图")
mytheme
<-ggplot(data=df)+aes(x=分数)+
p2geom_histogram(binwidth=5,fill="lightgreen",color="gray50")+# 绘制直方图
+ggtitle("(b) 直方图")
mytheme
<-ggplot(data=df)+aes(x=专业,y=分数,fill=专业)+
p3geom_boxplot()+ # 绘制箱线图
+ggtitle("(c) 箱线图")
mytheme
<-ggplot(data=df,aes(x=课程,y=分数,fill=课程))+
p4geom_violin()+ # 绘制小提琴图
+ggtitle("(d) 小提琴图")
mytheme
<-ggplot(data=df)+aes(x=分数,fill=课程,alpha=0.2)+
p5geom_density()+ # 绘制核密度图
xlim(50,105)+ylim(0,0.07)+
+ggtitle("(e) 核密度图") mytheme
9.2 页面布局1
# 按行填充子图,行高比为1:2
grid.arrange(p1,p2,p3,p5, # 组合图形p1、p2、p3、p5
heights=c(1,2), # 设置行高为1:2
layout_matrix=rbind(c(1,2,3),c(5,5,5))) # 2行3列的矩阵布局
9.3 页面布局2
# 按行填充子图,行高比为1:2:1
grid.arrange(p1,p2,p3,p4,p5, # 组合图形p1、p2、p3、p4、p5
heights=c(1,2,1), # 设置行高为1:2:1
layout_matrix=rbind(c(1,2,2),c(5,5,5),c(3,3,4))) # 3行3列矩阵布局
9.4 页面布局3
# 按列填充子图,列宽比为1:2
grid.arrange(p1,p2,p3,p4,p5, # 组合图形p1、p2、p3、p4、p5
widths=c(1,2), # 设置列宽为1:2
layout_matrix=cbind(c(1,4,3),c(2,5,5))) # 3行2列矩阵布局