Loading libraries and the data and performing Preprocessing to define strategy.

library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(data.table)
library(rpart)
library(rpart.plot)
library(RColorBrewer)
library(rattle)
## Loading required package: RGtk2
## Rattle: A free graphical interface for data mining with R.
## Version 3.5.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
library(knitr)
library(mice)
## Loading required package: Rcpp
## mice 2.22 2014-06-10
library(ROCR)
## Loading required package: gplots
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
library(outliers)
## 
## Attaching package: 'outliers'
## 
## The following object is masked from 'package:randomForest':
## 
##     outlier
library(plyr)
library(boot)
## 
## Attaching package: 'boot'
## 
## The following object is masked from 'package:lattice':
## 
##     melanoma
###
training <- read.csv("train.csv", sep=",") ##Having inspected the dataset, the columns are seperated with comas.
validation <- read.csv("test.csv", sep=",")

summary(training)
summary(validation)
lapply(training,class)
lapply(validation,class)

Data Quality, Sanity checks & Exploratory Data Analysis(pt1).

Appropriate transformations and feature engineering on both datasets. Exploratory data analysis to reveal skweness, outliers etc.

##PassengerID is an ID variable, hence it must be removed.
training <- training[,-1]
validation <- validation[,-1]


##Survived is a categorical variable, its class should be transformed to factor class.
class(training$Survived) ##Jesus, its an integer
## [1] "integer"
training$Survived <- as.factor(training$Survived)

table(training$Survived)
## 
##   0   1 
## 549 342
sum(is.na(training$Survived))/length(training$Survived)#No NAs
## [1] 0
##Pclass is a categorical variable, its class should be transformed to factor.
##Training set
class(training$Pclass)
## [1] "integer"
training$Pclass <- as.factor(training$Pclass)

table(training$Pclass)
## 
##   1   2   3 
## 216 184 491
sum(is.na(training$Pclass))/length(training$Pclass) #No NAs
## [1] 0
##Validation set
class(validation$Pclass)
## [1] "integer"
validation$Pclass <- as.factor(validation$Pclass)

table(validation$Pclass)
## 
##   1   2   3 
## 107  93 218
sum(is.na(validation$Pclass))/length(validation$Pclass) #No NAs
## [1] 0
##Name variable is useless, hence it gets removed from both datasets
training <- training[,-3]
validation <- validation[,-2]


##Sex variable is categorical, and its class should be factor.
class(training$Sex) #Aleeady of a factor type, no transformation necessary.
## [1] "factor"
table(training$Sex)
## 
## female   male 
##    314    577
sum(is.na(training$Sex))/length(is.na(training$Sex))#No NAs
## [1] 0
class(validation$Sex) #Aleeady of a factor type, no transformation necessary.
## [1] "factor"
table(validation$Sex)
## 
## female   male 
##    152    266
sum(is.na(training$Sex))/length(is.na(training$Sex))#No NAs
## [1] 0
##Age variable should be numeric, which is so already, hence no action needed
class(training$Age) #Already of a numeric type, no transormation necessary
## [1] "numeric"
summary(training$Age, na.rm=TRUE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.42   20.12   28.00   29.70   38.00   80.00     177
hist(training$Age) #Slightly rightly skewed, nothing to worry about.

boxplot(training$Age) #Few outliers, no big deal

sum(is.na(training$Age))/length(training$Age) # 20% missing values. We will check against CV accuracy the removal, NA imputation, or just complete row removal.
## [1] 0.1986532
class(validation$Age) #Already of a numeric type, no transormation necessary
## [1] "numeric"
summary(validation$Age, na.rm=TRUE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.17   21.00   27.00   30.27   39.00   76.00      86
hist(training$Age) #Slightly rightly skewed, nothing to worry about.

boxplot(training$Age) #Few outliers, no big deal

sum(is.na(training$Age))/length(training$Age) # 20% missing values. We will check against CV accuracy the removal, NA imputation, or just complete row removal.
## [1] 0.1986532
##SibSp is of a integer class, which is already
class(training$SibSp)
## [1] "integer"
table(training$SibSp)
## 
##   0   1   2   3   4   5   8 
## 608 209  28  16  18   5   7
sum(is.na(training$SibSp))/length(is.na(training$SibSp))#No NAs
## [1] 0
class(validation$SibSp)
## [1] "integer"
table(validation$SibSp)
## 
##   0   1   2   3   4   5   8 
## 283 110  14   4   4   1   2
sum(is.na(validation$SibSp))/length(is.na(validation$SibSp))#No NAs
## [1] 0
##Parch is of an integer class, which is already, hence no action necessary
class(training$Parch) #Alreadof the correct type, no transformation necessary
## [1] "integer"
table(training$Parch)
## 
##   0   1   2   3   4   5   6 
## 678 118  80   5   4   5   1
sum(is.na(training$Parch))/length(training$Parch) #No NAs
## [1] 0
class(validation$Parch) #Alreadof the correct type, no transformation necessary
## [1] "integer"
table(training$Parch)
## 
##   0   1   2   3   4   5   6 
## 678 118  80   5   4   5   1
sum(is.na(validation$Parch))/length(validation$Parch) #No NAs
## [1] 0
####Ticket variable is useless. Hence it gets removed.
training <- training[,-7]
validation <- validation[,-6]


##Fare variable is 
class(training$Fare) #already registerd as numeric class, hence no action necessary
## [1] "numeric"
summary(training$Fare)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    7.91   14.45   32.20   31.00  512.30
hist(training$Fare) #Heavily skewed, maybe a logarithmic transformation could prove usefull. Will check against CV accuracy.

boxplot(training$Fare) #One outlier, that is considerably, out of normal. Will remove this datapoint.

sum(is.na(training$Fare))/length(training$Fare)#No NAs
## [1] 0
which.max(training$Fare)
## [1] 259
training$Fare[259]
## [1] 512.3292
class(validation$Fare) #already registerd as numeric class, hence no action necessary
## [1] "numeric"
summary(validation$Fare)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.000   7.896  14.450  35.630  31.500 512.300       1
hist(validation$Fare) #Heavily skewed, maybe a logarithmic transformation could prove usefull. Will check against CV accuracy.

boxplot(validation$Fare) #One outlier, that is considerably, out of normal. Will remove this datapoint.

sum(is.na(training$Fare))/length(training$Fare)#No NAs
## [1] 0
which.max(validation$Fare)
## [1] 344
validation$Fare[344]
## [1] 512.3292
##Cabin variable should be transformed to provide ie discrimination among those who had cabin and those who did not. Hence, we transform the variable in a binary one with 0,1 levels.

class(training$Cabin)
## [1] "factor"
training$Cabin <- as.character(training$Cabin)
training$Cabin[training$Cabin==""] <- 0
training$Cabin[!training$Cabin==0] <- 1
training$Cabin <- as.factor(training$Cabin)
table(training$Cabin)
## 
##   0   1 
## 687 204
sum(is.na(training$Cabin))/length(training$Cabin)#No NAs
## [1] 0
class(validation$Cabin)
## [1] "factor"
validation$Cabin <- as.character(validation$Cabin)
validation$Cabin[validation$Cabin==""] <- 0
validation$Cabin[!validation$Cabin==0] <- 1
validation$Cabin <- as.factor(validation$Cabin)
table(validation$Cabin)
## 
##   0   1 
## 327  91
sum(is.na(validation$Cabin))/length(validation$Cabin)#No NAs
## [1] 0
##Embarked
class(training$Embarked) # Already of a factor type, no transformation necessary
## [1] "factor"
table(training$Embarked) # NAs were considered as a factor level, transformation need
## 
##       C   Q   S 
##   2 168  77 644
training$Embarked[training$Embarked==""] <- 0
## Warning in `[<-.factor`(`*tmp*`, training$Embarked == "", value =
## structure(c(4L, : invalid factor level, NA generated
sum(is.na(training$Embarked))/length(training$Embarked) ##Very few NAs
## [1] 0.002244669
class(validation$Embarked) # Already of a factor type, no transformation necessary
## [1] "factor"
table(validation$Embarked)
## 
##   C   Q   S 
## 102  46 270
sum(is.na(validation$Embarked))/length(validation$Embarked) ##No NAs
## [1] 0

Data Quality, Sanity & Exploratory Data Analysis (pt2)

Here, duplicated records are checked for

##Let's check for duplicate records by counting how many are there, if any.
sum(duplicated(training)==TRUE)##Ohh, significant number of duplicate records
## [1] 107

The amount of duplicate records is 107, which is significant. The duplicate records must be removed from the training dataset.

training_unique <- unique(training)
rm(training)##The initial training set is no longer needed.

Based on the summary results we see that missing values exist. Most NAs are found at the Age variable. Two strategies are checked. The first will be to impute missing values in Age variable with the variable mean value, and then perform omition of rows containing NAs. The second will be to delete all rows with missing values.

##Imputing Age
training_Age <- training_unique
training_Age$Age[is.na(training_unique$Age)] <- mean(training_unique$Age,na.rm=TRUE)
training_Age <- na.omit(training_Age)
validation_Age <- validation
validation_Age$Age[is.na(validation_Age$Age)] <- mean(validation_Age$Age,na.rm=TRUE)
validation_Age <- na.omit(validation_Age)


training_na <- na.omit(training_unique)
validation_na <- na.omit(validation)

All following checks will be held on training_Age. Final checks will include training_na

Correlations

#Numeric attributes
cor(training_Age[,c(4,5,6,7)]) # Some correlation, but no action will be employed
##               Age      SibSp      Parch       Fare
## Age    1.00000000 -0.2799495 -0.1873354 0.08639407
## SibSp -0.27994952  1.0000000  0.3810158 0.13650684
## Parch -0.18733541  0.3810158  1.0000000 0.19329489
## Fare   0.08639407  0.1365068  0.1932949 1.00000000
#Factor attributes, nothing interesting

Modeling approaches

5-fold Cross Validation on accuracy, averaged over 5 repetitions will be the strategy to select the best possible model.

##Let's define a trainControl setting, that will remain the same for all applied models thereon

fitControl <- trainControl(## 10-fold CV
                           method = "repeatedcv",
                           number = 5,
                           #classProbs = TRUE,
                           ## repeated ten times
                           repeats = 5)

Let’s set the formula including all variables

##Set the formula
formula <- Survived~Pclass+Sex+Age+SibSp+Parch+Fare+Cabin+Embarked

The criterion is a models Accuracy = (TF+TP)/(TF+FF+FP+TP) ,which we opt to maximize. Under this criterion we shall compare a number of classifiers using the excellent “caret” package.

Generalized Linear model (Binomial family)

set.seed(1000)
logisticReg <- train(formula,
                     data = training_Age,
                     method = "glm",
                     #metric = "ROC",
                     trControl = fitControl)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
logisticReg
## Generalized Linear Model 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.7813753  0.5437916  0.03270276   0.06892272
## 
## 
##Accuracy 0.7813753 Accuracy (Stand.Dev 0.03270276) 

Bayesian Logistic Regression trees

set.seed(1000)
BayesianLogReg <- train(formula,
                     data = training_Age,
                     method = "bayesglm",
                     trControl = fitControl)
## Loading required package: arm
## Loading required package: MASS
## Loading required package: Matrix
## Loading required package: lme4
## 
## arm (Version 1.8-6, built: 2015-7-7)
## 
## Working directory is D:/Data_Science_Projects/Kaggle/Titanic
## 
## 
## Attaching package: 'arm'
## 
## The following object is masked from 'package:boot':
## 
##     logit
BayesianLogReg
## Bayesian Generalized Linear Model 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.7821429  0.5453747  0.03264758   0.06862032
## 
## 
##Accuracy 0.7821429 (Stand.Dev 0.03264758)  

Classification and regression trees CART

set.seed(1000)
##tuning for complexity parameter (cp)
rpartTune1 <- train(training_Age[,c(2,3,4,5,6,7,8,9)], training_Age$Survived,
                   method = "rpart",
                   tuneLength = 10,
                   trControl = fitControl)
plot(rpartTune1)

rpartTune1
## CART 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results across tuning parameters:
## 
##   cp          Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.00000000  0.7713981  0.5195163  0.03267479   0.06791937
##   0.04811353  0.7634656  0.5013339  0.02769522   0.06197579
##   0.09622707  0.7673117  0.5120282  0.03082519   0.06651355
##   0.14434060  0.7673117  0.5120282  0.03082519   0.06651355
##   0.19245414  0.7673117  0.5120282  0.03082519   0.06651355
##   0.24056767  0.7673117  0.5120282  0.03082519   0.06651355
##   0.28868120  0.7673117  0.5120282  0.03082519   0.06651355
##   0.33679474  0.7673117  0.5120282  0.03082519   0.06651355
##   0.38490827  0.7673117  0.5120282  0.03082519   0.06651355
##   0.43302181  0.6697641  0.2403141  0.07970959   0.23704117
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was cp = 0.
##Accuracy 0.7769606 (Stand.Dev. 0.02825927)

##tuning for maximum node depth (maxdepth)
rpartTune2 <- train(training_Age[,c(2,3,4,5,6,7,8,9)], training_Age$Survived,
                   method = "rpart2",
                   tuneLength = 10,
                   trControl = fitControl)
## note: only 8 possible values of the max tree depth from the initial fit.
##  Truncating the grid to 8 .
plot(rpartTune2)

rpartTune2
## CART 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 626, 625, 626, 625, 626, ... 
## Resampling results across tuning parameters:
## 
##   maxdepth  Accuracy   Kappa      Accuracy SD  Kappa SD  
##    1        0.7672775  0.5118670  0.02998430   0.06530389
##    3        0.7770015  0.5238072  0.02521525   0.05919326
##    4        0.7749600  0.5158499  0.02649617   0.05981048
##    7        0.7767353  0.5233229  0.02513619   0.05227189
##   12        0.7757064  0.5220013  0.02583147   0.05357595
##   16        0.7757064  0.5220013  0.02583147   0.05357595
##   20        0.7757064  0.5220013  0.02583147   0.05357595
##   21        0.7757064  0.5220013  0.02583147   0.05357595
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was maxdepth = 3.
##Accuracy 0.7759268 (Stand.Dev. 0.02634301)

Random Forest

set.seed(1000)

rfGrid = expand.grid(.mtry = c(1,2,3,4,5))

randomForestFit = train(x = training_Age[,c(2,3,4,5,6,7,8,9)], 
                        y = training_Age$Survived, 
                        method = "rf", 
                        trControl = fitControl, 
                        tuneGrid = rfGrid,
                        ntree=30)
plot(randomForestFit)

randomForestFit
## Random Forest 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa      Accuracy SD  Kappa SD  
##   1     0.7762926  0.5168517  0.03526116   0.07769250
##   2     0.7931474  0.5612414  0.03202731   0.06974171
##   3     0.7967534  0.5713995  0.03508362   0.07558851
##   4     0.7885857  0.5560803  0.03391657   0.07259389
##   5     0.7793679  0.5377080  0.03684067   0.07889677
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was mtry = 3.
varImp(randomForestFit)
## rf variable importance
## 
##           Overall
## Sex      100.0000
## Age       77.5436
## Fare      76.6489
## Pclass    23.5638
## Cabin      5.0015
## SibSp      3.1171
## Parch      0.4259
## Embarked   0.0000
##Accuracy  0.7967534 (Stand.Dev. 0.03508362)

GBM

gbmGrid <-  expand.grid(interaction.depth = c(1, 2, 3),
                        n.trees = (1:10)*5,
                        shrinkage = (1:3)*0.1,
                        n.minobsinnode = (1:3)*10)

gbmFit <- train(formula, data = training_Age,
                 method = "gbm",
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE,
                 tuneGrid = gbmGrid)
## Loading required package: gbm
## Loading required package: survival
## 
## Attaching package: 'survival'
## 
## The following object is masked from 'package:boot':
## 
##     aml
## 
## The following object is masked from 'package:caret':
## 
##     cluster
## 
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.1
gbmFit
## Stochastic Gradient Boosting 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 626, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  n.trees  Accuracy 
##   0.1        1                  10               5       0.7659847
##   0.1        1                  10              10       0.7672586
##   0.1        1                  10              15       0.7672586
##   0.1        1                  10              20       0.7664894
##   0.1        1                  10              25       0.7675150
##   0.1        1                  10              30       0.7695582
##   0.1        1                  10              35       0.7675232
##   0.1        1                  10              40       0.7739139
##   0.1        1                  10              45       0.7759521
##   0.1        1                  10              50       0.7797966
##   0.1        1                  20               5       0.7652139
##   0.1        1                  20              10       0.7662395
##   0.1        1                  20              15       0.7659847
##   0.1        1                  20              20       0.7659847
##   0.1        1                  20              25       0.7664976
##   0.1        1                  20              30       0.7687987
##   0.1        1                  20              35       0.7690503
##   0.1        1                  20              40       0.7675151
##   0.1        1                  20              45       0.7693034
##   0.1        1                  20              50       0.7744267
##   0.1        1                  30               5       0.7659766
##   0.1        1                  30              10       0.7670022
##   0.1        1                  30              15       0.7672586
##   0.1        1                  30              20       0.7672586
##   0.1        1                  30              25       0.7652139
##   0.1        1                  30              30       0.7664878
##   0.1        1                  30              35       0.7685391
##   0.1        1                  30              40       0.7698227
##   0.1        1                  30              45       0.7718675
##   0.1        1                  30              50       0.7741752
##   0.1        2                  10               5       0.7762152
##   0.1        2                  10              10       0.7652106
##   0.1        2                  10              15       0.7723771
##   0.1        2                  10              20       0.7813221
##   0.1        2                  10              25       0.7882337
##   0.1        2                  10              30       0.7913172
##   0.1        2                  10              35       0.7936167
##   0.1        2                  10              40       0.8002687
##   0.1        2                  10              45       0.8000058
##   0.1        2                  10              50       0.8000009
##   0.1        2                  20               5       0.7762152
##   0.1        2                  20              10       0.7682762
##   0.1        2                  20              15       0.7636739
##   0.1        2                  20              20       0.7644349
##   0.1        2                  20              25       0.7741508
##   0.1        2                  20              30       0.7782599
##   0.1        2                  20              35       0.7815867
##   0.1        2                  20              40       0.7841362
##   0.1        2                  20              45       0.7900238
##   0.1        2                  20              50       0.7923250
##   0.1        2                  30               5       0.7762152
##   0.1        2                  30              10       0.7700630
##   0.1        2                  30              15       0.7667572
##   0.1        2                  30              20       0.7667491
##   0.1        2                  30              25       0.7733962
##   0.1        2                  30              30       0.7787645
##   0.1        2                  30              35       0.7795354
##   0.1        2                  30              40       0.7800433
##   0.1        2                  30              45       0.7823493
##   0.1        2                  30              50       0.7849200
##   0.1        3                  10               5       0.7769828
##   0.1        3                  10              10       0.7779971
##   0.1        3                  10              15       0.7833784
##   0.1        3                  10              20       0.7897804
##   0.1        3                  10              25       0.7977079
##   0.1        3                  10              30       0.7977080
##   0.1        3                  10              35       0.8010396
##   0.1        3                  10              40       0.8018072
##   0.1        3                  10              45       0.8015459
##   0.1        3                  10              50       0.8041051
##   0.1        3                  20               5       0.7762152
##   0.1        3                  20              10       0.7736478
##   0.1        3                  20              15       0.7792953
##   0.1        3                  20              20       0.7820913
##   0.1        3                  20              25       0.7882419
##   0.1        3                  20              30       0.7879823
##   0.1        3                  20              35       0.7949004
##   0.1        3                  20              40       0.7933604
##   0.1        3                  20              45       0.7933604
##   0.1        3                  20              50       0.7956485
##   0.1        3                  30               5       0.7762152
##   0.1        3                  30              10       0.7744203
##   0.1        3                  30              15       0.7739204
##   0.1        3                  30              20       0.7813253
##   0.1        3                  30              25       0.7797787
##   0.1        3                  30              30       0.7800368
##   0.1        3                  30              35       0.7869534
##   0.1        3                  30              40       0.7856729
##   0.1        3                  30              45       0.7851634
##   0.1        3                  30              50       0.7838846
##   0.2        1                  10               5       0.7621419
##   0.2        1                  10              10       0.7670071
##   0.2        1                  10              15       0.7698146
##   0.2        1                  10              20       0.7716144
##   0.2        1                  10              25       0.7826302
##   0.2        1                  10              30       0.7856957
##   0.2        1                  10              35       0.7874743
##   0.2        1                  10              40       0.7902997
##   0.2        1                  10              45       0.7884999
##   0.2        1                  10              50       0.7890209
##   0.2        1                  20               5       0.7680230
##   0.2        1                  20              10       0.7659766
##   0.2        1                  20              15       0.7646978
##   0.2        1                  20              20       0.7716078
##   0.2        1                  20              25       0.7723852
##   0.2        1                  20              30       0.7764845
##   0.2        1                  20              35       0.7808337
##   0.2        1                  20              40       0.7867067
##   0.2        1                  20              45       0.7861939
##   0.2        1                  20              50       0.7867100
##   0.2        1                  30               5       0.7649575
##   0.2        1                  30              10       0.7664959
##   0.2        1                  30              15       0.7682810
##   0.2        1                  30              20       0.7708435
##   0.2        1                  30              25       0.7762102
##   0.2        1                  30              30       0.7754459
##   0.2        1                  30              35       0.7759604
##   0.2        1                  30              40       0.7756990
##   0.2        1                  30              45       0.7792953
##   0.2        1                  30              50       0.7772473
##   0.2        2                  10               5       0.7695728
##   0.2        2                  10              10       0.7803192
##   0.2        2                  10              15       0.7946213
##   0.2        2                  10              20       0.8007620
##   0.2        2                  10              25       0.8012944
##   0.2        2                  10              30       0.8005220
##   0.2        2                  10              35       0.7977128
##   0.2        2                  10              40       0.8002607
##   0.2        2                  10              45       0.7984707
##   0.2        2                  10              50       0.8005072
##   0.2        2                  20               5       0.7687841
##   0.2        2                  20              10       0.7716160
##   0.2        2                  20              15       0.7823673
##   0.2        2                  20              20       0.7882419
##   0.2        2                  20              25       0.7920799
##   0.2        2                  20              30       0.7920815
##   0.2        2                  20              35       0.7951520
##   0.2        2                  20              40       0.7969322
##   0.2        2                  20              45       0.7948874
##   0.2        2                  20              50       0.7954002
##   0.2        2                  30               5       0.7692970
##   0.2        2                  30              10       0.7721191
##   0.2        2                  30              15       0.7698114
##   0.2        2                  30              20       0.7782533
##   0.2        2                  30              25       0.7833847
##   0.2        2                  30              30       0.7841361
##   0.2        2                  30              35       0.7818350
##   0.2        2                  30              40       0.7836184
##   0.2        2                  30              45       0.7892496
##   0.2        2                  30              50       0.7925862
##   0.2        3                  10               5       0.7754541
##   0.2        3                  10              10       0.7887596
##   0.2        3                  10              15       0.7961809
##   0.2        3                  10              20       0.7948939
##   0.2        3                  10              25       0.7989933
##   0.2        3                  10              30       0.8020473
##   0.2        3                  10              35       0.8002720
##   0.2        3                  10              40       0.8020523
##   0.2        3                  10              45       0.8025618
##   0.2        3                  10              50       0.8038439
##   0.2        3                  20               5       0.7690600
##   0.2        3                  20              10       0.7831252
##   0.2        3                  20              15       0.7869453
##   0.2        3                  20              20       0.7933474
##   0.2        3                  20              25       0.7915509
##   0.2        3                  20              30       0.7943730
##   0.2        3                  20              35       0.7920686
##   0.2        3                  20              40       0.7959033
##   0.2        3                  20              45       0.7935989
##   0.2        3                  20              50       0.7974402
##   0.2        3                  30               5       0.7705774
##   0.2        3                  30              10       0.7736641
##   0.2        3                  30              15       0.7805578
##   0.2        3                  30              20       0.7856713
##   0.2        3                  30              25       0.7912862
##   0.2        3                  30              30       0.7900123
##   0.2        3                  30              35       0.7902574
##   0.2        3                  30              40       0.7941035
##   0.2        3                  30              45       0.7961564
##   0.2        3                  30              50       0.7969240
##   0.3        1                  10               5       0.7675150
##   0.3        1                  10              10       0.7700677
##   0.3        1                  10              15       0.7736542
##   0.3        1                  10              20       0.7744202
##   0.3        1                  10              25       0.7823591
##   0.3        1                  10              30       0.7823689
##   0.3        1                  10              35       0.7844137
##   0.3        1                  10              40       0.7897917
##   0.3        1                  10              45       0.7810852
##   0.3        1                  10              50       0.7818610
##   0.3        1                  20               5       0.7657365
##   0.3        1                  20              10       0.7669989
##   0.3        1                  20              15       0.7736591
##   0.3        1                  20              20       0.7757104
##   0.3        1                  20              25       0.7780213
##   0.3        1                  20              30       0.7823771
##   0.3        1                  20              35       0.7831349
##   0.3        1                  20              40       0.7849281
##   0.3        1                  20              45       0.7877405
##   0.3        1                  20              50       0.7913221
##   0.3        1                  30               5       0.7667491
##   0.3        1                  30              10       0.7693116
##   0.3        1                  30              15       0.7736656
##   0.3        1                  30              20       0.7728948
##   0.3        1                  30              25       0.7754524
##   0.3        1                  30              30       0.7821060
##   0.3        1                  30              35       0.7813286
##   0.3        1                  30              40       0.7805562
##   0.3        1                  30              45       0.7795370
##   0.3        1                  30              50       0.7785195
##   0.3        2                  10               5       0.7736429
##   0.3        2                  10              10       0.7895142
##   0.3        2                  10              15       0.7971756
##   0.3        2                  10              20       0.8030714
##   0.3        2                  10              25       0.8012814
##   0.3        2                  10              30       0.8015329
##   0.3        2                  10              35       0.7966676
##   0.3        2                  10              40       0.7987124
##   0.3        2                  10              45       0.8007507
##   0.3        2                  10              50       0.7994800
##   0.3        2                  20               5       0.7667540
##   0.3        2                  20              10       0.7805692
##   0.3        2                  20              15       0.7892659
##   0.3        2                  20              20       0.7930925
##   0.3        2                  20              25       0.7994768
##   0.3        2                  20              30       0.7966660
##   0.3        2                  20              35       0.7958854
##   0.3        2                  20              40       0.7941116
##   0.3        2                  20              45       0.7984462
##   0.3        2                  20              50       0.7969176
##   0.3        2                  30               5       0.7639287
##   0.3        2                  30              10       0.7693068
##   0.3        2                  30              15       0.7802998
##   0.3        2                  30              20       0.7805643
##   0.3        2                  30              25       0.7846360
##   0.3        2                  30              30       0.7846375
##   0.3        2                  30              35       0.7856779
##   0.3        2                  30              40       0.7941149
##   0.3        2                  30              45       0.7918170
##   0.3        2                  30              50       0.7933506
##   0.3        3                  10               5       0.7803144
##   0.3        3                  10              10       0.7956632
##   0.3        3                  10              15       0.8023054
##   0.3        3                  10              20       0.8015426
##   0.3        3                  10              25       0.8015443
##   0.3        3                  10              30       0.8028149
##   0.3        3                  10              35       0.8025699
##   0.3        3                  10              40       0.7999993
##   0.3        3                  10              45       0.7943925
##   0.3        3                  10              50       0.7997657
##   0.3        3                  20               5       0.7774907
##   0.3        3                  20              10       0.7925781
##   0.3        3                  20              15       0.7918154
##   0.3        3                  20              20       0.7977112
##   0.3        3                  20              25       0.8000075
##   0.3        3                  20              30       0.8017942
##   0.3        3                  20              35       0.7974548
##   0.3        3                  20              40       0.7969354
##   0.3        3                  20              45       0.8043323
##   0.3        3                  20              50       0.8061287
##   0.3        3                  30               5       0.7734125
##   0.3        3                  30              10       0.7821126
##   0.3        3                  30              15       0.7915574
##   0.3        3                  30              20       0.7846490
##   0.3        3                  30              25       0.7897723
##   0.3        3                  30              30       0.7895191
##   0.3        3                  30              35       0.7923250
##   0.3        3                  30              40       0.7948988
##   0.3        3                  30              45       0.7931023
##   0.3        3                  30              50       0.7943795
##   Kappa      Accuracy SD  Kappa SD  
##   0.5068990  0.02989148   0.06320075
##   0.5116754  0.03049068   0.06346941
##   0.5122267  0.03049068   0.06344830
##   0.5099611  0.02948566   0.06079232
##   0.5128053  0.03036620   0.06321439
##   0.5167000  0.03125230   0.06447723
##   0.5121230  0.03134333   0.06508044
##   0.5264767  0.02909830   0.05868774
##   0.5316101  0.03017819   0.06184828
##   0.5402722  0.02910022   0.05994546
##   0.5039342  0.02776113   0.05596537
##   0.5087632  0.02990394   0.06239219
##   0.5090396  0.02989148   0.06230063
##   0.5090396  0.02989148   0.06230063
##   0.5101743  0.03039883   0.06358601
##   0.5156691  0.03260019   0.06835429
##   0.5155470  0.02893755   0.05940530
##   0.5129674  0.02814021   0.05789075
##   0.5164180  0.02620867   0.05247451
##   0.5278479  0.02636268   0.05332780
##   0.5078179  0.03023477   0.06384033
##   0.5109710  0.02999089   0.06112310
##   0.5122267  0.03049068   0.06344830
##   0.5122267  0.03049068   0.06344830
##   0.5070237  0.02924455   0.05991361
##   0.5104608  0.03079029   0.06334470
##   0.5138546  0.03046889   0.06339141
##   0.5183164  0.02969520   0.06182831
##   0.5221668  0.03191171   0.06711851
##   0.5277807  0.03098311   0.06419363
##   0.5003228  0.01943130   0.04543021
##   0.4876053  0.02805329   0.05555898
##   0.5083940  0.03128839   0.06185535
##   0.5291644  0.03282362   0.06747275
##   0.5447690  0.03282961   0.06938786
##   0.5524133  0.02483552   0.05327124
##   0.5580691  0.02424531   0.05201645
##   0.5729243  0.02191954   0.04712153
##   0.5731354  0.02195673   0.04752952
##   0.5747671  0.02251967   0.04722950
##   0.5003228  0.01943130   0.04543021
##   0.4909829  0.02522061   0.05143022
##   0.4885601  0.02326584   0.04555953
##   0.4939438  0.03013584   0.06018546
##   0.5142870  0.02734693   0.05734199
##   0.5240661  0.02964560   0.06225099
##   0.5313803  0.03038308   0.06422843
##   0.5393379  0.02891215   0.06225570
##   0.5533187  0.02424764   0.05181633
##   0.5588020  0.02938789   0.06293289
##   0.5003228  0.01943130   0.04543021
##   0.4935595  0.02555045   0.05146750
##   0.4946169  0.03018342   0.06177469
##   0.4966534  0.02983784   0.06149704
##   0.5116707  0.02858429   0.05836913
##   0.5234695  0.02768109   0.05730050
##   0.5279118  0.03053069   0.06479479
##   0.5297229  0.03088374   0.06587760
##   0.5349552  0.03198181   0.06821559
##   0.5414414  0.02713213   0.05687380
##   0.5025879  0.01980548   0.04635923
##   0.5097134  0.02248619   0.05092485
##   0.5277655  0.02539061   0.05826005
##   0.5477875  0.02564416   0.05743698
##   0.5665746  0.02388304   0.05304513
##   0.5682688  0.02716449   0.06075609
##   0.5764466  0.02656016   0.05838217
##   0.5792110  0.02717506   0.05886332
##   0.5794138  0.02455545   0.05321545
##   0.5852808  0.02485300   0.05329289
##   0.5003228  0.01943130   0.04543021
##   0.4997695  0.02255565   0.05173043
##   0.5185328  0.02346828   0.05354928
##   0.5289593  0.02458976   0.05261948
##   0.5430550  0.02372909   0.05118290
##   0.5444704  0.02727598   0.05917280
##   0.5611766  0.02576930   0.05545747
##   0.5596960  0.02379788   0.05124839
##   0.5602221  0.02422032   0.05201502
##   0.5663037  0.02748152   0.05951490
##   0.5003228  0.01943130   0.04543021
##   0.4972711  0.01881778   0.04425143
##   0.5072300  0.02783253   0.05655506
##   0.5272299  0.02945697   0.06193121
##   0.5272033  0.02724902   0.05744290
##   0.5284531  0.03037383   0.06574787
##   0.5446295  0.02888876   0.06078796
##   0.5426307  0.03154473   0.06574049
##   0.5427859  0.02930526   0.06203585
##   0.5410170  0.03066654   0.06346243
##   0.4969020  0.02905763   0.06313107
##   0.5106325  0.03024207   0.06293365
##   0.5168493  0.03116431   0.06384049
##   0.5222493  0.03337429   0.06958435
##   0.5454766  0.03015808   0.06215687
##   0.5520518  0.02897665   0.05979709
##   0.5560712  0.02809719   0.05785234
##   0.5624375  0.02555621   0.05248440
##   0.5585148  0.02528132   0.05253832
##   0.5601679  0.02210160   0.04590014
##   0.5127959  0.03098242   0.06365961
##   0.5087470  0.02908016   0.06020368
##   0.5053047  0.03154475   0.06602654
##   0.5204837  0.03094083   0.06430366
##   0.5233665  0.03058057   0.06259138
##   0.5327456  0.02685929   0.05464271
##   0.5416816  0.02432870   0.04958532
##   0.5548815  0.02144464   0.04366260
##   0.5531995  0.02263922   0.04633041
##   0.5538997  0.02375048   0.04851069
##   0.5045487  0.02884121   0.05936438
##   0.5093319  0.03012906   0.06297748
##   0.5132175  0.02956596   0.06185566
##   0.5203602  0.03395988   0.07195817
##   0.5316613  0.02748804   0.05628281
##   0.5295998  0.02172159   0.04344300
##   0.5313039  0.02844610   0.05961419
##   0.5304756  0.02666457   0.05625595
##   0.5381902  0.02321282   0.04736218
##   0.5343281  0.02483476   0.05045475
##   0.4950654  0.02584843   0.05095010
##   0.5249029  0.02943062   0.05776693
##   0.5596901  0.02325698   0.04757517
##   0.5760927  0.02614172   0.05533125
##   0.5789276  0.02754474   0.05934038
##   0.5776058  0.02813928   0.06052737
##   0.5731894  0.02487932   0.05158207
##   0.5783795  0.02812301   0.06029140
##   0.5745024  0.02609011   0.05635277
##   0.5789149  0.02455203   0.05181259
##   0.4921559  0.02713570   0.05104730
##   0.5054420  0.03044131   0.06086967
##   0.5317215  0.03013853   0.06154400
##   0.5471720  0.03156888   0.06771020
##   0.5587298  0.02930018   0.06162407
##   0.5586091  0.03139512   0.06613766
##   0.5664189  0.03054368   0.06530382
##   0.5714003  0.02600282   0.05390575
##   0.5661670  0.02418800   0.05110142
##   0.5689763  0.02760907   0.05800245
##   0.4970240  0.02383458   0.04804574
##   0.5065992  0.02652028   0.05409472
##   0.5056798  0.02643911   0.05383536
##   0.5262018  0.02581677   0.05358491
##   0.5393275  0.02626151   0.05419982
##   0.5419764  0.02693321   0.05582672
##   0.5383184  0.02563819   0.05284795
##   0.5429392  0.02824805   0.05835249
##   0.5548746  0.02950318   0.06118314
##   0.5623431  0.02559582   0.05337077
##   0.5066489  0.02106890   0.04680100
##   0.5455886  0.02430075   0.05307135
##   0.5638722  0.02435777   0.05385935
##   0.5635308  0.02491793   0.05411678
##   0.5748122  0.02782335   0.05975369
##   0.5825965  0.02557957   0.05436915
##   0.5791112  0.02454043   0.05319673
##   0.5832853  0.02413513   0.05164381
##   0.5846561  0.02703984   0.05727037
##   0.5871523  0.02751466   0.05762595
##   0.4910376  0.02483772   0.05246725
##   0.5317716  0.03188216   0.06673153
##   0.5444316  0.02748041   0.05758297
##   0.5607694  0.02621358   0.05720106
##   0.5585958  0.02332011   0.05095746
##   0.5655117  0.02412584   0.05008549
##   0.5609522  0.02602048   0.05473449
##   0.5692131  0.02638864   0.05591078
##   0.5647448  0.02825116   0.05980830
##   0.5730702  0.02697304   0.05724702
##   0.4905673  0.02551313   0.05556197
##   0.5099487  0.02642500   0.05573226
##   0.5298149  0.02655870   0.05549651
##   0.5442780  0.02265255   0.04689895
##   0.5564607  0.02433550   0.05103039
##   0.5549483  0.02707553   0.05652122
##   0.5556731  0.02853002   0.05880285
##   0.5641275  0.02534519   0.05256388
##   0.5690210  0.02856476   0.05971621
##   0.5713791  0.02817817   0.05873615
##   0.5113058  0.02991173   0.06577079
##   0.5161516  0.02975794   0.06212736
##   0.5269481  0.03001907   0.06092161
##   0.5288953  0.03094444   0.06308286
##   0.5455104  0.02486484   0.05045012
##   0.5461805  0.02793851   0.05701533
##   0.5503732  0.02707467   0.05620419
##   0.5615423  0.02693005   0.05658118
##   0.5441289  0.02880323   0.05894892
##   0.5455595  0.02783118   0.05841053
##   0.5062034  0.02973347   0.06351429
##   0.5121327  0.03649630   0.07636107
##   0.5256620  0.03469460   0.06969554
##   0.5319991  0.03271957   0.06703400
##   0.5361551  0.02515516   0.05087471
##   0.5450275  0.02727182   0.05862499
##   0.5469076  0.02362591   0.04850026
##   0.5502612  0.02254087   0.04526951
##   0.5567018  0.02411068   0.04955774
##   0.5642937  0.02431196   0.04961548
##   0.5094269  0.03108580   0.06472619
##   0.5153240  0.02816689   0.05575237
##   0.5263178  0.02699728   0.05483013
##   0.5249356  0.02908962   0.05930803
##   0.5300506  0.02158561   0.04509479
##   0.5452791  0.02465576   0.04990347
##   0.5435970  0.02165604   0.04440491
##   0.5420138  0.02402749   0.04941061
##   0.5386598  0.02284500   0.04615461
##   0.5372723  0.02400847   0.04941306
##   0.5127404  0.02427860   0.05337630
##   0.5487454  0.02708556   0.05414822
##   0.5688673  0.02953122   0.06202047
##   0.5828046  0.02271731   0.04856831
##   0.5792530  0.02406788   0.05166909
##   0.5799759  0.02757551   0.05880047
##   0.5710994  0.02739864   0.05858402
##   0.5752218  0.02801623   0.05887613
##   0.5797910  0.02736330   0.05786494
##   0.5784495  0.02738766   0.05714912
##   0.4980699  0.03015008   0.06043332
##   0.5300725  0.03233429   0.06820843
##   0.5526998  0.03001324   0.06255075
##   0.5620874  0.02576839   0.05248620
##   0.5756971  0.02585228   0.05459968
##   0.5701116  0.02972990   0.06305907
##   0.5690775  0.02989518   0.06404186
##   0.5660351  0.02730382   0.05734733
##   0.5749226  0.02660593   0.05676162
##   0.5712990  0.02367713   0.05067415
##   0.4874785  0.02613835   0.05460939
##   0.5068663  0.03292139   0.07033958
##   0.5329821  0.03167851   0.06582253
##   0.5361748  0.03143679   0.06528534
##   0.5448641  0.02817413   0.05978375
##   0.5443156  0.02691208   0.05659360
##   0.5474512  0.02827260   0.05958969
##   0.5649149  0.02536301   0.05359065
##   0.5602842  0.02554563   0.05421837
##   0.5640671  0.02426604   0.05123815
##   0.5266237  0.02638660   0.05811096
##   0.5652257  0.02428825   0.05160268
##   0.5830309  0.02098591   0.04438336
##   0.5815659  0.02868528   0.05904744
##   0.5825131  0.02949765   0.06168518
##   0.5856772  0.02850845   0.05899529
##   0.5848333  0.02366155   0.04900259
##   0.5793287  0.02372010   0.04804921
##   0.5682937  0.02716170   0.05544241
##   0.5798493  0.02645018   0.05472741
##   0.5199651  0.02581712   0.05476589
##   0.5581072  0.02730160   0.05883057
##   0.5574222  0.02729231   0.05923644
##   0.5706626  0.02468845   0.05323286
##   0.5773610  0.02761652   0.05903879
##   0.5817431  0.02674297   0.05708867
##   0.5729509  0.02880149   0.06086004
##   0.5723672  0.02656655   0.05625026
##   0.5878010  0.02499278   0.05241269
##   0.5912440  0.02472564   0.05325086
##   0.5059979  0.02431065   0.05129652
##   0.5312242  0.02560560   0.05338802
##   0.5557316  0.02649882   0.05721655
##   0.5438182  0.02877293   0.06077471
##   0.5558637  0.02568464   0.05398612
##   0.5550227  0.02543186   0.05520704
##   0.5606423  0.02714567   0.05887034
##   0.5666388  0.02716689   0.05676868
##   0.5630442  0.02595302   0.05452447
##   0.5658454  0.03034492   0.06401267
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final values used for the model were n.trees = 50, interaction.depth
##  = 3, shrinkage = 0.3 and n.minobsinnode = 20.
trellis.par.set(caretTheme())
plot(gbmFit)

ggplot(gbmFit)

##Accuracy  0.8079415 (Stand.Dev. 0.02443083)

Model selection procedure.

logisticReg     #Accuracy 0.7813753 (Stand.Dev. 0.03270276) 
## Generalized Linear Model 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.7813753  0.5437916  0.03270276   0.06892272
## 
## 
BayesianLogReg  #Accuracy 0.7821429 (Stand.Dev. 0.03264758) 
## Bayesian Generalized Linear Model 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.7821429  0.5453747  0.03264758   0.06862032
## 
## 
rpartTune1      #Accuracy 0.7769606 (Stand.Dev. 0.02825927)
## CART 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results across tuning parameters:
## 
##   cp          Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.00000000  0.7713981  0.5195163  0.03267479   0.06791937
##   0.04811353  0.7634656  0.5013339  0.02769522   0.06197579
##   0.09622707  0.7673117  0.5120282  0.03082519   0.06651355
##   0.14434060  0.7673117  0.5120282  0.03082519   0.06651355
##   0.19245414  0.7673117  0.5120282  0.03082519   0.06651355
##   0.24056767  0.7673117  0.5120282  0.03082519   0.06651355
##   0.28868120  0.7673117  0.5120282  0.03082519   0.06651355
##   0.33679474  0.7673117  0.5120282  0.03082519   0.06651355
##   0.38490827  0.7673117  0.5120282  0.03082519   0.06651355
##   0.43302181  0.6697641  0.2403141  0.07970959   0.23704117
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was cp = 0.
rpartTune2      #Accuracy 0.7759268 (Stand.Dev. 0.02634301)
## CART 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 626, 625, 626, 625, 626, ... 
## Resampling results across tuning parameters:
## 
##   maxdepth  Accuracy   Kappa      Accuracy SD  Kappa SD  
##    1        0.7672775  0.5118670  0.02998430   0.06530389
##    3        0.7770015  0.5238072  0.02521525   0.05919326
##    4        0.7749600  0.5158499  0.02649617   0.05981048
##    7        0.7767353  0.5233229  0.02513619   0.05227189
##   12        0.7757064  0.5220013  0.02583147   0.05357595
##   16        0.7757064  0.5220013  0.02583147   0.05357595
##   20        0.7757064  0.5220013  0.02583147   0.05357595
##   21        0.7757064  0.5220013  0.02583147   0.05357595
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was maxdepth = 3.
randomForestFit #Accuracy 0.7967534 (Stand.Dev. 0.03508362)
## Random Forest 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 625, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa      Accuracy SD  Kappa SD  
##   1     0.7762926  0.5168517  0.03526116   0.07769250
##   2     0.7931474  0.5612414  0.03202731   0.06974171
##   3     0.7967534  0.5713995  0.03508362   0.07558851
##   4     0.7885857  0.5560803  0.03391657   0.07259389
##   5     0.7793679  0.5377080  0.03684067   0.07889677
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was mtry = 3.
gbmFit          #Accuracy 0.8079415 (Stand.Dev. 0.02443083)
## Stochastic Gradient Boosting 
## 
## 782 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 626, 624, 626, 626, 626, 626, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  n.trees  Accuracy 
##   0.1        1                  10               5       0.7659847
##   0.1        1                  10              10       0.7672586
##   0.1        1                  10              15       0.7672586
##   0.1        1                  10              20       0.7664894
##   0.1        1                  10              25       0.7675150
##   0.1        1                  10              30       0.7695582
##   0.1        1                  10              35       0.7675232
##   0.1        1                  10              40       0.7739139
##   0.1        1                  10              45       0.7759521
##   0.1        1                  10              50       0.7797966
##   0.1        1                  20               5       0.7652139
##   0.1        1                  20              10       0.7662395
##   0.1        1                  20              15       0.7659847
##   0.1        1                  20              20       0.7659847
##   0.1        1                  20              25       0.7664976
##   0.1        1                  20              30       0.7687987
##   0.1        1                  20              35       0.7690503
##   0.1        1                  20              40       0.7675151
##   0.1        1                  20              45       0.7693034
##   0.1        1                  20              50       0.7744267
##   0.1        1                  30               5       0.7659766
##   0.1        1                  30              10       0.7670022
##   0.1        1                  30              15       0.7672586
##   0.1        1                  30              20       0.7672586
##   0.1        1                  30              25       0.7652139
##   0.1        1                  30              30       0.7664878
##   0.1        1                  30              35       0.7685391
##   0.1        1                  30              40       0.7698227
##   0.1        1                  30              45       0.7718675
##   0.1        1                  30              50       0.7741752
##   0.1        2                  10               5       0.7762152
##   0.1        2                  10              10       0.7652106
##   0.1        2                  10              15       0.7723771
##   0.1        2                  10              20       0.7813221
##   0.1        2                  10              25       0.7882337
##   0.1        2                  10              30       0.7913172
##   0.1        2                  10              35       0.7936167
##   0.1        2                  10              40       0.8002687
##   0.1        2                  10              45       0.8000058
##   0.1        2                  10              50       0.8000009
##   0.1        2                  20               5       0.7762152
##   0.1        2                  20              10       0.7682762
##   0.1        2                  20              15       0.7636739
##   0.1        2                  20              20       0.7644349
##   0.1        2                  20              25       0.7741508
##   0.1        2                  20              30       0.7782599
##   0.1        2                  20              35       0.7815867
##   0.1        2                  20              40       0.7841362
##   0.1        2                  20              45       0.7900238
##   0.1        2                  20              50       0.7923250
##   0.1        2                  30               5       0.7762152
##   0.1        2                  30              10       0.7700630
##   0.1        2                  30              15       0.7667572
##   0.1        2                  30              20       0.7667491
##   0.1        2                  30              25       0.7733962
##   0.1        2                  30              30       0.7787645
##   0.1        2                  30              35       0.7795354
##   0.1        2                  30              40       0.7800433
##   0.1        2                  30              45       0.7823493
##   0.1        2                  30              50       0.7849200
##   0.1        3                  10               5       0.7769828
##   0.1        3                  10              10       0.7779971
##   0.1        3                  10              15       0.7833784
##   0.1        3                  10              20       0.7897804
##   0.1        3                  10              25       0.7977079
##   0.1        3                  10              30       0.7977080
##   0.1        3                  10              35       0.8010396
##   0.1        3                  10              40       0.8018072
##   0.1        3                  10              45       0.8015459
##   0.1        3                  10              50       0.8041051
##   0.1        3                  20               5       0.7762152
##   0.1        3                  20              10       0.7736478
##   0.1        3                  20              15       0.7792953
##   0.1        3                  20              20       0.7820913
##   0.1        3                  20              25       0.7882419
##   0.1        3                  20              30       0.7879823
##   0.1        3                  20              35       0.7949004
##   0.1        3                  20              40       0.7933604
##   0.1        3                  20              45       0.7933604
##   0.1        3                  20              50       0.7956485
##   0.1        3                  30               5       0.7762152
##   0.1        3                  30              10       0.7744203
##   0.1        3                  30              15       0.7739204
##   0.1        3                  30              20       0.7813253
##   0.1        3                  30              25       0.7797787
##   0.1        3                  30              30       0.7800368
##   0.1        3                  30              35       0.7869534
##   0.1        3                  30              40       0.7856729
##   0.1        3                  30              45       0.7851634
##   0.1        3                  30              50       0.7838846
##   0.2        1                  10               5       0.7621419
##   0.2        1                  10              10       0.7670071
##   0.2        1                  10              15       0.7698146
##   0.2        1                  10              20       0.7716144
##   0.2        1                  10              25       0.7826302
##   0.2        1                  10              30       0.7856957
##   0.2        1                  10              35       0.7874743
##   0.2        1                  10              40       0.7902997
##   0.2        1                  10              45       0.7884999
##   0.2        1                  10              50       0.7890209
##   0.2        1                  20               5       0.7680230
##   0.2        1                  20              10       0.7659766
##   0.2        1                  20              15       0.7646978
##   0.2        1                  20              20       0.7716078
##   0.2        1                  20              25       0.7723852
##   0.2        1                  20              30       0.7764845
##   0.2        1                  20              35       0.7808337
##   0.2        1                  20              40       0.7867067
##   0.2        1                  20              45       0.7861939
##   0.2        1                  20              50       0.7867100
##   0.2        1                  30               5       0.7649575
##   0.2        1                  30              10       0.7664959
##   0.2        1                  30              15       0.7682810
##   0.2        1                  30              20       0.7708435
##   0.2        1                  30              25       0.7762102
##   0.2        1                  30              30       0.7754459
##   0.2        1                  30              35       0.7759604
##   0.2        1                  30              40       0.7756990
##   0.2        1                  30              45       0.7792953
##   0.2        1                  30              50       0.7772473
##   0.2        2                  10               5       0.7695728
##   0.2        2                  10              10       0.7803192
##   0.2        2                  10              15       0.7946213
##   0.2        2                  10              20       0.8007620
##   0.2        2                  10              25       0.8012944
##   0.2        2                  10              30       0.8005220
##   0.2        2                  10              35       0.7977128
##   0.2        2                  10              40       0.8002607
##   0.2        2                  10              45       0.7984707
##   0.2        2                  10              50       0.8005072
##   0.2        2                  20               5       0.7687841
##   0.2        2                  20              10       0.7716160
##   0.2        2                  20              15       0.7823673
##   0.2        2                  20              20       0.7882419
##   0.2        2                  20              25       0.7920799
##   0.2        2                  20              30       0.7920815
##   0.2        2                  20              35       0.7951520
##   0.2        2                  20              40       0.7969322
##   0.2        2                  20              45       0.7948874
##   0.2        2                  20              50       0.7954002
##   0.2        2                  30               5       0.7692970
##   0.2        2                  30              10       0.7721191
##   0.2        2                  30              15       0.7698114
##   0.2        2                  30              20       0.7782533
##   0.2        2                  30              25       0.7833847
##   0.2        2                  30              30       0.7841361
##   0.2        2                  30              35       0.7818350
##   0.2        2                  30              40       0.7836184
##   0.2        2                  30              45       0.7892496
##   0.2        2                  30              50       0.7925862
##   0.2        3                  10               5       0.7754541
##   0.2        3                  10              10       0.7887596
##   0.2        3                  10              15       0.7961809
##   0.2        3                  10              20       0.7948939
##   0.2        3                  10              25       0.7989933
##   0.2        3                  10              30       0.8020473
##   0.2        3                  10              35       0.8002720
##   0.2        3                  10              40       0.8020523
##   0.2        3                  10              45       0.8025618
##   0.2        3                  10              50       0.8038439
##   0.2        3                  20               5       0.7690600
##   0.2        3                  20              10       0.7831252
##   0.2        3                  20              15       0.7869453
##   0.2        3                  20              20       0.7933474
##   0.2        3                  20              25       0.7915509
##   0.2        3                  20              30       0.7943730
##   0.2        3                  20              35       0.7920686
##   0.2        3                  20              40       0.7959033
##   0.2        3                  20              45       0.7935989
##   0.2        3                  20              50       0.7974402
##   0.2        3                  30               5       0.7705774
##   0.2        3                  30              10       0.7736641
##   0.2        3                  30              15       0.7805578
##   0.2        3                  30              20       0.7856713
##   0.2        3                  30              25       0.7912862
##   0.2        3                  30              30       0.7900123
##   0.2        3                  30              35       0.7902574
##   0.2        3                  30              40       0.7941035
##   0.2        3                  30              45       0.7961564
##   0.2        3                  30              50       0.7969240
##   0.3        1                  10               5       0.7675150
##   0.3        1                  10              10       0.7700677
##   0.3        1                  10              15       0.7736542
##   0.3        1                  10              20       0.7744202
##   0.3        1                  10              25       0.7823591
##   0.3        1                  10              30       0.7823689
##   0.3        1                  10              35       0.7844137
##   0.3        1                  10              40       0.7897917
##   0.3        1                  10              45       0.7810852
##   0.3        1                  10              50       0.7818610
##   0.3        1                  20               5       0.7657365
##   0.3        1                  20              10       0.7669989
##   0.3        1                  20              15       0.7736591
##   0.3        1                  20              20       0.7757104
##   0.3        1                  20              25       0.7780213
##   0.3        1                  20              30       0.7823771
##   0.3        1                  20              35       0.7831349
##   0.3        1                  20              40       0.7849281
##   0.3        1                  20              45       0.7877405
##   0.3        1                  20              50       0.7913221
##   0.3        1                  30               5       0.7667491
##   0.3        1                  30              10       0.7693116
##   0.3        1                  30              15       0.7736656
##   0.3        1                  30              20       0.7728948
##   0.3        1                  30              25       0.7754524
##   0.3        1                  30              30       0.7821060
##   0.3        1                  30              35       0.7813286
##   0.3        1                  30              40       0.7805562
##   0.3        1                  30              45       0.7795370
##   0.3        1                  30              50       0.7785195
##   0.3        2                  10               5       0.7736429
##   0.3        2                  10              10       0.7895142
##   0.3        2                  10              15       0.7971756
##   0.3        2                  10              20       0.8030714
##   0.3        2                  10              25       0.8012814
##   0.3        2                  10              30       0.8015329
##   0.3        2                  10              35       0.7966676
##   0.3        2                  10              40       0.7987124
##   0.3        2                  10              45       0.8007507
##   0.3        2                  10              50       0.7994800
##   0.3        2                  20               5       0.7667540
##   0.3        2                  20              10       0.7805692
##   0.3        2                  20              15       0.7892659
##   0.3        2                  20              20       0.7930925
##   0.3        2                  20              25       0.7994768
##   0.3        2                  20              30       0.7966660
##   0.3        2                  20              35       0.7958854
##   0.3        2                  20              40       0.7941116
##   0.3        2                  20              45       0.7984462
##   0.3        2                  20              50       0.7969176
##   0.3        2                  30               5       0.7639287
##   0.3        2                  30              10       0.7693068
##   0.3        2                  30              15       0.7802998
##   0.3        2                  30              20       0.7805643
##   0.3        2                  30              25       0.7846360
##   0.3        2                  30              30       0.7846375
##   0.3        2                  30              35       0.7856779
##   0.3        2                  30              40       0.7941149
##   0.3        2                  30              45       0.7918170
##   0.3        2                  30              50       0.7933506
##   0.3        3                  10               5       0.7803144
##   0.3        3                  10              10       0.7956632
##   0.3        3                  10              15       0.8023054
##   0.3        3                  10              20       0.8015426
##   0.3        3                  10              25       0.8015443
##   0.3        3                  10              30       0.8028149
##   0.3        3                  10              35       0.8025699
##   0.3        3                  10              40       0.7999993
##   0.3        3                  10              45       0.7943925
##   0.3        3                  10              50       0.7997657
##   0.3        3                  20               5       0.7774907
##   0.3        3                  20              10       0.7925781
##   0.3        3                  20              15       0.7918154
##   0.3        3                  20              20       0.7977112
##   0.3        3                  20              25       0.8000075
##   0.3        3                  20              30       0.8017942
##   0.3        3                  20              35       0.7974548
##   0.3        3                  20              40       0.7969354
##   0.3        3                  20              45       0.8043323
##   0.3        3                  20              50       0.8061287
##   0.3        3                  30               5       0.7734125
##   0.3        3                  30              10       0.7821126
##   0.3        3                  30              15       0.7915574
##   0.3        3                  30              20       0.7846490
##   0.3        3                  30              25       0.7897723
##   0.3        3                  30              30       0.7895191
##   0.3        3                  30              35       0.7923250
##   0.3        3                  30              40       0.7948988
##   0.3        3                  30              45       0.7931023
##   0.3        3                  30              50       0.7943795
##   Kappa      Accuracy SD  Kappa SD  
##   0.5068990  0.02989148   0.06320075
##   0.5116754  0.03049068   0.06346941
##   0.5122267  0.03049068   0.06344830
##   0.5099611  0.02948566   0.06079232
##   0.5128053  0.03036620   0.06321439
##   0.5167000  0.03125230   0.06447723
##   0.5121230  0.03134333   0.06508044
##   0.5264767  0.02909830   0.05868774
##   0.5316101  0.03017819   0.06184828
##   0.5402722  0.02910022   0.05994546
##   0.5039342  0.02776113   0.05596537
##   0.5087632  0.02990394   0.06239219
##   0.5090396  0.02989148   0.06230063
##   0.5090396  0.02989148   0.06230063
##   0.5101743  0.03039883   0.06358601
##   0.5156691  0.03260019   0.06835429
##   0.5155470  0.02893755   0.05940530
##   0.5129674  0.02814021   0.05789075
##   0.5164180  0.02620867   0.05247451
##   0.5278479  0.02636268   0.05332780
##   0.5078179  0.03023477   0.06384033
##   0.5109710  0.02999089   0.06112310
##   0.5122267  0.03049068   0.06344830
##   0.5122267  0.03049068   0.06344830
##   0.5070237  0.02924455   0.05991361
##   0.5104608  0.03079029   0.06334470
##   0.5138546  0.03046889   0.06339141
##   0.5183164  0.02969520   0.06182831
##   0.5221668  0.03191171   0.06711851
##   0.5277807  0.03098311   0.06419363
##   0.5003228  0.01943130   0.04543021
##   0.4876053  0.02805329   0.05555898
##   0.5083940  0.03128839   0.06185535
##   0.5291644  0.03282362   0.06747275
##   0.5447690  0.03282961   0.06938786
##   0.5524133  0.02483552   0.05327124
##   0.5580691  0.02424531   0.05201645
##   0.5729243  0.02191954   0.04712153
##   0.5731354  0.02195673   0.04752952
##   0.5747671  0.02251967   0.04722950
##   0.5003228  0.01943130   0.04543021
##   0.4909829  0.02522061   0.05143022
##   0.4885601  0.02326584   0.04555953
##   0.4939438  0.03013584   0.06018546
##   0.5142870  0.02734693   0.05734199
##   0.5240661  0.02964560   0.06225099
##   0.5313803  0.03038308   0.06422843
##   0.5393379  0.02891215   0.06225570
##   0.5533187  0.02424764   0.05181633
##   0.5588020  0.02938789   0.06293289
##   0.5003228  0.01943130   0.04543021
##   0.4935595  0.02555045   0.05146750
##   0.4946169  0.03018342   0.06177469
##   0.4966534  0.02983784   0.06149704
##   0.5116707  0.02858429   0.05836913
##   0.5234695  0.02768109   0.05730050
##   0.5279118  0.03053069   0.06479479
##   0.5297229  0.03088374   0.06587760
##   0.5349552  0.03198181   0.06821559
##   0.5414414  0.02713213   0.05687380
##   0.5025879  0.01980548   0.04635923
##   0.5097134  0.02248619   0.05092485
##   0.5277655  0.02539061   0.05826005
##   0.5477875  0.02564416   0.05743698
##   0.5665746  0.02388304   0.05304513
##   0.5682688  0.02716449   0.06075609
##   0.5764466  0.02656016   0.05838217
##   0.5792110  0.02717506   0.05886332
##   0.5794138  0.02455545   0.05321545
##   0.5852808  0.02485300   0.05329289
##   0.5003228  0.01943130   0.04543021
##   0.4997695  0.02255565   0.05173043
##   0.5185328  0.02346828   0.05354928
##   0.5289593  0.02458976   0.05261948
##   0.5430550  0.02372909   0.05118290
##   0.5444704  0.02727598   0.05917280
##   0.5611766  0.02576930   0.05545747
##   0.5596960  0.02379788   0.05124839
##   0.5602221  0.02422032   0.05201502
##   0.5663037  0.02748152   0.05951490
##   0.5003228  0.01943130   0.04543021
##   0.4972711  0.01881778   0.04425143
##   0.5072300  0.02783253   0.05655506
##   0.5272299  0.02945697   0.06193121
##   0.5272033  0.02724902   0.05744290
##   0.5284531  0.03037383   0.06574787
##   0.5446295  0.02888876   0.06078796
##   0.5426307  0.03154473   0.06574049
##   0.5427859  0.02930526   0.06203585
##   0.5410170  0.03066654   0.06346243
##   0.4969020  0.02905763   0.06313107
##   0.5106325  0.03024207   0.06293365
##   0.5168493  0.03116431   0.06384049
##   0.5222493  0.03337429   0.06958435
##   0.5454766  0.03015808   0.06215687
##   0.5520518  0.02897665   0.05979709
##   0.5560712  0.02809719   0.05785234
##   0.5624375  0.02555621   0.05248440
##   0.5585148  0.02528132   0.05253832
##   0.5601679  0.02210160   0.04590014
##   0.5127959  0.03098242   0.06365961
##   0.5087470  0.02908016   0.06020368
##   0.5053047  0.03154475   0.06602654
##   0.5204837  0.03094083   0.06430366
##   0.5233665  0.03058057   0.06259138
##   0.5327456  0.02685929   0.05464271
##   0.5416816  0.02432870   0.04958532
##   0.5548815  0.02144464   0.04366260
##   0.5531995  0.02263922   0.04633041
##   0.5538997  0.02375048   0.04851069
##   0.5045487  0.02884121   0.05936438
##   0.5093319  0.03012906   0.06297748
##   0.5132175  0.02956596   0.06185566
##   0.5203602  0.03395988   0.07195817
##   0.5316613  0.02748804   0.05628281
##   0.5295998  0.02172159   0.04344300
##   0.5313039  0.02844610   0.05961419
##   0.5304756  0.02666457   0.05625595
##   0.5381902  0.02321282   0.04736218
##   0.5343281  0.02483476   0.05045475
##   0.4950654  0.02584843   0.05095010
##   0.5249029  0.02943062   0.05776693
##   0.5596901  0.02325698   0.04757517
##   0.5760927  0.02614172   0.05533125
##   0.5789276  0.02754474   0.05934038
##   0.5776058  0.02813928   0.06052737
##   0.5731894  0.02487932   0.05158207
##   0.5783795  0.02812301   0.06029140
##   0.5745024  0.02609011   0.05635277
##   0.5789149  0.02455203   0.05181259
##   0.4921559  0.02713570   0.05104730
##   0.5054420  0.03044131   0.06086967
##   0.5317215  0.03013853   0.06154400
##   0.5471720  0.03156888   0.06771020
##   0.5587298  0.02930018   0.06162407
##   0.5586091  0.03139512   0.06613766
##   0.5664189  0.03054368   0.06530382
##   0.5714003  0.02600282   0.05390575
##   0.5661670  0.02418800   0.05110142
##   0.5689763  0.02760907   0.05800245
##   0.4970240  0.02383458   0.04804574
##   0.5065992  0.02652028   0.05409472
##   0.5056798  0.02643911   0.05383536
##   0.5262018  0.02581677   0.05358491
##   0.5393275  0.02626151   0.05419982
##   0.5419764  0.02693321   0.05582672
##   0.5383184  0.02563819   0.05284795
##   0.5429392  0.02824805   0.05835249
##   0.5548746  0.02950318   0.06118314
##   0.5623431  0.02559582   0.05337077
##   0.5066489  0.02106890   0.04680100
##   0.5455886  0.02430075   0.05307135
##   0.5638722  0.02435777   0.05385935
##   0.5635308  0.02491793   0.05411678
##   0.5748122  0.02782335   0.05975369
##   0.5825965  0.02557957   0.05436915
##   0.5791112  0.02454043   0.05319673
##   0.5832853  0.02413513   0.05164381
##   0.5846561  0.02703984   0.05727037
##   0.5871523  0.02751466   0.05762595
##   0.4910376  0.02483772   0.05246725
##   0.5317716  0.03188216   0.06673153
##   0.5444316  0.02748041   0.05758297
##   0.5607694  0.02621358   0.05720106
##   0.5585958  0.02332011   0.05095746
##   0.5655117  0.02412584   0.05008549
##   0.5609522  0.02602048   0.05473449
##   0.5692131  0.02638864   0.05591078
##   0.5647448  0.02825116   0.05980830
##   0.5730702  0.02697304   0.05724702
##   0.4905673  0.02551313   0.05556197
##   0.5099487  0.02642500   0.05573226
##   0.5298149  0.02655870   0.05549651
##   0.5442780  0.02265255   0.04689895
##   0.5564607  0.02433550   0.05103039
##   0.5549483  0.02707553   0.05652122
##   0.5556731  0.02853002   0.05880285
##   0.5641275  0.02534519   0.05256388
##   0.5690210  0.02856476   0.05971621
##   0.5713791  0.02817817   0.05873615
##   0.5113058  0.02991173   0.06577079
##   0.5161516  0.02975794   0.06212736
##   0.5269481  0.03001907   0.06092161
##   0.5288953  0.03094444   0.06308286
##   0.5455104  0.02486484   0.05045012
##   0.5461805  0.02793851   0.05701533
##   0.5503732  0.02707467   0.05620419
##   0.5615423  0.02693005   0.05658118
##   0.5441289  0.02880323   0.05894892
##   0.5455595  0.02783118   0.05841053
##   0.5062034  0.02973347   0.06351429
##   0.5121327  0.03649630   0.07636107
##   0.5256620  0.03469460   0.06969554
##   0.5319991  0.03271957   0.06703400
##   0.5361551  0.02515516   0.05087471
##   0.5450275  0.02727182   0.05862499
##   0.5469076  0.02362591   0.04850026
##   0.5502612  0.02254087   0.04526951
##   0.5567018  0.02411068   0.04955774
##   0.5642937  0.02431196   0.04961548
##   0.5094269  0.03108580   0.06472619
##   0.5153240  0.02816689   0.05575237
##   0.5263178  0.02699728   0.05483013
##   0.5249356  0.02908962   0.05930803
##   0.5300506  0.02158561   0.04509479
##   0.5452791  0.02465576   0.04990347
##   0.5435970  0.02165604   0.04440491
##   0.5420138  0.02402749   0.04941061
##   0.5386598  0.02284500   0.04615461
##   0.5372723  0.02400847   0.04941306
##   0.5127404  0.02427860   0.05337630
##   0.5487454  0.02708556   0.05414822
##   0.5688673  0.02953122   0.06202047
##   0.5828046  0.02271731   0.04856831
##   0.5792530  0.02406788   0.05166909
##   0.5799759  0.02757551   0.05880047
##   0.5710994  0.02739864   0.05858402
##   0.5752218  0.02801623   0.05887613
##   0.5797910  0.02736330   0.05786494
##   0.5784495  0.02738766   0.05714912
##   0.4980699  0.03015008   0.06043332
##   0.5300725  0.03233429   0.06820843
##   0.5526998  0.03001324   0.06255075
##   0.5620874  0.02576839   0.05248620
##   0.5756971  0.02585228   0.05459968
##   0.5701116  0.02972990   0.06305907
##   0.5690775  0.02989518   0.06404186
##   0.5660351  0.02730382   0.05734733
##   0.5749226  0.02660593   0.05676162
##   0.5712990  0.02367713   0.05067415
##   0.4874785  0.02613835   0.05460939
##   0.5068663  0.03292139   0.07033958
##   0.5329821  0.03167851   0.06582253
##   0.5361748  0.03143679   0.06528534
##   0.5448641  0.02817413   0.05978375
##   0.5443156  0.02691208   0.05659360
##   0.5474512  0.02827260   0.05958969
##   0.5649149  0.02536301   0.05359065
##   0.5602842  0.02554563   0.05421837
##   0.5640671  0.02426604   0.05123815
##   0.5266237  0.02638660   0.05811096
##   0.5652257  0.02428825   0.05160268
##   0.5830309  0.02098591   0.04438336
##   0.5815659  0.02868528   0.05904744
##   0.5825131  0.02949765   0.06168518
##   0.5856772  0.02850845   0.05899529
##   0.5848333  0.02366155   0.04900259
##   0.5793287  0.02372010   0.04804921
##   0.5682937  0.02716170   0.05544241
##   0.5798493  0.02645018   0.05472741
##   0.5199651  0.02581712   0.05476589
##   0.5581072  0.02730160   0.05883057
##   0.5574222  0.02729231   0.05923644
##   0.5706626  0.02468845   0.05323286
##   0.5773610  0.02761652   0.05903879
##   0.5817431  0.02674297   0.05708867
##   0.5729509  0.02880149   0.06086004
##   0.5723672  0.02656655   0.05625026
##   0.5878010  0.02499278   0.05241269
##   0.5912440  0.02472564   0.05325086
##   0.5059979  0.02431065   0.05129652
##   0.5312242  0.02560560   0.05338802
##   0.5557316  0.02649882   0.05721655
##   0.5438182  0.02877293   0.06077471
##   0.5558637  0.02568464   0.05398612
##   0.5550227  0.02543186   0.05520704
##   0.5606423  0.02714567   0.05887034
##   0.5666388  0.02716689   0.05676868
##   0.5630442  0.02595302   0.05452447
##   0.5658454  0.03034492   0.06401267
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final values used for the model were n.trees = 50, interaction.depth
##  = 3, shrinkage = 0.3 and n.minobsinnode = 20.
##gfbfit fits best

Based on the accuracy results, the best modeling approach is gbm (Tuning n.trees = 40, interaction.depth = 5, shrinkage = 0.1 and n.minobsinnode = 10).

Altered solution

Using the training_na dataset and removing Cabin variable, we refit the data to gbm modelling approach.

Modeling approaches

5-fold Cross Validation on accuracy, averaged over 5 repetitions will be the strategy to select the best possible model.

##Let's define a trainControl setting, that will remain the same for all applied models thereon

fitControl <- trainControl(## 10-fold CV
                           method = "repeatedcv",
                           number = 5,
                           #classProbs = TRUE,
                           ## repeated ten times
                           repeats = 5)

Let’s set the formula including all variables

##Set the formula
formula <- Survived~Pclass+Sex+Age+SibSp+Parch+Fare+Embarked

The criterion is a models Accuracy = (TF+TP)/(TF+FF+FP+TP) ,which we opt to maximize. Under this criterion we shall compare a number of classifiers using the excellent “caret” package.

Generalized Linear model (Binomial family)

set.seed(1000)
logisticReg <- train(formula,
                     data = training_na,
                     method = "glm",
                     #metric = "ROC",
                     trControl = fitControl)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
logisticReg
## Generalized Linear Model 
## 
## 676 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD 
##   0.7887516  0.5613619  0.03060581   0.0632509
## 
## 
##Accuracy 0.7887516 (Stand.Dev 0.03060581) 

Bayesian Logistic Regression trees

set.seed(1000)
BayesianLogReg <- train(formula,
                     data = training_na,
                     method = "bayesglm",
                     trControl = fitControl)
BayesianLogReg
## Bayesian Generalized Linear Model 
## 
## 676 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.7896339  0.5629991  0.03101783   0.06455036
## 
## 
##Accuracy 0.7896339 (Stand.Dev 0.03101783)  

Classification and regression trees CART

set.seed(1000)
##tuning for complexity parameter (cp)
rpartTune1 <- train(training_na[,c(2,3,4,5,6,7,9)], training_na$Survived,
                   method = "rpart",
                   tuneLength = 10,
                   trControl = fitControl)
plot(rpartTune1)

rpartTune1
## CART 
## 
## 676 samples
##   7 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results across tuning parameters:
## 
##   cp          Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.00000000  0.7831285  0.5484498  0.03036959   0.06272175
##   0.04964539  0.7635967  0.5025345  0.02416022   0.05098645
##   0.09929078  0.7692133  0.5186312  0.02783123   0.05781905
##   0.14893617  0.7692133  0.5186312  0.02783123   0.05781905
##   0.19858156  0.7692133  0.5186312  0.02783123   0.05781905
##   0.24822695  0.7692133  0.5186312  0.02783123   0.05781905
##   0.29787234  0.7692133  0.5186312  0.02783123   0.05781905
##   0.34751773  0.7692133  0.5186312  0.02783123   0.05781905
##   0.39716312  0.7692133  0.5186312  0.02783123   0.05781905
##   0.44680851  0.6766599  0.2684261  0.08554935   0.24454961
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was cp = 0.
##Accuracy 0.7872922  (Stand.Dev. 0.03179111)

##tuning for maximum node depth (maxdepth)
rpartTune2 <- train(training_na[,c(2,3,4,5,6,7,9)], training_na$Survived,
                   method = "rpart2",
                   tuneLength = 10,
                   trControl = fitControl)
## note: only 7 possible values of the max tree depth from the initial fit.
##  Truncating the grid to 7 .
plot(rpartTune2)

rpartTune2
## CART 
## 
## 676 samples
##   7 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 541, 540, 541, 541, 541, 540, ... 
## Resampling results across tuning parameters:
## 
##   maxdepth  Accuracy   Kappa      Accuracy SD  Kappa SD  
##    1        0.7692321  0.5183231  0.03458839   0.07405691
##    2        0.7733913  0.5182442  0.03141861   0.06554766
##    4        0.7825918  0.5401786  0.03562312   0.07510554
##    5        0.7831889  0.5416102  0.03793152   0.08119068
##    9        0.7873044  0.5509052  0.03261511   0.06941881
##   10        0.7873044  0.5509052  0.03261511   0.06941881
##   16        0.7873044  0.5509052  0.03261511   0.06941881
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was maxdepth = 9.
##Accuracy 0.7884292  (Stand.Dev. 0.03934454)

Random Forest

set.seed(1000)

rfGrid = expand.grid(.mtry = c(1,2,3,4,5))

randomForestFit = train(x = training_na[,c(2,3,4,5,6,7,9)], 
                        y = training_na$Survived, 
                        method = "rf", 
                        trControl = fitControl, 
                        tuneGrid = rfGrid,
                        ntree=30)
plot(randomForestFit)

randomForestFit
## Random Forest 
## 
## 676 samples
##   7 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa      Accuracy SD  Kappa SD  
##   1     0.7914380  0.5574521  0.03347622   0.06811380
##   2     0.8006145  0.5827785  0.03956907   0.08074349
##   3     0.8011962  0.5855667  0.03848834   0.07869026
##   4     0.7872856  0.5600704  0.02946737   0.06110196
##   5     0.7837233  0.5532518  0.03291143   0.06590668
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was mtry = 3.
varImp(randomForestFit)
## rf variable importance
## 
##          Overall
## Sex      100.000
## Age       96.147
## Fare      93.730
## Pclass    27.275
## SibSp      8.639
## Parch      2.492
## Embarked   0.000
##Accuracy  0.8011962 (Stand.Dev. 0.03848834)

GBM

gbmGrid <-  expand.grid(interaction.depth = c(1, 2, 3,4,5),
                        n.trees = (1:10)*5,
                        shrinkage = (1:3)*0.1,
                        n.minobsinnode = (1:3)*10)

gbmFit <- train(formula, data = training_na,
                 method = "gbm",
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE,
                 tuneGrid = gbmGrid)
gbmFit
## Stochastic Gradient Boosting 
## 
## 676 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 541, 541, 540, 540, 542, 540, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  n.trees  Accuracy 
##   0.1        1                  10               5       0.7692200
##   0.1        1                  10              10       0.7692200
##   0.1        1                  10              15       0.7692200
##   0.1        1                  10              20       0.7692200
##   0.1        1                  10              25       0.7695163
##   0.1        1                  10              30       0.7704052
##   0.1        1                  10              35       0.7742549
##   0.1        1                  10              40       0.7730763
##   0.1        1                  10              45       0.7771961
##   0.1        1                  10              50       0.7825339
##   0.1        1                  20               5       0.7671459
##   0.1        1                  20              10       0.7692200
##   0.1        1                  20              15       0.7692200
##   0.1        1                  20              20       0.7692200
##   0.1        1                  20              25       0.7668562
##   0.1        1                  20              30       0.7709956
##   0.1        1                  20              35       0.7712897
##   0.1        1                  20              40       0.7689325
##   0.1        1                  20              45       0.7703964
##   0.1        1                  20              50       0.7786775
##   0.1        1                  30               5       0.7671459
##   0.1        1                  30              10       0.7692200
##   0.1        1                  30              15       0.7692200
##   0.1        1                  30              20       0.7692200
##   0.1        1                  30              25       0.7695207
##   0.1        1                  30              30       0.7686318
##   0.1        1                  30              35       0.7638932
##   0.1        1                  30              40       0.7627080
##   0.1        1                  30              45       0.7653616
##   0.1        1                  30              50       0.7700827
##   0.1        2                  10               5       0.7825295
##   0.1        2                  10              10       0.7804619
##   0.1        2                  10              15       0.7834294
##   0.1        2                  10              20       0.7946757
##   0.1        2                  10              25       0.7976300
##   0.1        2                  10              30       0.7988194
##   0.1        2                  10              35       0.7991202
##   0.1        2                  10              40       0.8005864
##   0.1        2                  10              45       0.7996996
##   0.1        2                  10              50       0.8005907
##   0.1        2                  20               5       0.7825295
##   0.1        2                  20              10       0.7774924
##   0.1        2                  20              15       0.7810458
##   0.1        2                  20              20       0.7840088
##   0.1        2                  20              25       0.7840022
##   0.1        2                  20              30       0.7899195
##   0.1        2                  20              35       0.7902224
##   0.1        2                  20              40       0.7940655
##   0.1        2                  20              45       0.7976234
##   0.1        2                  20              50       0.7979153
##   0.1        2                  30               5       0.7825295
##   0.1        2                  30              10       0.7783725
##   0.1        2                  30              15       0.7715707
##   0.1        2                  30              20       0.7736645
##   0.1        2                  30              25       0.7792722
##   0.1        2                  30              30       0.7789956
##   0.1        2                  30              35       0.7795838
##   0.1        2                  30              40       0.7810588
##   0.1        2                  30              45       0.7810566
##   0.1        2                  30              50       0.7831285
##   0.1        3                  10               5       0.7831199
##   0.1        3                  10              10       0.7825185
##   0.1        3                  10              15       0.7914010
##   0.1        3                  10              20       0.8044230
##   0.1        3                  10              25       0.8035559
##   0.1        3                  10              30       0.8032486
##   0.1        3                  10              35       0.8020743
##   0.1        3                  10              40       0.8035428
##   0.1        3                  10              45       0.8008849
##   0.1        3                  10              50       0.8020810
##   0.1        3                  20               5       0.7825295
##   0.1        3                  20              10       0.7822419
##   0.1        3                  20              15       0.7819413
##   0.1        3                  20              20       0.7878607
##   0.1        3                  20              25       0.7979393
##   0.1        3                  20              30       0.8005974
##   0.1        3                  20              35       0.8011944
##   0.1        3                  20              40       0.8020920
##   0.1        3                  20              45       0.8020833
##   0.1        3                  20              50       0.8038589
##   0.1        3                  30               5       0.7825295
##   0.1        3                  30              10       0.7825295
##   0.1        3                  30              15       0.7774990
##   0.1        3                  30              20       0.7801504
##   0.1        3                  30              25       0.7810546
##   0.1        3                  30              30       0.7795731
##   0.1        3                  30              35       0.7807539
##   0.1        3                  30              40       0.7837169
##   0.1        3                  30              45       0.7852071
##   0.1        3                  30              50       0.7890372
##   0.1        4                  10               5       0.7813486
##   0.1        4                  10              10       0.7917169
##   0.1        4                  10              15       0.7985209
##   0.1        4                  10              20       0.8071422
##   0.1        4                  10              25       0.8044734
##   0.1        4                  10              30       0.8062316
##   0.1        4                  10              35       0.8065345
##   0.1        4                  10              40       0.8065212
##   0.1        4                  10              45       0.8038655
##   0.1        4                  10              50       0.8059221
##   0.1        4                  20               5       0.7825295
##   0.1        4                  20              10       0.7816428
##   0.1        4                  20              15       0.7858085
##   0.1        4                  20              20       0.7869740
##   0.1        4                  20              25       0.7970285
##   0.1        4                  20              30       0.8017868
##   0.1        4                  20              35       0.8035449
##   0.1        4                  20              40       0.8020744
##   0.1        4                  20              45       0.8079918
##   0.1        4                  20              50       0.8103557
##   0.1        4                  30               5       0.7825295
##   0.1        4                  30              10       0.7822332
##   0.1        4                  30              15       0.7816514
##   0.1        4                  30              20       0.7801612
##   0.1        4                  30              25       0.7825273
##   0.1        4                  30              30       0.7860895
##   0.1        4                  30              35       0.7869653
##   0.1        4                  30              40       0.7922943
##   0.1        4                  30              45       0.7943553
##   0.1        4                  30              50       0.7964272
##   0.1        5                  10               5       0.7875577
##   0.1        5                  10              10       0.7946581
##   0.1        5                  10              15       0.8012008
##   0.1        5                  10              20       0.8044515
##   0.1        5                  10              25       0.8059307
##   0.1        5                  10              30       0.8032662
##   0.1        5                  10              35       0.8038786
##   0.1        5                  10              40       0.8071248
##   0.1        5                  10              45       0.8092033
##   0.1        5                  10              50       0.8080049
##   0.1        5                  20               5       0.7816406
##   0.1        5                  20              10       0.7792768
##   0.1        5                  20              15       0.7848955
##   0.1        5                  20              20       0.7899151
##   0.1        5                  20              25       0.7955340
##   0.1        5                  20              30       0.7982204
##   0.1        5                  20              35       0.7988174
##   0.1        5                  20              40       0.8020636
##   0.1        5                  20              45       0.8062206
##   0.1        5                  20              50       0.8053207
##   0.1        5                  30               5       0.7825295
##   0.1        5                  30              10       0.7819369
##   0.1        5                  30              15       0.7786644
##   0.1        5                  30              20       0.7840219
##   0.1        5                  30              25       0.7857954
##   0.1        5                  30              30       0.7902137
##   0.1        5                  30              35       0.7943508
##   0.1        5                  30              40       0.7958390
##   0.1        5                  30              45       0.7958390
##   0.1        5                  30              50       0.7970308
##   0.2        1                  10               5       0.7689259
##   0.2        1                  10              10       0.7680370
##   0.2        1                  10              15       0.7724707
##   0.2        1                  10              20       0.7774990
##   0.2        1                  10              25       0.7840023
##   0.2        1                  10              30       0.7890284
##   0.2        1                  10              35       0.7928715
##   0.2        1                  10              40       0.7896188
##   0.2        1                  10              45       0.7914054
##   0.2        1                  10              50       0.7878476
##   0.2        1                  20               5       0.7692200
##   0.2        1                  20              10       0.7689237
##   0.2        1                  20              15       0.7721917
##   0.2        1                  20              20       0.7739607
##   0.2        1                  20              25       0.7798760
##   0.2        1                  20              30       0.7837147
##   0.2        1                  20              35       0.7842984
##   0.2        1                  20              40       0.7905186
##   0.2        1                  20              45       0.7917082
##   0.2        1                  20              50       0.7896364
##   0.2        1                  30               5       0.7692200
##   0.2        1                  30              10       0.7689259
##   0.2        1                  30              15       0.7674225
##   0.2        1                  30              20       0.7677363
##   0.2        1                  30              25       0.7706753
##   0.2        1                  30              30       0.7792703
##   0.2        1                  30              35       0.7825252
##   0.2        1                  30              40       0.7807560
##   0.2        1                  30              45       0.7846037
##   0.2        1                  30              50       0.7840132
##   0.2        2                  10               5       0.7748410
##   0.2        2                  10              10       0.7932160
##   0.2        2                  10              15       0.8003097
##   0.2        2                  10              20       0.8008892
##   0.2        2                  10              25       0.7994076
##   0.2        2                  10              30       0.7997258
##   0.2        2                  10              35       0.8023905
##   0.2        2                  10              40       0.8009047
##   0.2        2                  10              45       0.7997281
##   0.2        2                  10              50       0.7988458
##   0.2        2                  20               5       0.7742417
##   0.2        2                  20              10       0.7810325
##   0.2        2                  20              15       0.7946603
##   0.2        2                  20              20       0.7996799
##   0.2        2                  20              25       0.8005688
##   0.2        2                  20              30       0.7996844
##   0.2        2                  20              35       0.7988020
##   0.2        2                  20              40       0.8017803
##   0.2        2                  20              45       0.8020701
##   0.2        2                  20              50       0.8065299
##   0.2        2                  30               5       0.7760043
##   0.2        2                  30              10       0.7721699
##   0.2        2                  30              15       0.7801503
##   0.2        2                  30              20       0.7807429
##   0.2        2                  30              25       0.7816318
##   0.2        2                  30              30       0.7851919
##   0.2        2                  30              35       0.7881506
##   0.2        2                  30              40       0.7905165
##   0.2        2                  30              45       0.7934730
##   0.2        2                  30              50       0.7964360
##   0.2        3                  10               5       0.7763180
##   0.2        3                  10              10       0.7955580
##   0.2        3                  10              15       0.8017782
##   0.2        3                  10              20       0.8003165
##   0.2        3                  10              25       0.8059462
##   0.2        3                  10              30       0.8062512
##   0.2        3                  10              35       0.8097696
##   0.2        3                  10              40       0.8118678
##   0.2        3                  10              45       0.8080246
##   0.2        3                  10              50       0.8080113
##   0.2        3                  20               5       0.7795665
##   0.2        3                  20              10       0.7893313
##   0.2        3                  20              15       0.7996866
##   0.2        3                  20              20       0.7970154
##   0.2        3                  20              25       0.7990808
##   0.2        3                  20              30       0.8052988
##   0.2        3                  20              35       0.8029306
##   0.2        3                  20              40       0.8103381
##   0.2        3                  20              45       0.8068087
##   0.2        3                  20              50       0.8076801
##   0.2        3                  30               5       0.7792658
##   0.2        3                  30              10       0.7748060
##   0.2        3                  30              15       0.7828214
##   0.2        3                  30              20       0.7837169
##   0.2        3                  30              25       0.7913944
##   0.2        3                  30              30       0.7925995
##   0.2        3                  30              35       0.7996933
##   0.2        3                  30              40       0.7997019
##   0.2        3                  30              45       0.8044494
##   0.2        3                  30              50       0.8050310
##   0.2        4                  10               5       0.7908192
##   0.2        4                  10              10       0.8017716
##   0.2        4                  10              15       0.8044579
##   0.2        4                  10              20       0.8056322
##   0.2        4                  10              25       0.8106780
##   0.2        4                  10              30       0.8118502
##   0.2        4                  10              35       0.8068175
##   0.2        4                  10              40       0.8088872
##   0.2        4                  10              45       0.8103644
##   0.2        4                  10              50       0.8050376
##   0.2        4                  20               5       0.7831286
##   0.2        4                  20              10       0.7896561
##   0.2        4                  20              15       0.7943838
##   0.2        4                  20              20       0.8005908
##   0.2        4                  20              25       0.8009111
##   0.2        4                  20              30       0.8017782
##   0.2        4                  20              35       0.8059352
##   0.2        4                  20              40       0.8062075
##   0.2        4                  20              45       0.8068001
##   0.2        4                  20              50       0.8062097
##   0.2        4                  30               5       0.7822332
##   0.2        4                  30              10       0.7745448
##   0.2        4                  30              15       0.7858064
##   0.2        4                  30              20       0.7878696
##   0.2        4                  30              25       0.7952508
##   0.2        4                  30              30       0.8005646
##   0.2        4                  30              35       0.7967280
##   0.2        4                  30              40       0.7988043
##   0.2        4                  30              45       0.8044122
##   0.2        4                  30              50       0.7996844
##   0.2        5                  10               5       0.7952419
##   0.2        5                  10              10       0.7964493
##   0.2        5                  10              15       0.7976344
##   0.2        5                  10              20       0.7985101
##   0.2        5                  10              25       0.8038567
##   0.2        5                  10              30       0.8065278
##   0.2        5                  10              35       0.8071096
##   0.2        5                  10              40       0.8062161
##   0.2        5                  10              45       0.8026781
##   0.2        5                  10              50       0.7988219
##   0.2        5                  20               5       0.7789585
##   0.2        5                  20              10       0.7878563
##   0.2        5                  20              15       0.7955602
##   0.2        5                  20              20       0.8026452
##   0.2        5                  20              25       0.8091770
##   0.2        5                  20              30       0.8068021
##   0.2        5                  20              35       0.8038479
##   0.2        5                  20              40       0.8047390
##   0.2        5                  20              45       0.7997238
##   0.2        5                  20              50       0.8012032
##   0.2        5                  30               5       0.7775077
##   0.2        5                  30              10       0.7760349
##   0.2        5                  30              15       0.7863968
##   0.2        5                  30              20       0.7908106
##   0.2        5                  30              25       0.7967478
##   0.2        5                  30              30       0.8032314
##   0.2        5                  30              35       0.8017629
##   0.2        5                  30              40       0.8035385
##   0.2        5                  30              45       0.8044319
##   0.2        5                  30              50       0.8079656
##   0.3        1                  10               5       0.7695163
##   0.3        1                  10              10       0.7736666
##   0.3        1                  10              15       0.7751416
##   0.3        1                  10              20       0.7854707
##   0.3        1                  10              25       0.7908084
##   0.3        1                  10              30       0.7914011
##   0.3        1                  10              35       0.7890328
##   0.3        1                  10              40       0.7902202
##   0.3        1                  10              45       0.7896167
##   0.3        1                  10              50       0.7878432
##   0.3        1                  20               5       0.7692090
##   0.3        1                  20              10       0.7650652
##   0.3        1                  20              15       0.7727472
##   0.3        1                  20              20       0.7795644
##   0.3        1                  20              25       0.7878521
##   0.3        1                  20              30       0.7884425
##   0.3        1                  20              35       0.7869675
##   0.3        1                  20              40       0.7851831
##   0.3        1                  20              45       0.7857846
##   0.3        1                  20              50       0.7881680
##   0.3        1                  30               5       0.7692200
##   0.3        1                  30              10       0.7656535
##   0.3        1                  30              15       0.7742330
##   0.3        1                  30              20       0.7780894
##   0.3        1                  30              25       0.7795577
##   0.3        1                  30              30       0.7769018
##   0.3        1                  30              35       0.7828148
##   0.3        1                  30              40       0.7825032
##   0.3        1                  30              45       0.7845991
##   0.3        1                  30              50       0.7834074
##   0.3        2                  10               5       0.7816580
##   0.3        2                  10              10       0.7991005
##   0.3        2                  10              15       0.8044229
##   0.3        2                  10              20       0.8005843
##   0.3        2                  10              25       0.7988195
##   0.3        2                  10              30       0.7952791
##   0.3        2                  10              35       0.7973424
##   0.3        2                  10              40       0.7999914
##   0.3        2                  10              45       0.8026911
##   0.3        2                  10              50       0.8023731
##   0.3        2                  20               5       0.7780937
##   0.3        2                  20              10       0.7905384
##   0.3        2                  20              15       0.7952530
##   0.3        2                  20              20       0.7973336
##   0.3        2                  20              25       0.7976342
##   0.3        2                  20              30       0.7979306
##   0.3        2                  20              35       0.7982467
##   0.3        2                  20              40       0.8012031
##   0.3        2                  20              45       0.8050594
##   0.3        2                  20              50       0.8038654
##   0.3        2                  30               5       0.7748541
##   0.3        2                  30              10       0.7795599
##   0.3        2                  30              15       0.7828257
##   0.3        2                  30              20       0.7831309
##   0.3        2                  30              25       0.7825208
##   0.3        2                  30              30       0.7801746
##   0.3        2                  30              35       0.7884556
##   0.3        2                  30              40       0.7937956
##   0.3        2                  30              45       0.7961464
##   0.3        2                  30              50       0.7928826
##   0.3        3                  10               5       0.7849019
##   0.3        3                  10              10       0.7958740
##   0.3        3                  10              15       0.8000047
##   0.3        3                  10              20       0.7985342
##   0.3        3                  10              25       0.8020897
##   0.3        3                  10              30       0.8014949
##   0.3        3                  10              35       0.7964666
##   0.3        3                  10              40       0.7976585
##   0.3        3                  10              45       0.7967499
##   0.3        3                  10              50       0.8009069
##   0.3        3                  20               5       0.7763357
##   0.3        3                  20              10       0.7929307
##   0.3        3                  20              15       0.7967650
##   0.3        3                  20              20       0.7988327
##   0.3        3                  20              25       0.8044471
##   0.3        3                  20              30       0.8047653
##   0.3        3                  20              35       0.8053470
##   0.3        3                  20              40       0.8032905
##   0.3        3                  20              45       0.8050551
##   0.3        3                  20              50       0.8106761
##   0.3        3                  30               5       0.7807297
##   0.3        3                  30              10       0.7822068
##   0.3        3                  30              15       0.7925644
##   0.3        3                  30              20       0.7916886
##   0.3        3                  30              25       0.7991071
##   0.3        3                  30              30       0.7943685
##   0.3        3                  30              35       0.7979327
##   0.3        3                  30              40       0.8023707
##   0.3        3                  30              45       0.8014929
##   0.3        3                  30              50       0.8097673
##   0.3        4                  10               5       0.7893665
##   0.3        4                  10              10       0.7976364
##   0.3        4                  10              15       0.8014905
##   0.3        4                  10              20       0.8000308
##   0.3        4                  10              25       0.8020721
##   0.3        4                  10              30       0.8082728
##   0.3        4                  10              35       0.8017737
##   0.3        4                  10              40       0.8011746
##   0.3        4                  10              45       0.8008828
##   0.3        4                  10              50       0.7952618
##   0.3        4                  20               5       0.7766188
##   0.3        4                  20              10       0.7988065
##   0.3        4                  20              15       0.8020615
##   0.3        4                  20              20       0.8032511
##   0.3        4                  20              25       0.8059155
##   0.3        4                  20              30       0.8020899
##   0.3        4                  20              35       0.8044559
##   0.3        4                  20              40       0.8050464
##   0.3        4                  20              45       0.8023709
##   0.3        4                  20              50       0.8047238
##   0.3        4                  30               5       0.7807692
##   0.3        4                  30              10       0.7807429
##   0.3        4                  30              15       0.7908083
##   0.3        4                  30              20       0.8002791
##   0.3        4                  30              25       0.8023686
##   0.3        4                  30              30       0.7958411
##   0.3        4                  30              35       0.8058979
##   0.3        4                  30              40       0.8064971
##   0.3        4                  30              45       0.8076889
##   0.3        4                  30              50       0.8064886
##   0.3        5                  10               5       0.7949631
##   0.3        5                  10              10       0.7976430
##   0.3        5                  10              15       0.8032662
##   0.3        5                  10              20       0.8029721
##   0.3        5                  10              25       0.8029807
##   0.3        5                  10              30       0.8009067
##   0.3        5                  10              35       0.8002967
##   0.3        5                  10              40       0.8014687
##   0.3        5                  10              45       0.8047368
##   0.3        5                  10              50       0.7979131
##   0.3        5                  20               5       0.7858084
##   0.3        5                  20              10       0.8000134
##   0.3        5                  20              15       0.7987889
##   0.3        5                  20              20       0.8032772
##   0.3        5                  20              25       0.8041531
##   0.3        5                  20              30       0.8047390
##   0.3        5                  20              35       0.8011878
##   0.3        5                  20              40       0.8044580
##   0.3        5                  20              45       0.8068241
##   0.3        5                  20              50       0.8029437
##   0.3        5                  30               5       0.7813617
##   0.3        5                  30              10       0.7795929
##   0.3        5                  30              15       0.7929002
##   0.3        5                  30              20       0.7955537
##   0.3        5                  30              25       0.7976235
##   0.3        5                  30              30       0.8032576
##   0.3        5                  30              35       0.8062118
##   0.3        5                  30              40       0.8065016
##   0.3        5                  30              45       0.8005908
##   0.3        5                  30              50       0.7996977
##   Kappa      Accuracy SD  Kappa SD  
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5191203  0.03234106   0.06854046
##   0.5197694  0.03238810   0.06812746
##   0.5292037  0.03001320   0.06363436
##   0.5266549  0.03229885   0.06775505
##   0.5357588  0.03152644   0.06658660
##   0.5479427  0.03267741   0.06863636
##   0.5129120  0.03308138   0.07087347
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5125371  0.03207206   0.06827715
##   0.5217805  0.03423990   0.07265939
##   0.5227742  0.03461667   0.07339528
##   0.5187636  0.03172253   0.06657126
##   0.5219998  0.03306395   0.06978850
##   0.5388186  0.03601169   0.07497780
##   0.5129120  0.03308138   0.07087347
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5187623  0.03328308   0.07037158
##   0.5167253  0.03265732   0.06875086
##   0.5073610  0.03348434   0.07141457
##   0.5043920  0.03297063   0.07052438
##   0.5098637  0.03893390   0.08331708
##   0.5193747  0.03390441   0.07247806
##   0.5210296  0.03281182   0.07589674
##   0.5196404  0.03272431   0.07331539
##   0.5295893  0.03507608   0.07675815
##   0.5550468  0.03064376   0.06981859
##   0.5635714  0.03321750   0.07440048
##   0.5688584  0.03679681   0.08065808
##   0.5697985  0.03534985   0.07761932
##   0.5737398  0.03632389   0.07937564
##   0.5730305  0.03613155   0.07896953
##   0.5764080  0.04051097   0.08724491
##   0.5210296  0.03281182   0.07589674
##   0.5121614  0.03047265   0.07121906
##   0.5212090  0.03068615   0.07152340
##   0.5319495  0.03068007   0.06994657
##   0.5346366  0.03246633   0.07218970
##   0.5489193  0.03396812   0.07489160
##   0.5511353  0.03399065   0.07388498
##   0.5594119  0.03750440   0.08189125
##   0.5680006  0.03801944   0.08377953
##   0.5694889  0.03890836   0.08560819
##   0.5210296  0.03281182   0.07589674
##   0.5143389  0.03198798   0.07338106
##   0.5044280  0.03512856   0.07966227
##   0.5105136  0.03012137   0.06749083
##   0.5232800  0.03980970   0.08676608
##   0.5238435  0.03922048   0.08605167
##   0.5272517  0.03680009   0.08102951
##   0.5307358  0.03935275   0.08728833
##   0.5313922  0.04128408   0.09117526
##   0.5368732  0.04133045   0.09132017
##   0.5236322  0.03238332   0.07452237
##   0.5276644  0.03490517   0.07812823
##   0.5509909  0.03218069   0.07247623
##   0.5795665  0.03329984   0.07493349
##   0.5795425  0.03319484   0.07378773
##   0.5797838  0.03769627   0.08314820
##   0.5788753  0.03905971   0.08568866
##   0.5825189  0.03668385   0.08062980
##   0.5778401  0.04044120   0.08778295
##   0.5799190  0.04021630   0.08779683
##   0.5210296  0.03281182   0.07589674
##   0.5217859  0.03379657   0.07864503
##   0.5264079  0.03404875   0.07724029
##   0.5446845  0.03824793   0.08301641
##   0.5680657  0.03954969   0.08666314
##   0.5746614  0.03586512   0.07915909
##   0.5754097  0.03432135   0.07664862
##   0.5791768  0.03658954   0.08028893
##   0.5802257  0.03853887   0.08369594
##   0.5842352  0.03969796   0.08619462
##   0.5210296  0.03281182   0.07589674
##   0.5211282  0.03281182   0.07590869
##   0.5143273  0.03586893   0.08118366
##   0.5237615  0.03355769   0.07519913
##   0.5276281  0.03688102   0.08153954
##   0.5263837  0.03831999   0.08439204
##   0.5317599  0.03688078   0.08101987
##   0.5389632  0.03608005   0.07966941
##   0.5425207  0.03653517   0.08058609
##   0.5514920  0.03306540   0.07272810
##   0.5204990  0.03442250   0.07799758
##   0.5482350  0.03152948   0.07239077
##   0.5661017  0.03355598   0.07590924
##   0.5871777  0.03965501   0.08756962
##   0.5829752  0.04061988   0.08861809
##   0.5874944  0.03543665   0.07770856
##   0.5899804  0.04210912   0.09211458
##   0.5903280  0.04254705   0.09274102
##   0.5855795  0.04364052   0.09388850
##   0.5896841  0.04181467   0.09022895
##   0.5210296  0.03281182   0.07589674
##   0.5228649  0.03344102   0.07686302
##   0.5356187  0.03448879   0.07813136
##   0.5423391  0.04277478   0.09388909
##   0.5654346  0.04031012   0.08767534
##   0.5771612  0.04193320   0.09217213
##   0.5822795  0.04398321   0.09571264
##   0.5804765  0.04081500   0.08854718
##   0.5937126  0.04037305   0.08676155
##   0.5999357  0.04228673   0.09031525
##   0.5210296  0.03281182   0.07589674
##   0.5205376  0.03190186   0.07440786
##   0.5228057  0.03284034   0.07551231
##   0.5242798  0.03508364   0.07893724
##   0.5332382  0.03613066   0.08126921
##   0.5424308  0.03676733   0.08159230
##   0.5454652  0.03534139   0.07856561
##   0.5573948  0.03927584   0.08663164
##   0.5633977  0.03932614   0.08591894
##   0.5687352  0.04151075   0.09032322
##   0.5366426  0.03717174   0.08339964
##   0.5591298  0.03359876   0.07410411
##   0.5750715  0.03517323   0.07747841
##   0.5837964  0.03636965   0.07896338
##   0.5880846  0.03627035   0.07910978
##   0.5827740  0.03840365   0.08362873
##   0.5852619  0.03807153   0.08344146
##   0.5931229  0.03613146   0.07719163
##   0.5983229  0.03586319   0.07633857
##   0.5960238  0.03814359   0.08171305
##   0.5195215  0.03365416   0.07764080
##   0.5177603  0.03033465   0.07016951
##   0.5349548  0.03418802   0.07697207
##   0.5495220  0.03651616   0.08086185
##   0.5639333  0.04100075   0.09030176
##   0.5710154  0.03734297   0.08234066
##   0.5737560  0.03723285   0.08191723
##   0.5814023  0.04163711   0.09149771
##   0.5914669  0.03826183   0.08343730
##   0.5896858  0.03915350   0.08469542
##   0.5210296  0.03281182   0.07589674
##   0.5201440  0.03261634   0.07587571
##   0.5166205  0.03404089   0.07970591
##   0.5329872  0.03647345   0.08310136
##   0.5389088  0.03407723   0.07744444
##   0.5515756  0.03661211   0.08031136
##   0.5621379  0.04050150   0.08820487
##   0.5662897  0.03834789   0.08338702
##   0.5675135  0.04088093   0.08815303
##   0.5708063  0.04090293   0.08772237
##   0.5169710  0.03374533   0.07158638
##   0.5162331  0.03269375   0.06943390
##   0.5245889  0.03070576   0.06715717
##   0.5355876  0.03486774   0.07256399
##   0.5492955  0.03216373   0.06772441
##   0.5608190  0.03440854   0.07130463
##   0.5691649  0.03315484   0.06908724
##   0.5625317  0.03483139   0.07193866
##   0.5660156  0.03527126   0.07450274
##   0.5586791  0.03683458   0.07672224
##   0.5172302  0.03393878   0.07222091
##   0.5169430  0.03409502   0.07211000
##   0.5240244  0.03557313   0.07488809
##   0.5280154  0.03471953   0.07364855
##   0.5404931  0.03558414   0.07557249
##   0.5481914  0.03740993   0.08046742
##   0.5509045  0.03610213   0.07657604
##   0.5635013  0.03199403   0.06629718
##   0.5661979  0.03208350   0.06716770
##   0.5619031  0.02674801   0.05608425
##   0.5183773  0.03393878   0.07226845
##   0.5169710  0.03374533   0.07158638
##   0.5125321  0.03600090   0.07978609
##   0.5147364  0.03493376   0.07436015
##   0.5207422  0.03795410   0.07978023
##   0.5389725  0.03502212   0.07350799
##   0.5466634  0.03728317   0.07734130
##   0.5424862  0.03634710   0.07594400
##   0.5499888  0.03600662   0.07591392
##   0.5487772  0.03527150   0.07420066
##   0.5151364  0.03460563   0.07336020
##   0.5538143  0.03712949   0.08119513
##   0.5724385  0.03689205   0.08133921
##   0.5773178  0.03612364   0.07962547
##   0.5740210  0.03918786   0.08629756
##   0.5759474  0.03987098   0.08617559
##   0.5822817  0.03960086   0.08590261
##   0.5804765  0.03985016   0.08644292
##   0.5782216  0.04412113   0.09537168
##   0.5765517  0.04134973   0.08918746
##   0.5098323  0.03443781   0.07665337
##   0.5288048  0.03996181   0.08776722
##   0.5594083  0.03570276   0.07947883
##   0.5724996  0.03780955   0.08337814
##   0.5752432  0.03558608   0.07731139
##   0.5751618  0.03482490   0.07598149
##   0.5731883  0.03248281   0.07174552
##   0.5807215  0.03461498   0.07485997
##   0.5818974  0.03608299   0.07755620
##   0.5916328  0.03971055   0.08536831
##   0.5120512  0.03311360   0.07302380
##   0.5114586  0.03571320   0.07688703
##   0.5284180  0.03577555   0.07747355
##   0.5319119  0.03714831   0.08035902
##   0.5360551  0.03769851   0.08012579
##   0.5449478  0.03594037   0.07748335
##   0.5513411  0.03999050   0.08638223
##   0.5563151  0.03910416   0.08460597
##   0.5624419  0.04117473   0.08954341
##   0.5694958  0.03881296   0.08388195
##   0.5177990  0.03421471   0.07375515
##   0.5640656  0.03798410   0.08092939
##   0.5798566  0.03466880   0.07506243
##   0.5782000  0.04111478   0.08872517
##   0.5901665  0.04483206   0.09609667
##   0.5916416  0.03778544   0.08048460
##   0.5993856  0.03511544   0.07528379
##   0.6043174  0.03860621   0.08277416
##   0.5961063  0.04054591   0.08697952
##   0.5963522  0.03387993   0.07235589
##   0.5176038  0.03325828   0.07688195
##   0.5465009  0.03936737   0.08729711
##   0.5715992  0.04143881   0.09038113
##   0.5687730  0.03515260   0.07676421
##   0.5754229  0.03956888   0.08532286
##   0.5890040  0.03771307   0.08116247
##   0.5846145  0.03944418   0.08384134
##   0.6002162  0.04087528   0.08719130
##   0.5934902  0.04227046   0.09028416
##   0.5948964  0.04315231   0.09226684
##   0.5152369  0.03341526   0.07674052
##   0.5134326  0.03320953   0.07510068
##   0.5335568  0.02926585   0.06764545
##   0.5382668  0.03257208   0.07217027
##   0.5566589  0.03333004   0.07278096
##   0.5602561  0.03725714   0.08064917
##   0.5761592  0.03810637   0.08299231
##   0.5772956  0.04030138   0.08668568
##   0.5876205  0.03888818   0.08439298
##   0.5890094  0.03961574   0.08577761
##   0.5509863  0.03992643   0.08878486
##   0.5780249  0.03826006   0.08197373
##   0.5858111  0.03967289   0.08394771
##   0.5901439  0.03660329   0.07725096
##   0.6021863  0.03712531   0.07782299
##   0.6036144  0.03781755   0.08098577
##   0.5937869  0.03519088   0.07487157
##   0.5982164  0.04154017   0.08860018
##   0.6019594  0.04097429   0.08774003
##   0.5911334  0.03944279   0.08385222
##   0.5254849  0.03347740   0.07709293
##   0.5468191  0.03478796   0.07894762
##   0.5635063  0.03358091   0.07253656
##   0.5781834  0.03480269   0.07536725
##   0.5802188  0.03902883   0.08371333
##   0.5824465  0.03997173   0.08605627
##   0.5911436  0.03767634   0.08094850
##   0.5918902  0.03724839   0.07964735
##   0.5937591  0.03639199   0.07726405
##   0.5931066  0.03680520   0.07810488
##   0.5220965  0.03391652   0.07865779
##   0.5144430  0.03136557   0.07135533
##   0.5430473  0.03650011   0.08003451
##   0.5497814  0.03965942   0.08609346
##   0.5663920  0.04107202   0.08783240
##   0.5794407  0.03665504   0.07848265
##   0.5716394  0.03972462   0.08530502
##   0.5758561  0.03762483   0.08120198
##   0.5883612  0.03199938   0.06844049
##   0.5784763  0.03602444   0.07732959
##   0.5576538  0.03473094   0.08018002
##   0.5679164  0.03516879   0.07750935
##   0.5721984  0.04283439   0.09362600
##   0.5764187  0.04339775   0.09237538
##   0.5866252  0.04216237   0.09185605
##   0.5931450  0.04302776   0.09235933
##   0.5954580  0.03768359   0.08123017
##   0.5939111  0.03249291   0.07100813
##   0.5866180  0.03705052   0.07874142
##   0.5792904  0.03433515   0.07412373
##   0.5193730  0.03584080   0.08152691
##   0.5450906  0.04064278   0.08958551
##   0.5672573  0.03953345   0.08561184
##   0.5823305  0.03916616   0.08467624
##   0.5976332  0.03794928   0.08048823
##   0.5934562  0.03748358   0.07956714
##   0.5879086  0.03700696   0.07830587
##   0.5895409  0.03621346   0.07695299
##   0.5791640  0.03237916   0.06950094
##   0.5826546  0.03544921   0.07528752
##   0.5126078  0.03327680   0.07654340
##   0.5188632  0.03681436   0.08227781
##   0.5447337  0.04201053   0.09206103
##   0.5553937  0.03926278   0.08654355
##   0.5701376  0.04494570   0.09631607
##   0.5844844  0.04114056   0.08873242
##   0.5819877  0.04512505   0.09740622
##   0.5857281  0.04002385   0.08673185
##   0.5879042  0.04219032   0.09091708
##   0.5955157  0.03835778   0.08319063
##   0.5173230  0.03510666   0.07406089
##   0.5263093  0.03661521   0.07845586
##   0.5302914  0.03918775   0.08245652
##   0.5533769  0.04193622   0.08725709
##   0.5637770  0.04206413   0.08659977
##   0.5652285  0.04068528   0.08564903
##   0.5611792  0.04267703   0.08903293
##   0.5624020  0.04427843   0.09367776
##   0.5616826  0.04202142   0.09026935
##   0.5578672  0.03872668   0.08099412
##   0.5163474  0.03874189   0.08142296
##   0.5083774  0.03806797   0.07969086
##   0.5250499  0.03440642   0.07345228
##   0.5411946  0.03322540   0.06947629
##   0.5582229  0.03128788   0.06635300
##   0.5590008  0.03705383   0.07747178
##   0.5561777  0.03354009   0.06951671
##   0.5528666  0.03321974   0.06868763
##   0.5527689  0.03429193   0.07161825
##   0.5588035  0.03654684   0.07654890
##   0.5183773  0.03393878   0.07226845
##   0.5066314  0.03303584   0.07170006
##   0.5280664  0.04124586   0.08485467
##   0.5362309  0.03694530   0.07928800
##   0.5393689  0.03855971   0.08176881
##   0.5327965  0.03929538   0.08327213
##   0.5458970  0.03722415   0.07779203
##   0.5461336  0.03982100   0.08489335
##   0.5497313  0.03813788   0.08033136
##   0.5468864  0.03766296   0.07937718
##   0.5325504  0.04017198   0.08873467
##   0.5698391  0.03441056   0.07765143
##   0.5841508  0.03645767   0.07969209
##   0.5783758  0.03929615   0.08568416
##   0.5753212  0.03704756   0.08080705
##   0.5687679  0.04008192   0.08537032
##   0.5733113  0.04185164   0.09130995
##   0.5791768  0.03558646   0.07655883
##   0.5857847  0.03439634   0.07326127
##   0.5854023  0.03541230   0.07490209
##   0.5197226  0.03122924   0.07071840
##   0.5506291  0.03480891   0.07801667
##   0.5654541  0.03719945   0.08181575
##   0.5706060  0.03744835   0.08234192
##   0.5714652  0.04449873   0.09559615
##   0.5728319  0.04073704   0.08825683
##   0.5740299  0.04263504   0.09236888
##   0.5810442  0.03913269   0.08428265
##   0.5896073  0.03992316   0.08592560
##   0.5873714  0.04108527   0.08779392
##   0.5137135  0.03146380   0.07129480
##   0.5277143  0.03833634   0.08308231
##   0.5365923  0.03917834   0.08486242
##   0.5384600  0.04131852   0.08942134
##   0.5384556  0.03503511   0.07625280
##   0.5347983  0.04224760   0.09165276
##   0.5520973  0.04081726   0.08841518
##   0.5643723  0.03757131   0.08082400
##   0.5697999  0.04217028   0.09021698
##   0.5637296  0.04227767   0.09004172
##   0.5375323  0.03410659   0.07570885
##   0.5667587  0.04158580   0.08918644
##   0.5782773  0.03389681   0.07285345
##   0.5757450  0.03953227   0.08546941
##   0.5841031  0.03632392   0.07881900
##   0.5831806  0.03550018   0.07566367
##   0.5731353  0.03546272   0.07551706
##   0.5765515  0.03365441   0.07061175
##   0.5748990  0.03368857   0.07063089
##   0.5836300  0.03780360   0.07907016
##   0.5176877  0.03303860   0.07474052
##   0.5594043  0.03374972   0.07443424
##   0.5700692  0.04089944   0.08831211
##   0.5751357  0.03777140   0.08125848
##   0.5872933  0.03807141   0.08222702
##   0.5889305  0.04001726   0.08603474
##   0.5903879  0.03964014   0.08422658
##   0.5868624  0.04026519   0.08596284
##   0.5900932  0.04228541   0.09058700
##   0.6014563  0.04352503   0.09410263
##   0.5238863  0.03568051   0.08196458
##   0.5352401  0.03989012   0.08855209
##   0.5584502  0.04350113   0.09614454
##   0.5597404  0.04374462   0.09481454
##   0.5756727  0.03775187   0.08119077
##   0.5666469  0.04125414   0.08845772
##   0.5743438  0.04110343   0.08856086
##   0.5847041  0.03663583   0.07786538
##   0.5827792  0.03563940   0.07715386
##   0.6003405  0.03701778   0.07932249
##   0.5504019  0.03053928   0.06766362
##   0.5718700  0.04151282   0.08999472
##   0.5822923  0.04045436   0.08661237
##   0.5800868  0.04193850   0.08931330
##   0.5850621  0.03625584   0.07751109
##   0.5980514  0.03152014   0.06747862
##   0.5844063  0.03626072   0.07741476
##   0.5843031  0.03365481   0.07117046
##   0.5841121  0.03763028   0.08003716
##   0.5721526  0.03905111   0.08237885
##   0.5200005  0.03691389   0.08206691
##   0.5741727  0.03541807   0.07702171
##   0.5832893  0.03726587   0.08043449
##   0.5864972  0.03627496   0.07876949
##   0.5915313  0.03397767   0.07338427
##   0.5853462  0.03308261   0.07077401
##   0.5905677  0.03408001   0.07216388
##   0.5918596  0.03413789   0.07254356
##   0.5860294  0.03682606   0.07881973
##   0.5910720  0.03555247   0.07517700
##   0.5269860  0.03579981   0.07883735
##   0.5330094  0.03061641   0.06687986
##   0.5569869  0.03024174   0.06575329
##   0.5787363  0.03433392   0.07473972
##   0.5845707  0.03280745   0.07011649
##   0.5711026  0.02985536   0.06347885
##   0.5926910  0.03196354   0.06819938
##   0.5946017  0.03117025   0.06646160
##   0.5969273  0.03327437   0.07167926
##   0.5944426  0.03764294   0.08125867
##   0.5642591  0.03509784   0.07621106
##   0.5726951  0.03874634   0.08313882
##   0.5867072  0.04308909   0.08995230
##   0.5873029  0.04068917   0.08586542
##   0.5867448  0.04116462   0.08711239
##   0.5834792  0.03637273   0.07761817
##   0.5817994  0.03480958   0.07324626
##   0.5850144  0.03450280   0.07208284
##   0.5926059  0.03896494   0.08162206
##   0.5786861  0.03940778   0.08163989
##   0.5385558  0.03535088   0.08200617
##   0.5769759  0.03544124   0.07719127
##   0.5771997  0.03541039   0.07539439
##   0.5869317  0.04212114   0.09025827
##   0.5905111  0.03548789   0.07552194
##   0.5917737  0.03609223   0.07706930
##   0.5841522  0.04008411   0.08544700
##   0.5910386  0.03791604   0.08045472
##   0.5962463  0.03756961   0.08026425
##   0.5883126  0.03541171   0.07591678
##   0.5272089  0.03199805   0.07369057
##   0.5314608  0.03926174   0.08501290
##   0.5629267  0.03993214   0.08546334
##   0.5695637  0.03926128   0.08264877
##   0.5733012  0.03699451   0.07883112
##   0.5853242  0.03761768   0.08007517
##   0.5917886  0.03665754   0.07782738
##   0.5937817  0.03653243   0.07764409
##   0.5815142  0.04189606   0.08997057
##   0.5805268  0.03831341   0.08099892
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final values used for the model were n.trees = 40, interaction.depth
##  = 3, shrinkage = 0.2 and n.minobsinnode = 10.
trellis.par.set(caretTheme())
plot(gbmFit)

ggplot(gbmFit)

##Accuracy  0.8118678 (Stand.Dev. 0.03860621)

Model selection procedure.

logisticReg     #Accuracy 0.7887516 (Stand.Dev. 0.03060581)
## Generalized Linear Model 
## 
## 676 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD 
##   0.7887516  0.5613619  0.03060581   0.0632509
## 
## 
BayesianLogReg  #Accuracy 0.7896339 (Stand.Dev. 0.03101783)  
## Bayesian Generalized Linear Model 
## 
## 676 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.7896339  0.5629991  0.03101783   0.06455036
## 
## 
rpartTune1      #Accuracy 0.7872922 (Stand.Dev. 0.03179111)
## CART 
## 
## 676 samples
##   7 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results across tuning parameters:
## 
##   cp          Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.00000000  0.7831285  0.5484498  0.03036959   0.06272175
##   0.04964539  0.7635967  0.5025345  0.02416022   0.05098645
##   0.09929078  0.7692133  0.5186312  0.02783123   0.05781905
##   0.14893617  0.7692133  0.5186312  0.02783123   0.05781905
##   0.19858156  0.7692133  0.5186312  0.02783123   0.05781905
##   0.24822695  0.7692133  0.5186312  0.02783123   0.05781905
##   0.29787234  0.7692133  0.5186312  0.02783123   0.05781905
##   0.34751773  0.7692133  0.5186312  0.02783123   0.05781905
##   0.39716312  0.7692133  0.5186312  0.02783123   0.05781905
##   0.44680851  0.6766599  0.2684261  0.08554935   0.24454961
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was cp = 0.
rpartTune2      #Accuracy 0.7884292 (Stand.Dev. 0.03934454)
## CART 
## 
## 676 samples
##   7 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 541, 540, 541, 541, 541, 540, ... 
## Resampling results across tuning parameters:
## 
##   maxdepth  Accuracy   Kappa      Accuracy SD  Kappa SD  
##    1        0.7692321  0.5183231  0.03458839   0.07405691
##    2        0.7733913  0.5182442  0.03141861   0.06554766
##    4        0.7825918  0.5401786  0.03562312   0.07510554
##    5        0.7831889  0.5416102  0.03793152   0.08119068
##    9        0.7873044  0.5509052  0.03261511   0.06941881
##   10        0.7873044  0.5509052  0.03261511   0.06941881
##   16        0.7873044  0.5509052  0.03261511   0.06941881
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was maxdepth = 9.
randomForestFit #Accuracy 0.8011962 (Stand.Dev. 0.03848834)
## Random Forest 
## 
## 676 samples
##   7 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 541, 541, 541, 541, 541, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa      Accuracy SD  Kappa SD  
##   1     0.7914380  0.5574521  0.03347622   0.06811380
##   2     0.8006145  0.5827785  0.03956907   0.08074349
##   3     0.8011962  0.5855667  0.03848834   0.07869026
##   4     0.7872856  0.5600704  0.02946737   0.06110196
##   5     0.7837233  0.5532518  0.03291143   0.06590668
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was mtry = 3.
gbmFit          #Accuracy 0.8118678 (Stand.Dev. 0.03860621)
## Stochastic Gradient Boosting 
## 
## 676 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 541, 541, 540, 540, 542, 540, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  n.trees  Accuracy 
##   0.1        1                  10               5       0.7692200
##   0.1        1                  10              10       0.7692200
##   0.1        1                  10              15       0.7692200
##   0.1        1                  10              20       0.7692200
##   0.1        1                  10              25       0.7695163
##   0.1        1                  10              30       0.7704052
##   0.1        1                  10              35       0.7742549
##   0.1        1                  10              40       0.7730763
##   0.1        1                  10              45       0.7771961
##   0.1        1                  10              50       0.7825339
##   0.1        1                  20               5       0.7671459
##   0.1        1                  20              10       0.7692200
##   0.1        1                  20              15       0.7692200
##   0.1        1                  20              20       0.7692200
##   0.1        1                  20              25       0.7668562
##   0.1        1                  20              30       0.7709956
##   0.1        1                  20              35       0.7712897
##   0.1        1                  20              40       0.7689325
##   0.1        1                  20              45       0.7703964
##   0.1        1                  20              50       0.7786775
##   0.1        1                  30               5       0.7671459
##   0.1        1                  30              10       0.7692200
##   0.1        1                  30              15       0.7692200
##   0.1        1                  30              20       0.7692200
##   0.1        1                  30              25       0.7695207
##   0.1        1                  30              30       0.7686318
##   0.1        1                  30              35       0.7638932
##   0.1        1                  30              40       0.7627080
##   0.1        1                  30              45       0.7653616
##   0.1        1                  30              50       0.7700827
##   0.1        2                  10               5       0.7825295
##   0.1        2                  10              10       0.7804619
##   0.1        2                  10              15       0.7834294
##   0.1        2                  10              20       0.7946757
##   0.1        2                  10              25       0.7976300
##   0.1        2                  10              30       0.7988194
##   0.1        2                  10              35       0.7991202
##   0.1        2                  10              40       0.8005864
##   0.1        2                  10              45       0.7996996
##   0.1        2                  10              50       0.8005907
##   0.1        2                  20               5       0.7825295
##   0.1        2                  20              10       0.7774924
##   0.1        2                  20              15       0.7810458
##   0.1        2                  20              20       0.7840088
##   0.1        2                  20              25       0.7840022
##   0.1        2                  20              30       0.7899195
##   0.1        2                  20              35       0.7902224
##   0.1        2                  20              40       0.7940655
##   0.1        2                  20              45       0.7976234
##   0.1        2                  20              50       0.7979153
##   0.1        2                  30               5       0.7825295
##   0.1        2                  30              10       0.7783725
##   0.1        2                  30              15       0.7715707
##   0.1        2                  30              20       0.7736645
##   0.1        2                  30              25       0.7792722
##   0.1        2                  30              30       0.7789956
##   0.1        2                  30              35       0.7795838
##   0.1        2                  30              40       0.7810588
##   0.1        2                  30              45       0.7810566
##   0.1        2                  30              50       0.7831285
##   0.1        3                  10               5       0.7831199
##   0.1        3                  10              10       0.7825185
##   0.1        3                  10              15       0.7914010
##   0.1        3                  10              20       0.8044230
##   0.1        3                  10              25       0.8035559
##   0.1        3                  10              30       0.8032486
##   0.1        3                  10              35       0.8020743
##   0.1        3                  10              40       0.8035428
##   0.1        3                  10              45       0.8008849
##   0.1        3                  10              50       0.8020810
##   0.1        3                  20               5       0.7825295
##   0.1        3                  20              10       0.7822419
##   0.1        3                  20              15       0.7819413
##   0.1        3                  20              20       0.7878607
##   0.1        3                  20              25       0.7979393
##   0.1        3                  20              30       0.8005974
##   0.1        3                  20              35       0.8011944
##   0.1        3                  20              40       0.8020920
##   0.1        3                  20              45       0.8020833
##   0.1        3                  20              50       0.8038589
##   0.1        3                  30               5       0.7825295
##   0.1        3                  30              10       0.7825295
##   0.1        3                  30              15       0.7774990
##   0.1        3                  30              20       0.7801504
##   0.1        3                  30              25       0.7810546
##   0.1        3                  30              30       0.7795731
##   0.1        3                  30              35       0.7807539
##   0.1        3                  30              40       0.7837169
##   0.1        3                  30              45       0.7852071
##   0.1        3                  30              50       0.7890372
##   0.1        4                  10               5       0.7813486
##   0.1        4                  10              10       0.7917169
##   0.1        4                  10              15       0.7985209
##   0.1        4                  10              20       0.8071422
##   0.1        4                  10              25       0.8044734
##   0.1        4                  10              30       0.8062316
##   0.1        4                  10              35       0.8065345
##   0.1        4                  10              40       0.8065212
##   0.1        4                  10              45       0.8038655
##   0.1        4                  10              50       0.8059221
##   0.1        4                  20               5       0.7825295
##   0.1        4                  20              10       0.7816428
##   0.1        4                  20              15       0.7858085
##   0.1        4                  20              20       0.7869740
##   0.1        4                  20              25       0.7970285
##   0.1        4                  20              30       0.8017868
##   0.1        4                  20              35       0.8035449
##   0.1        4                  20              40       0.8020744
##   0.1        4                  20              45       0.8079918
##   0.1        4                  20              50       0.8103557
##   0.1        4                  30               5       0.7825295
##   0.1        4                  30              10       0.7822332
##   0.1        4                  30              15       0.7816514
##   0.1        4                  30              20       0.7801612
##   0.1        4                  30              25       0.7825273
##   0.1        4                  30              30       0.7860895
##   0.1        4                  30              35       0.7869653
##   0.1        4                  30              40       0.7922943
##   0.1        4                  30              45       0.7943553
##   0.1        4                  30              50       0.7964272
##   0.1        5                  10               5       0.7875577
##   0.1        5                  10              10       0.7946581
##   0.1        5                  10              15       0.8012008
##   0.1        5                  10              20       0.8044515
##   0.1        5                  10              25       0.8059307
##   0.1        5                  10              30       0.8032662
##   0.1        5                  10              35       0.8038786
##   0.1        5                  10              40       0.8071248
##   0.1        5                  10              45       0.8092033
##   0.1        5                  10              50       0.8080049
##   0.1        5                  20               5       0.7816406
##   0.1        5                  20              10       0.7792768
##   0.1        5                  20              15       0.7848955
##   0.1        5                  20              20       0.7899151
##   0.1        5                  20              25       0.7955340
##   0.1        5                  20              30       0.7982204
##   0.1        5                  20              35       0.7988174
##   0.1        5                  20              40       0.8020636
##   0.1        5                  20              45       0.8062206
##   0.1        5                  20              50       0.8053207
##   0.1        5                  30               5       0.7825295
##   0.1        5                  30              10       0.7819369
##   0.1        5                  30              15       0.7786644
##   0.1        5                  30              20       0.7840219
##   0.1        5                  30              25       0.7857954
##   0.1        5                  30              30       0.7902137
##   0.1        5                  30              35       0.7943508
##   0.1        5                  30              40       0.7958390
##   0.1        5                  30              45       0.7958390
##   0.1        5                  30              50       0.7970308
##   0.2        1                  10               5       0.7689259
##   0.2        1                  10              10       0.7680370
##   0.2        1                  10              15       0.7724707
##   0.2        1                  10              20       0.7774990
##   0.2        1                  10              25       0.7840023
##   0.2        1                  10              30       0.7890284
##   0.2        1                  10              35       0.7928715
##   0.2        1                  10              40       0.7896188
##   0.2        1                  10              45       0.7914054
##   0.2        1                  10              50       0.7878476
##   0.2        1                  20               5       0.7692200
##   0.2        1                  20              10       0.7689237
##   0.2        1                  20              15       0.7721917
##   0.2        1                  20              20       0.7739607
##   0.2        1                  20              25       0.7798760
##   0.2        1                  20              30       0.7837147
##   0.2        1                  20              35       0.7842984
##   0.2        1                  20              40       0.7905186
##   0.2        1                  20              45       0.7917082
##   0.2        1                  20              50       0.7896364
##   0.2        1                  30               5       0.7692200
##   0.2        1                  30              10       0.7689259
##   0.2        1                  30              15       0.7674225
##   0.2        1                  30              20       0.7677363
##   0.2        1                  30              25       0.7706753
##   0.2        1                  30              30       0.7792703
##   0.2        1                  30              35       0.7825252
##   0.2        1                  30              40       0.7807560
##   0.2        1                  30              45       0.7846037
##   0.2        1                  30              50       0.7840132
##   0.2        2                  10               5       0.7748410
##   0.2        2                  10              10       0.7932160
##   0.2        2                  10              15       0.8003097
##   0.2        2                  10              20       0.8008892
##   0.2        2                  10              25       0.7994076
##   0.2        2                  10              30       0.7997258
##   0.2        2                  10              35       0.8023905
##   0.2        2                  10              40       0.8009047
##   0.2        2                  10              45       0.7997281
##   0.2        2                  10              50       0.7988458
##   0.2        2                  20               5       0.7742417
##   0.2        2                  20              10       0.7810325
##   0.2        2                  20              15       0.7946603
##   0.2        2                  20              20       0.7996799
##   0.2        2                  20              25       0.8005688
##   0.2        2                  20              30       0.7996844
##   0.2        2                  20              35       0.7988020
##   0.2        2                  20              40       0.8017803
##   0.2        2                  20              45       0.8020701
##   0.2        2                  20              50       0.8065299
##   0.2        2                  30               5       0.7760043
##   0.2        2                  30              10       0.7721699
##   0.2        2                  30              15       0.7801503
##   0.2        2                  30              20       0.7807429
##   0.2        2                  30              25       0.7816318
##   0.2        2                  30              30       0.7851919
##   0.2        2                  30              35       0.7881506
##   0.2        2                  30              40       0.7905165
##   0.2        2                  30              45       0.7934730
##   0.2        2                  30              50       0.7964360
##   0.2        3                  10               5       0.7763180
##   0.2        3                  10              10       0.7955580
##   0.2        3                  10              15       0.8017782
##   0.2        3                  10              20       0.8003165
##   0.2        3                  10              25       0.8059462
##   0.2        3                  10              30       0.8062512
##   0.2        3                  10              35       0.8097696
##   0.2        3                  10              40       0.8118678
##   0.2        3                  10              45       0.8080246
##   0.2        3                  10              50       0.8080113
##   0.2        3                  20               5       0.7795665
##   0.2        3                  20              10       0.7893313
##   0.2        3                  20              15       0.7996866
##   0.2        3                  20              20       0.7970154
##   0.2        3                  20              25       0.7990808
##   0.2        3                  20              30       0.8052988
##   0.2        3                  20              35       0.8029306
##   0.2        3                  20              40       0.8103381
##   0.2        3                  20              45       0.8068087
##   0.2        3                  20              50       0.8076801
##   0.2        3                  30               5       0.7792658
##   0.2        3                  30              10       0.7748060
##   0.2        3                  30              15       0.7828214
##   0.2        3                  30              20       0.7837169
##   0.2        3                  30              25       0.7913944
##   0.2        3                  30              30       0.7925995
##   0.2        3                  30              35       0.7996933
##   0.2        3                  30              40       0.7997019
##   0.2        3                  30              45       0.8044494
##   0.2        3                  30              50       0.8050310
##   0.2        4                  10               5       0.7908192
##   0.2        4                  10              10       0.8017716
##   0.2        4                  10              15       0.8044579
##   0.2        4                  10              20       0.8056322
##   0.2        4                  10              25       0.8106780
##   0.2        4                  10              30       0.8118502
##   0.2        4                  10              35       0.8068175
##   0.2        4                  10              40       0.8088872
##   0.2        4                  10              45       0.8103644
##   0.2        4                  10              50       0.8050376
##   0.2        4                  20               5       0.7831286
##   0.2        4                  20              10       0.7896561
##   0.2        4                  20              15       0.7943838
##   0.2        4                  20              20       0.8005908
##   0.2        4                  20              25       0.8009111
##   0.2        4                  20              30       0.8017782
##   0.2        4                  20              35       0.8059352
##   0.2        4                  20              40       0.8062075
##   0.2        4                  20              45       0.8068001
##   0.2        4                  20              50       0.8062097
##   0.2        4                  30               5       0.7822332
##   0.2        4                  30              10       0.7745448
##   0.2        4                  30              15       0.7858064
##   0.2        4                  30              20       0.7878696
##   0.2        4                  30              25       0.7952508
##   0.2        4                  30              30       0.8005646
##   0.2        4                  30              35       0.7967280
##   0.2        4                  30              40       0.7988043
##   0.2        4                  30              45       0.8044122
##   0.2        4                  30              50       0.7996844
##   0.2        5                  10               5       0.7952419
##   0.2        5                  10              10       0.7964493
##   0.2        5                  10              15       0.7976344
##   0.2        5                  10              20       0.7985101
##   0.2        5                  10              25       0.8038567
##   0.2        5                  10              30       0.8065278
##   0.2        5                  10              35       0.8071096
##   0.2        5                  10              40       0.8062161
##   0.2        5                  10              45       0.8026781
##   0.2        5                  10              50       0.7988219
##   0.2        5                  20               5       0.7789585
##   0.2        5                  20              10       0.7878563
##   0.2        5                  20              15       0.7955602
##   0.2        5                  20              20       0.8026452
##   0.2        5                  20              25       0.8091770
##   0.2        5                  20              30       0.8068021
##   0.2        5                  20              35       0.8038479
##   0.2        5                  20              40       0.8047390
##   0.2        5                  20              45       0.7997238
##   0.2        5                  20              50       0.8012032
##   0.2        5                  30               5       0.7775077
##   0.2        5                  30              10       0.7760349
##   0.2        5                  30              15       0.7863968
##   0.2        5                  30              20       0.7908106
##   0.2        5                  30              25       0.7967478
##   0.2        5                  30              30       0.8032314
##   0.2        5                  30              35       0.8017629
##   0.2        5                  30              40       0.8035385
##   0.2        5                  30              45       0.8044319
##   0.2        5                  30              50       0.8079656
##   0.3        1                  10               5       0.7695163
##   0.3        1                  10              10       0.7736666
##   0.3        1                  10              15       0.7751416
##   0.3        1                  10              20       0.7854707
##   0.3        1                  10              25       0.7908084
##   0.3        1                  10              30       0.7914011
##   0.3        1                  10              35       0.7890328
##   0.3        1                  10              40       0.7902202
##   0.3        1                  10              45       0.7896167
##   0.3        1                  10              50       0.7878432
##   0.3        1                  20               5       0.7692090
##   0.3        1                  20              10       0.7650652
##   0.3        1                  20              15       0.7727472
##   0.3        1                  20              20       0.7795644
##   0.3        1                  20              25       0.7878521
##   0.3        1                  20              30       0.7884425
##   0.3        1                  20              35       0.7869675
##   0.3        1                  20              40       0.7851831
##   0.3        1                  20              45       0.7857846
##   0.3        1                  20              50       0.7881680
##   0.3        1                  30               5       0.7692200
##   0.3        1                  30              10       0.7656535
##   0.3        1                  30              15       0.7742330
##   0.3        1                  30              20       0.7780894
##   0.3        1                  30              25       0.7795577
##   0.3        1                  30              30       0.7769018
##   0.3        1                  30              35       0.7828148
##   0.3        1                  30              40       0.7825032
##   0.3        1                  30              45       0.7845991
##   0.3        1                  30              50       0.7834074
##   0.3        2                  10               5       0.7816580
##   0.3        2                  10              10       0.7991005
##   0.3        2                  10              15       0.8044229
##   0.3        2                  10              20       0.8005843
##   0.3        2                  10              25       0.7988195
##   0.3        2                  10              30       0.7952791
##   0.3        2                  10              35       0.7973424
##   0.3        2                  10              40       0.7999914
##   0.3        2                  10              45       0.8026911
##   0.3        2                  10              50       0.8023731
##   0.3        2                  20               5       0.7780937
##   0.3        2                  20              10       0.7905384
##   0.3        2                  20              15       0.7952530
##   0.3        2                  20              20       0.7973336
##   0.3        2                  20              25       0.7976342
##   0.3        2                  20              30       0.7979306
##   0.3        2                  20              35       0.7982467
##   0.3        2                  20              40       0.8012031
##   0.3        2                  20              45       0.8050594
##   0.3        2                  20              50       0.8038654
##   0.3        2                  30               5       0.7748541
##   0.3        2                  30              10       0.7795599
##   0.3        2                  30              15       0.7828257
##   0.3        2                  30              20       0.7831309
##   0.3        2                  30              25       0.7825208
##   0.3        2                  30              30       0.7801746
##   0.3        2                  30              35       0.7884556
##   0.3        2                  30              40       0.7937956
##   0.3        2                  30              45       0.7961464
##   0.3        2                  30              50       0.7928826
##   0.3        3                  10               5       0.7849019
##   0.3        3                  10              10       0.7958740
##   0.3        3                  10              15       0.8000047
##   0.3        3                  10              20       0.7985342
##   0.3        3                  10              25       0.8020897
##   0.3        3                  10              30       0.8014949
##   0.3        3                  10              35       0.7964666
##   0.3        3                  10              40       0.7976585
##   0.3        3                  10              45       0.7967499
##   0.3        3                  10              50       0.8009069
##   0.3        3                  20               5       0.7763357
##   0.3        3                  20              10       0.7929307
##   0.3        3                  20              15       0.7967650
##   0.3        3                  20              20       0.7988327
##   0.3        3                  20              25       0.8044471
##   0.3        3                  20              30       0.8047653
##   0.3        3                  20              35       0.8053470
##   0.3        3                  20              40       0.8032905
##   0.3        3                  20              45       0.8050551
##   0.3        3                  20              50       0.8106761
##   0.3        3                  30               5       0.7807297
##   0.3        3                  30              10       0.7822068
##   0.3        3                  30              15       0.7925644
##   0.3        3                  30              20       0.7916886
##   0.3        3                  30              25       0.7991071
##   0.3        3                  30              30       0.7943685
##   0.3        3                  30              35       0.7979327
##   0.3        3                  30              40       0.8023707
##   0.3        3                  30              45       0.8014929
##   0.3        3                  30              50       0.8097673
##   0.3        4                  10               5       0.7893665
##   0.3        4                  10              10       0.7976364
##   0.3        4                  10              15       0.8014905
##   0.3        4                  10              20       0.8000308
##   0.3        4                  10              25       0.8020721
##   0.3        4                  10              30       0.8082728
##   0.3        4                  10              35       0.8017737
##   0.3        4                  10              40       0.8011746
##   0.3        4                  10              45       0.8008828
##   0.3        4                  10              50       0.7952618
##   0.3        4                  20               5       0.7766188
##   0.3        4                  20              10       0.7988065
##   0.3        4                  20              15       0.8020615
##   0.3        4                  20              20       0.8032511
##   0.3        4                  20              25       0.8059155
##   0.3        4                  20              30       0.8020899
##   0.3        4                  20              35       0.8044559
##   0.3        4                  20              40       0.8050464
##   0.3        4                  20              45       0.8023709
##   0.3        4                  20              50       0.8047238
##   0.3        4                  30               5       0.7807692
##   0.3        4                  30              10       0.7807429
##   0.3        4                  30              15       0.7908083
##   0.3        4                  30              20       0.8002791
##   0.3        4                  30              25       0.8023686
##   0.3        4                  30              30       0.7958411
##   0.3        4                  30              35       0.8058979
##   0.3        4                  30              40       0.8064971
##   0.3        4                  30              45       0.8076889
##   0.3        4                  30              50       0.8064886
##   0.3        5                  10               5       0.7949631
##   0.3        5                  10              10       0.7976430
##   0.3        5                  10              15       0.8032662
##   0.3        5                  10              20       0.8029721
##   0.3        5                  10              25       0.8029807
##   0.3        5                  10              30       0.8009067
##   0.3        5                  10              35       0.8002967
##   0.3        5                  10              40       0.8014687
##   0.3        5                  10              45       0.8047368
##   0.3        5                  10              50       0.7979131
##   0.3        5                  20               5       0.7858084
##   0.3        5                  20              10       0.8000134
##   0.3        5                  20              15       0.7987889
##   0.3        5                  20              20       0.8032772
##   0.3        5                  20              25       0.8041531
##   0.3        5                  20              30       0.8047390
##   0.3        5                  20              35       0.8011878
##   0.3        5                  20              40       0.8044580
##   0.3        5                  20              45       0.8068241
##   0.3        5                  20              50       0.8029437
##   0.3        5                  30               5       0.7813617
##   0.3        5                  30              10       0.7795929
##   0.3        5                  30              15       0.7929002
##   0.3        5                  30              20       0.7955537
##   0.3        5                  30              25       0.7976235
##   0.3        5                  30              30       0.8032576
##   0.3        5                  30              35       0.8062118
##   0.3        5                  30              40       0.8065016
##   0.3        5                  30              45       0.8005908
##   0.3        5                  30              50       0.7996977
##   Kappa      Accuracy SD  Kappa SD  
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5191203  0.03234106   0.06854046
##   0.5197694  0.03238810   0.06812746
##   0.5292037  0.03001320   0.06363436
##   0.5266549  0.03229885   0.06775505
##   0.5357588  0.03152644   0.06658660
##   0.5479427  0.03267741   0.06863636
##   0.5129120  0.03308138   0.07087347
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5125371  0.03207206   0.06827715
##   0.5217805  0.03423990   0.07265939
##   0.5227742  0.03461667   0.07339528
##   0.5187636  0.03172253   0.06657126
##   0.5219998  0.03306395   0.06978850
##   0.5388186  0.03601169   0.07497780
##   0.5129120  0.03308138   0.07087347
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5183773  0.03393878   0.07226845
##   0.5187623  0.03328308   0.07037158
##   0.5167253  0.03265732   0.06875086
##   0.5073610  0.03348434   0.07141457
##   0.5043920  0.03297063   0.07052438
##   0.5098637  0.03893390   0.08331708
##   0.5193747  0.03390441   0.07247806
##   0.5210296  0.03281182   0.07589674
##   0.5196404  0.03272431   0.07331539
##   0.5295893  0.03507608   0.07675815
##   0.5550468  0.03064376   0.06981859
##   0.5635714  0.03321750   0.07440048
##   0.5688584  0.03679681   0.08065808
##   0.5697985  0.03534985   0.07761932
##   0.5737398  0.03632389   0.07937564
##   0.5730305  0.03613155   0.07896953
##   0.5764080  0.04051097   0.08724491
##   0.5210296  0.03281182   0.07589674
##   0.5121614  0.03047265   0.07121906
##   0.5212090  0.03068615   0.07152340
##   0.5319495  0.03068007   0.06994657
##   0.5346366  0.03246633   0.07218970
##   0.5489193  0.03396812   0.07489160
##   0.5511353  0.03399065   0.07388498
##   0.5594119  0.03750440   0.08189125
##   0.5680006  0.03801944   0.08377953
##   0.5694889  0.03890836   0.08560819
##   0.5210296  0.03281182   0.07589674
##   0.5143389  0.03198798   0.07338106
##   0.5044280  0.03512856   0.07966227
##   0.5105136  0.03012137   0.06749083
##   0.5232800  0.03980970   0.08676608
##   0.5238435  0.03922048   0.08605167
##   0.5272517  0.03680009   0.08102951
##   0.5307358  0.03935275   0.08728833
##   0.5313922  0.04128408   0.09117526
##   0.5368732  0.04133045   0.09132017
##   0.5236322  0.03238332   0.07452237
##   0.5276644  0.03490517   0.07812823
##   0.5509909  0.03218069   0.07247623
##   0.5795665  0.03329984   0.07493349
##   0.5795425  0.03319484   0.07378773
##   0.5797838  0.03769627   0.08314820
##   0.5788753  0.03905971   0.08568866
##   0.5825189  0.03668385   0.08062980
##   0.5778401  0.04044120   0.08778295
##   0.5799190  0.04021630   0.08779683
##   0.5210296  0.03281182   0.07589674
##   0.5217859  0.03379657   0.07864503
##   0.5264079  0.03404875   0.07724029
##   0.5446845  0.03824793   0.08301641
##   0.5680657  0.03954969   0.08666314
##   0.5746614  0.03586512   0.07915909
##   0.5754097  0.03432135   0.07664862
##   0.5791768  0.03658954   0.08028893
##   0.5802257  0.03853887   0.08369594
##   0.5842352  0.03969796   0.08619462
##   0.5210296  0.03281182   0.07589674
##   0.5211282  0.03281182   0.07590869
##   0.5143273  0.03586893   0.08118366
##   0.5237615  0.03355769   0.07519913
##   0.5276281  0.03688102   0.08153954
##   0.5263837  0.03831999   0.08439204
##   0.5317599  0.03688078   0.08101987
##   0.5389632  0.03608005   0.07966941
##   0.5425207  0.03653517   0.08058609
##   0.5514920  0.03306540   0.07272810
##   0.5204990  0.03442250   0.07799758
##   0.5482350  0.03152948   0.07239077
##   0.5661017  0.03355598   0.07590924
##   0.5871777  0.03965501   0.08756962
##   0.5829752  0.04061988   0.08861809
##   0.5874944  0.03543665   0.07770856
##   0.5899804  0.04210912   0.09211458
##   0.5903280  0.04254705   0.09274102
##   0.5855795  0.04364052   0.09388850
##   0.5896841  0.04181467   0.09022895
##   0.5210296  0.03281182   0.07589674
##   0.5228649  0.03344102   0.07686302
##   0.5356187  0.03448879   0.07813136
##   0.5423391  0.04277478   0.09388909
##   0.5654346  0.04031012   0.08767534
##   0.5771612  0.04193320   0.09217213
##   0.5822795  0.04398321   0.09571264
##   0.5804765  0.04081500   0.08854718
##   0.5937126  0.04037305   0.08676155
##   0.5999357  0.04228673   0.09031525
##   0.5210296  0.03281182   0.07589674
##   0.5205376  0.03190186   0.07440786
##   0.5228057  0.03284034   0.07551231
##   0.5242798  0.03508364   0.07893724
##   0.5332382  0.03613066   0.08126921
##   0.5424308  0.03676733   0.08159230
##   0.5454652  0.03534139   0.07856561
##   0.5573948  0.03927584   0.08663164
##   0.5633977  0.03932614   0.08591894
##   0.5687352  0.04151075   0.09032322
##   0.5366426  0.03717174   0.08339964
##   0.5591298  0.03359876   0.07410411
##   0.5750715  0.03517323   0.07747841
##   0.5837964  0.03636965   0.07896338
##   0.5880846  0.03627035   0.07910978
##   0.5827740  0.03840365   0.08362873
##   0.5852619  0.03807153   0.08344146
##   0.5931229  0.03613146   0.07719163
##   0.5983229  0.03586319   0.07633857
##   0.5960238  0.03814359   0.08171305
##   0.5195215  0.03365416   0.07764080
##   0.5177603  0.03033465   0.07016951
##   0.5349548  0.03418802   0.07697207
##   0.5495220  0.03651616   0.08086185
##   0.5639333  0.04100075   0.09030176
##   0.5710154  0.03734297   0.08234066
##   0.5737560  0.03723285   0.08191723
##   0.5814023  0.04163711   0.09149771
##   0.5914669  0.03826183   0.08343730
##   0.5896858  0.03915350   0.08469542
##   0.5210296  0.03281182   0.07589674
##   0.5201440  0.03261634   0.07587571
##   0.5166205  0.03404089   0.07970591
##   0.5329872  0.03647345   0.08310136
##   0.5389088  0.03407723   0.07744444
##   0.5515756  0.03661211   0.08031136
##   0.5621379  0.04050150   0.08820487
##   0.5662897  0.03834789   0.08338702
##   0.5675135  0.04088093   0.08815303
##   0.5708063  0.04090293   0.08772237
##   0.5169710  0.03374533   0.07158638
##   0.5162331  0.03269375   0.06943390
##   0.5245889  0.03070576   0.06715717
##   0.5355876  0.03486774   0.07256399
##   0.5492955  0.03216373   0.06772441
##   0.5608190  0.03440854   0.07130463
##   0.5691649  0.03315484   0.06908724
##   0.5625317  0.03483139   0.07193866
##   0.5660156  0.03527126   0.07450274
##   0.5586791  0.03683458   0.07672224
##   0.5172302  0.03393878   0.07222091
##   0.5169430  0.03409502   0.07211000
##   0.5240244  0.03557313   0.07488809
##   0.5280154  0.03471953   0.07364855
##   0.5404931  0.03558414   0.07557249
##   0.5481914  0.03740993   0.08046742
##   0.5509045  0.03610213   0.07657604
##   0.5635013  0.03199403   0.06629718
##   0.5661979  0.03208350   0.06716770
##   0.5619031  0.02674801   0.05608425
##   0.5183773  0.03393878   0.07226845
##   0.5169710  0.03374533   0.07158638
##   0.5125321  0.03600090   0.07978609
##   0.5147364  0.03493376   0.07436015
##   0.5207422  0.03795410   0.07978023
##   0.5389725  0.03502212   0.07350799
##   0.5466634  0.03728317   0.07734130
##   0.5424862  0.03634710   0.07594400
##   0.5499888  0.03600662   0.07591392
##   0.5487772  0.03527150   0.07420066
##   0.5151364  0.03460563   0.07336020
##   0.5538143  0.03712949   0.08119513
##   0.5724385  0.03689205   0.08133921
##   0.5773178  0.03612364   0.07962547
##   0.5740210  0.03918786   0.08629756
##   0.5759474  0.03987098   0.08617559
##   0.5822817  0.03960086   0.08590261
##   0.5804765  0.03985016   0.08644292
##   0.5782216  0.04412113   0.09537168
##   0.5765517  0.04134973   0.08918746
##   0.5098323  0.03443781   0.07665337
##   0.5288048  0.03996181   0.08776722
##   0.5594083  0.03570276   0.07947883
##   0.5724996  0.03780955   0.08337814
##   0.5752432  0.03558608   0.07731139
##   0.5751618  0.03482490   0.07598149
##   0.5731883  0.03248281   0.07174552
##   0.5807215  0.03461498   0.07485997
##   0.5818974  0.03608299   0.07755620
##   0.5916328  0.03971055   0.08536831
##   0.5120512  0.03311360   0.07302380
##   0.5114586  0.03571320   0.07688703
##   0.5284180  0.03577555   0.07747355
##   0.5319119  0.03714831   0.08035902
##   0.5360551  0.03769851   0.08012579
##   0.5449478  0.03594037   0.07748335
##   0.5513411  0.03999050   0.08638223
##   0.5563151  0.03910416   0.08460597
##   0.5624419  0.04117473   0.08954341
##   0.5694958  0.03881296   0.08388195
##   0.5177990  0.03421471   0.07375515
##   0.5640656  0.03798410   0.08092939
##   0.5798566  0.03466880   0.07506243
##   0.5782000  0.04111478   0.08872517
##   0.5901665  0.04483206   0.09609667
##   0.5916416  0.03778544   0.08048460
##   0.5993856  0.03511544   0.07528379
##   0.6043174  0.03860621   0.08277416
##   0.5961063  0.04054591   0.08697952
##   0.5963522  0.03387993   0.07235589
##   0.5176038  0.03325828   0.07688195
##   0.5465009  0.03936737   0.08729711
##   0.5715992  0.04143881   0.09038113
##   0.5687730  0.03515260   0.07676421
##   0.5754229  0.03956888   0.08532286
##   0.5890040  0.03771307   0.08116247
##   0.5846145  0.03944418   0.08384134
##   0.6002162  0.04087528   0.08719130
##   0.5934902  0.04227046   0.09028416
##   0.5948964  0.04315231   0.09226684
##   0.5152369  0.03341526   0.07674052
##   0.5134326  0.03320953   0.07510068
##   0.5335568  0.02926585   0.06764545
##   0.5382668  0.03257208   0.07217027
##   0.5566589  0.03333004   0.07278096
##   0.5602561  0.03725714   0.08064917
##   0.5761592  0.03810637   0.08299231
##   0.5772956  0.04030138   0.08668568
##   0.5876205  0.03888818   0.08439298
##   0.5890094  0.03961574   0.08577761
##   0.5509863  0.03992643   0.08878486
##   0.5780249  0.03826006   0.08197373
##   0.5858111  0.03967289   0.08394771
##   0.5901439  0.03660329   0.07725096
##   0.6021863  0.03712531   0.07782299
##   0.6036144  0.03781755   0.08098577
##   0.5937869  0.03519088   0.07487157
##   0.5982164  0.04154017   0.08860018
##   0.6019594  0.04097429   0.08774003
##   0.5911334  0.03944279   0.08385222
##   0.5254849  0.03347740   0.07709293
##   0.5468191  0.03478796   0.07894762
##   0.5635063  0.03358091   0.07253656
##   0.5781834  0.03480269   0.07536725
##   0.5802188  0.03902883   0.08371333
##   0.5824465  0.03997173   0.08605627
##   0.5911436  0.03767634   0.08094850
##   0.5918902  0.03724839   0.07964735
##   0.5937591  0.03639199   0.07726405
##   0.5931066  0.03680520   0.07810488
##   0.5220965  0.03391652   0.07865779
##   0.5144430  0.03136557   0.07135533
##   0.5430473  0.03650011   0.08003451
##   0.5497814  0.03965942   0.08609346
##   0.5663920  0.04107202   0.08783240
##   0.5794407  0.03665504   0.07848265
##   0.5716394  0.03972462   0.08530502
##   0.5758561  0.03762483   0.08120198
##   0.5883612  0.03199938   0.06844049
##   0.5784763  0.03602444   0.07732959
##   0.5576538  0.03473094   0.08018002
##   0.5679164  0.03516879   0.07750935
##   0.5721984  0.04283439   0.09362600
##   0.5764187  0.04339775   0.09237538
##   0.5866252  0.04216237   0.09185605
##   0.5931450  0.04302776   0.09235933
##   0.5954580  0.03768359   0.08123017
##   0.5939111  0.03249291   0.07100813
##   0.5866180  0.03705052   0.07874142
##   0.5792904  0.03433515   0.07412373
##   0.5193730  0.03584080   0.08152691
##   0.5450906  0.04064278   0.08958551
##   0.5672573  0.03953345   0.08561184
##   0.5823305  0.03916616   0.08467624
##   0.5976332  0.03794928   0.08048823
##   0.5934562  0.03748358   0.07956714
##   0.5879086  0.03700696   0.07830587
##   0.5895409  0.03621346   0.07695299
##   0.5791640  0.03237916   0.06950094
##   0.5826546  0.03544921   0.07528752
##   0.5126078  0.03327680   0.07654340
##   0.5188632  0.03681436   0.08227781
##   0.5447337  0.04201053   0.09206103
##   0.5553937  0.03926278   0.08654355
##   0.5701376  0.04494570   0.09631607
##   0.5844844  0.04114056   0.08873242
##   0.5819877  0.04512505   0.09740622
##   0.5857281  0.04002385   0.08673185
##   0.5879042  0.04219032   0.09091708
##   0.5955157  0.03835778   0.08319063
##   0.5173230  0.03510666   0.07406089
##   0.5263093  0.03661521   0.07845586
##   0.5302914  0.03918775   0.08245652
##   0.5533769  0.04193622   0.08725709
##   0.5637770  0.04206413   0.08659977
##   0.5652285  0.04068528   0.08564903
##   0.5611792  0.04267703   0.08903293
##   0.5624020  0.04427843   0.09367776
##   0.5616826  0.04202142   0.09026935
##   0.5578672  0.03872668   0.08099412
##   0.5163474  0.03874189   0.08142296
##   0.5083774  0.03806797   0.07969086
##   0.5250499  0.03440642   0.07345228
##   0.5411946  0.03322540   0.06947629
##   0.5582229  0.03128788   0.06635300
##   0.5590008  0.03705383   0.07747178
##   0.5561777  0.03354009   0.06951671
##   0.5528666  0.03321974   0.06868763
##   0.5527689  0.03429193   0.07161825
##   0.5588035  0.03654684   0.07654890
##   0.5183773  0.03393878   0.07226845
##   0.5066314  0.03303584   0.07170006
##   0.5280664  0.04124586   0.08485467
##   0.5362309  0.03694530   0.07928800
##   0.5393689  0.03855971   0.08176881
##   0.5327965  0.03929538   0.08327213
##   0.5458970  0.03722415   0.07779203
##   0.5461336  0.03982100   0.08489335
##   0.5497313  0.03813788   0.08033136
##   0.5468864  0.03766296   0.07937718
##   0.5325504  0.04017198   0.08873467
##   0.5698391  0.03441056   0.07765143
##   0.5841508  0.03645767   0.07969209
##   0.5783758  0.03929615   0.08568416
##   0.5753212  0.03704756   0.08080705
##   0.5687679  0.04008192   0.08537032
##   0.5733113  0.04185164   0.09130995
##   0.5791768  0.03558646   0.07655883
##   0.5857847  0.03439634   0.07326127
##   0.5854023  0.03541230   0.07490209
##   0.5197226  0.03122924   0.07071840
##   0.5506291  0.03480891   0.07801667
##   0.5654541  0.03719945   0.08181575
##   0.5706060  0.03744835   0.08234192
##   0.5714652  0.04449873   0.09559615
##   0.5728319  0.04073704   0.08825683
##   0.5740299  0.04263504   0.09236888
##   0.5810442  0.03913269   0.08428265
##   0.5896073  0.03992316   0.08592560
##   0.5873714  0.04108527   0.08779392
##   0.5137135  0.03146380   0.07129480
##   0.5277143  0.03833634   0.08308231
##   0.5365923  0.03917834   0.08486242
##   0.5384600  0.04131852   0.08942134
##   0.5384556  0.03503511   0.07625280
##   0.5347983  0.04224760   0.09165276
##   0.5520973  0.04081726   0.08841518
##   0.5643723  0.03757131   0.08082400
##   0.5697999  0.04217028   0.09021698
##   0.5637296  0.04227767   0.09004172
##   0.5375323  0.03410659   0.07570885
##   0.5667587  0.04158580   0.08918644
##   0.5782773  0.03389681   0.07285345
##   0.5757450  0.03953227   0.08546941
##   0.5841031  0.03632392   0.07881900
##   0.5831806  0.03550018   0.07566367
##   0.5731353  0.03546272   0.07551706
##   0.5765515  0.03365441   0.07061175
##   0.5748990  0.03368857   0.07063089
##   0.5836300  0.03780360   0.07907016
##   0.5176877  0.03303860   0.07474052
##   0.5594043  0.03374972   0.07443424
##   0.5700692  0.04089944   0.08831211
##   0.5751357  0.03777140   0.08125848
##   0.5872933  0.03807141   0.08222702
##   0.5889305  0.04001726   0.08603474
##   0.5903879  0.03964014   0.08422658
##   0.5868624  0.04026519   0.08596284
##   0.5900932  0.04228541   0.09058700
##   0.6014563  0.04352503   0.09410263
##   0.5238863  0.03568051   0.08196458
##   0.5352401  0.03989012   0.08855209
##   0.5584502  0.04350113   0.09614454
##   0.5597404  0.04374462   0.09481454
##   0.5756727  0.03775187   0.08119077
##   0.5666469  0.04125414   0.08845772
##   0.5743438  0.04110343   0.08856086
##   0.5847041  0.03663583   0.07786538
##   0.5827792  0.03563940   0.07715386
##   0.6003405  0.03701778   0.07932249
##   0.5504019  0.03053928   0.06766362
##   0.5718700  0.04151282   0.08999472
##   0.5822923  0.04045436   0.08661237
##   0.5800868  0.04193850   0.08931330
##   0.5850621  0.03625584   0.07751109
##   0.5980514  0.03152014   0.06747862
##   0.5844063  0.03626072   0.07741476
##   0.5843031  0.03365481   0.07117046
##   0.5841121  0.03763028   0.08003716
##   0.5721526  0.03905111   0.08237885
##   0.5200005  0.03691389   0.08206691
##   0.5741727  0.03541807   0.07702171
##   0.5832893  0.03726587   0.08043449
##   0.5864972  0.03627496   0.07876949
##   0.5915313  0.03397767   0.07338427
##   0.5853462  0.03308261   0.07077401
##   0.5905677  0.03408001   0.07216388
##   0.5918596  0.03413789   0.07254356
##   0.5860294  0.03682606   0.07881973
##   0.5910720  0.03555247   0.07517700
##   0.5269860  0.03579981   0.07883735
##   0.5330094  0.03061641   0.06687986
##   0.5569869  0.03024174   0.06575329
##   0.5787363  0.03433392   0.07473972
##   0.5845707  0.03280745   0.07011649
##   0.5711026  0.02985536   0.06347885
##   0.5926910  0.03196354   0.06819938
##   0.5946017  0.03117025   0.06646160
##   0.5969273  0.03327437   0.07167926
##   0.5944426  0.03764294   0.08125867
##   0.5642591  0.03509784   0.07621106
##   0.5726951  0.03874634   0.08313882
##   0.5867072  0.04308909   0.08995230
##   0.5873029  0.04068917   0.08586542
##   0.5867448  0.04116462   0.08711239
##   0.5834792  0.03637273   0.07761817
##   0.5817994  0.03480958   0.07324626
##   0.5850144  0.03450280   0.07208284
##   0.5926059  0.03896494   0.08162206
##   0.5786861  0.03940778   0.08163989
##   0.5385558  0.03535088   0.08200617
##   0.5769759  0.03544124   0.07719127
##   0.5771997  0.03541039   0.07539439
##   0.5869317  0.04212114   0.09025827
##   0.5905111  0.03548789   0.07552194
##   0.5917737  0.03609223   0.07706930
##   0.5841522  0.04008411   0.08544700
##   0.5910386  0.03791604   0.08045472
##   0.5962463  0.03756961   0.08026425
##   0.5883126  0.03541171   0.07591678
##   0.5272089  0.03199805   0.07369057
##   0.5314608  0.03926174   0.08501290
##   0.5629267  0.03993214   0.08546334
##   0.5695637  0.03926128   0.08264877
##   0.5733012  0.03699451   0.07883112
##   0.5853242  0.03761768   0.08007517
##   0.5917886  0.03665754   0.07782738
##   0.5937817  0.03653243   0.07764409
##   0.5815142  0.04189606   0.08997057
##   0.5805268  0.03831341   0.08099892
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final values used for the model were n.trees = 40, interaction.depth
##  = 3, shrinkage = 0.2 and n.minobsinnode = 10.
##gfbfit fits best

Further solutions

We compute the importance of the variables to check for further potential to improve predictive accuaracy.

varImp(gbmFit)
## gbm variable importance
## 
##             Overall
## Sexmale   100.00000
## Age        60.93041
## Fare       39.87357
## Pclass3    38.51935
## SibSp      10.70351
## EmbarkedC   1.72800
## Pclass2     1.62879
## Parch       0.48448
## EmbarkedQ   0.05637
## EmbarkedS   0.00000

Based on these results, there exist evidence to remove variables Embarked and Parch

formula = Survived ~ Pclass + Sex + Age + SibSp + Fare
gbmFit <- train(formula, data = training_na,
                 method = "gbm",
                 trControl = fitControl,
                 ## This last option is actually one
                 ## for gbm() that passes through
                 verbose = FALSE,
                 tuneGrid = gbmGrid)
gbmFit
## Stochastic Gradient Boosting 
## 
## 676 samples
##   8 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 540, 542, 541, 540, 541, 541, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  n.trees  Accuracy 
##   0.1        1                  10               5       0.7650465
##   0.1        1                  10              10       0.7647480
##   0.1        1                  10              15       0.7653406
##   0.1        1                  10              20       0.7665171
##   0.1        1                  10              25       0.7676979
##   0.1        1                  10              30       0.7694801
##   0.1        1                  10              35       0.7733232
##   0.1        1                  10              40       0.7712513
##   0.1        1                  10              45       0.7783254
##   0.1        1                  10              50       0.7848593
##   0.1        1                  20               5       0.7679877
##   0.1        1                  20              10       0.7676827
##   0.1        1                  20              15       0.7667938
##   0.1        1                  20              20       0.7688635
##   0.1        1                  20              25       0.7706413
##   0.1        1                  20              30       0.7700487
##   0.1        1                  20              35       0.7721162
##   0.1        1                  20              40       0.7706565
##   0.1        1                  20              45       0.7727328
##   0.1        1                  20              50       0.7736238
##   0.1        1                  30               5       0.7653406
##   0.1        1                  30              10       0.7691641
##   0.1        1                  30              15       0.7653406
##   0.1        1                  30              20       0.7674038
##   0.1        1                  30              25       0.7679920
##   0.1        1                  30              30       0.7670966
##   0.1        1                  30              35       0.7656195
##   0.1        1                  30              40       0.7653384
##   0.1        1                  30              45       0.7665280
##   0.1        1                  30              50       0.7694866
##   0.1        2                  10               5       0.7798879
##   0.1        2                  10              10       0.7698026
##   0.1        2                  10              15       0.7739267
##   0.1        2                  10              20       0.7818919
##   0.1        2                  10              25       0.7904889
##   0.1        2                  10              30       0.7990795
##   0.1        2                  10              35       0.8005697
##   0.1        2                  10              40       0.7999945
##   0.1        2                  10              45       0.7985109
##   0.1        2                  10              50       0.7993998
##   0.1        2                  20               5       0.7825546
##   0.1        2                  20              10       0.7739310
##   0.1        2                  20              15       0.7686043
##   0.1        2                  20              20       0.7774626
##   0.1        2                  20              25       0.7848613
##   0.1        2                  20              30       0.7890161
##   0.1        2                  20              35       0.7940752
##   0.1        2                  20              40       0.7991057
##   0.1        2                  20              45       0.7970315
##   0.1        2                  20              50       0.8005807
##   0.1        2                  30               5       0.7825546
##   0.1        2                  30              10       0.7781101
##   0.1        2                  30              15       0.7721554
##   0.1        2                  30              20       0.7709746
##   0.1        2                  30              25       0.7742274
##   0.1        2                  30              30       0.7810226
##   0.1        2                  30              35       0.7804431
##   0.1        2                  30              40       0.7842863
##   0.1        2                  30              45       0.7807373
##   0.1        2                  30              50       0.7831164
##   0.1        3                  10               5       0.7804563
##   0.1        3                  10              10       0.7774824
##   0.1        3                  10              15       0.7901948
##   0.1        3                  10              20       0.8011536
##   0.1        3                  10              25       0.8035305
##   0.1        3                  10              30       0.8044304
##   0.1        3                  10              35       0.8029576
##   0.1        3                  10              40       0.8064913
##   0.1        3                  10              45       0.8064957
##   0.1        3                  10              50       0.8044391
##   0.1        3                  20               5       0.7825546
##   0.1        3                  20              10       0.7748177
##   0.1        3                  20              15       0.7756958
##   0.1        3                  20              20       0.7896000
##   0.1        3                  20              25       0.7919573
##   0.1        3                  20              30       0.7970162
##   0.1        3                  20              35       0.8005784
##   0.1        3                  20              40       0.8017657
##   0.1        3                  20              45       0.8011579
##   0.1        3                  20              50       0.7999793
##   0.1        3                  30               5       0.7825546
##   0.1        3                  30              10       0.7745236
##   0.1        3                  30              15       0.7751295
##   0.1        3                  30              20       0.7813343
##   0.1        3                  30              25       0.7798549
##   0.1        3                  30              30       0.7834061
##   0.1        3                  30              35       0.7837024
##   0.1        3                  30              40       0.7857722
##   0.1        3                  30              45       0.7860684
##   0.1        3                  30              50       0.7866567
##   0.1        4                  10               5       0.7822473
##   0.1        4                  10              10       0.7887439
##   0.1        4                  10              15       0.8032517
##   0.1        4                  10              20       0.8100360
##   0.1        4                  10              25       0.8106395
##   0.1        4                  10              30       0.8112343
##   0.1        4                  10              35       0.8085850
##   0.1        4                  10              40       0.8100513
##   0.1        4                  10              45       0.8142082
##   0.1        4                  10              50       0.8127224
##   0.1        4                  20               5       0.7813694
##   0.1        4                  20              10       0.7822297
##   0.1        4                  20              15       0.7842753
##   0.1        4                  20              20       0.7893168
##   0.1        4                  20              25       0.7916916
##   0.1        4                  20              30       0.7952407
##   0.1        4                  20              35       0.7990948
##   0.1        4                  20              40       0.8008813
##   0.1        4                  20              45       0.8029511
##   0.1        4                  20              50       0.8082626
##   0.1        4                  30               5       0.7825546
##   0.1        4                  30              10       0.7775065
##   0.1        4                  30              15       0.7754105
##   0.1        4                  30              20       0.7768875
##   0.1        4                  30              25       0.7777743
##   0.1        4                  30              30       0.7851796
##   0.1        4                  30              35       0.7866698
##   0.1        4                  30              40       0.7919812
##   0.1        4                  30              45       0.7940619
##   0.1        4                  30              50       0.7982013
##   0.1        5                  10               5       0.7845980
##   0.1        5                  10              10       0.7943409
##   0.1        5                  10              15       0.8029337
##   0.1        5                  10              20       0.8061995
##   0.1        5                  10              25       0.8064979
##   0.1        5                  10              30       0.8091603
##   0.1        5                  10              35       0.8100536
##   0.1        5                  10              40       0.8127115
##   0.1        5                  10              45       0.8162649
##   0.1        5                  10              50       0.8144849
##   0.1        5                  20               5       0.7822583
##   0.1        5                  20              10       0.7801797
##   0.1        5                  20              15       0.7887351
##   0.1        5                  20              20       0.7890226
##   0.1        5                  20              25       0.7967178
##   0.1        5                  20              30       0.8005741
##   0.1        5                  20              35       0.8070927
##   0.1        5                  20              40       0.8094499
##   0.1        5                  20              45       0.8044260
##   0.1        5                  20              50       0.8106352
##   0.1        5                  30               5       0.7825546
##   0.1        5                  30              10       0.7789769
##   0.1        5                  30              15       0.7789682
##   0.1        5                  30              20       0.7786588
##   0.1        5                  30              25       0.7830945
##   0.1        5                  30              30       0.7831055
##   0.1        5                  30              35       0.7860751
##   0.1        5                  30              40       0.7905020
##   0.1        5                  30              45       0.7931687
##   0.1        5                  30              50       0.7970227
##   0.2        1                  10               5       0.7653406
##   0.2        1                  10              10       0.7656326
##   0.2        1                  10              15       0.7670988
##   0.2        1                  10              20       0.7739027
##   0.2        1                  10              25       0.7804190
##   0.2        1                  10              30       0.7780531
##   0.2        1                  10              35       0.7863495
##   0.2        1                  10              40       0.7842907
##   0.2        1                  10              45       0.7878420
##   0.2        1                  10              50       0.7860685
##   0.2        1                  20               5       0.7644517
##   0.2        1                  20              10       0.7656304
##   0.2        1                  20              15       0.7709463
##   0.2        1                  20              20       0.7744931
##   0.2        1                  20              25       0.7792362
##   0.2        1                  20              30       0.7771752
##   0.2        1                  20              35       0.7831099
##   0.2        1                  20              40       0.7816262
##   0.2        1                  20              45       0.7825151
##   0.2        1                  20              50       0.7866524
##   0.2        1                  30               5       0.7673885
##   0.2        1                  30              10       0.7668112
##   0.2        1                  30              15       0.7671162
##   0.2        1                  30              20       0.7694844
##   0.2        1                  30              25       0.7715498
##   0.2        1                  30              30       0.7727415
##   0.2        1                  30              35       0.7762927
##   0.2        1                  30              40       0.7745171
##   0.2        1                  30              45       0.7745171
##   0.2        1                  30              50       0.7754060
##   0.2        2                  10               5       0.7727371
##   0.2        2                  10              10       0.7834039
##   0.2        2                  10              15       0.8008639
##   0.2        2                  10              20       0.7996851
##   0.2        2                  10              25       0.7996743
##   0.2        2                  10              30       0.8011580
##   0.2        2                  10              35       0.8023606
##   0.2        2                  10              40       0.7999967
##   0.2        2                  10              45       0.7996917
##   0.2        2                  10              50       0.8014652
##   0.2        2                  20               5       0.7739267
##   0.2        2                  20              10       0.7774671
##   0.2        2                  20              15       0.7851512
##   0.2        2                  20              20       0.7896196
##   0.2        2                  20              25       0.7973082
##   0.2        2                  20              30       0.7979008
##   0.2        2                  20              35       0.8011798
##   0.2        2                  20              40       0.8023606
##   0.2        2                  20              45       0.7997005
##   0.2        2                  20              50       0.7988094
##   0.2        2                  30               5       0.7724474
##   0.2        2                  30              10       0.7689225
##   0.2        2                  30              15       0.7724519
##   0.2        2                  30              20       0.7792930
##   0.2        2                  30              25       0.7846045
##   0.2        2                  30              30       0.7843016
##   0.2        2                  30              35       0.7834367
##   0.2        2                  30              40       0.7887657
##   0.2        2                  30              45       0.7943823
##   0.2        2                  30              50       0.7946743
##   0.2        3                  10               5       0.7854912
##   0.2        3                  10              10       0.7973169
##   0.2        3                  10              15       0.8020643
##   0.2        3                  10              20       0.8017658
##   0.2        3                  10              25       0.8053170
##   0.2        3                  10              30       0.8050119
##   0.2        3                  10              35       0.8061883
##   0.2        3                  10              40       0.8050163
##   0.2        3                  10              45       0.8088594
##   0.2        3                  10              50       0.8070970
##   0.2        3                  20               5       0.7783733
##   0.2        3                  20              10       0.7848788
##   0.2        3                  20              15       0.7893257
##   0.2        3                  20              20       0.7982124
##   0.2        3                  20              25       0.8002996
##   0.2        3                  20              30       0.8035327
##   0.2        3                  20              35       0.8094871
##   0.2        3                  20              40       0.8112431
##   0.2        3                  20              45       0.8109489
##   0.2        3                  20              50       0.8100491
##   0.2        3                  30               5       0.7792821
##   0.2        3                  30              10       0.7703929
##   0.2        3                  30              15       0.7863712
##   0.2        3                  30              20       0.7807592
##   0.2        3                  30              25       0.7907961
##   0.2        3                  30              30       0.7958288
##   0.2        3                  30              35       0.7928900
##   0.2        3                  30              40       0.7988006
##   0.2        3                  30              45       0.7958377
##   0.2        3                  30              50       0.8032298
##   0.2        4                  10               5       0.7887199
##   0.2        4                  10              10       0.8047092
##   0.2        4                  10              15       0.7990927
##   0.2        4                  10              20       0.8017724
##   0.2        4                  10              25       0.8097550
##   0.2        4                  10              30       0.8097507
##   0.2        4                  10              35       0.8130209
##   0.2        4                  10              40       0.8085677
##   0.2        4                  10              45       0.8094872
##   0.2        4                  10              50       0.8115481
##   0.2        4                  20               5       0.7789814
##   0.2        4                  20              10       0.7843104
##   0.2        4                  20              15       0.7946524
##   0.2        4                  20              20       0.8008616
##   0.2        4                  20              25       0.8064825
##   0.2        4                  20              30       0.8088486
##   0.2        4                  20              35       0.8112146
##   0.2        4                  20              40       0.8180076
##   0.2        4                  20              45       0.8162495
##   0.2        4                  20              50       0.8159532
##   0.2        4                  30               5       0.7766088
##   0.2        4                  30              10       0.7768985
##   0.2        4                  30              15       0.7872515
##   0.2        4                  30              20       0.7916718
##   0.2        4                  30              25       0.7984845
##   0.2        4                  30              30       0.8035150
##   0.2        4                  30              35       0.8064760
##   0.2        4                  30              40       0.8088441
##   0.2        4                  30              45       0.8053083
##   0.2        4                  30              50       0.8082561
##   0.2        5                  10               5       0.7893323
##   0.2        5                  10              10       0.8005654
##   0.2        5                  10              15       0.8088772
##   0.2        5                  10              20       0.8126940
##   0.2        5                  10              25       0.8127049
##   0.2        5                  10              30       0.8115416
##   0.2        5                  10              35       0.8044370
##   0.2        5                  10              40       0.8059075
##   0.2        5                  10              45       0.8038400
##   0.2        5                  10              50       0.8068030
##   0.2        5                  20               5       0.7807591
##   0.2        5                  20              10       0.7911013
##   0.2        5                  20              15       0.7952517
##   0.2        5                  20              20       0.8064847
##   0.2        5                  20              25       0.8103322
##   0.2        5                  20              30       0.8147877
##   0.2        5                  20              35       0.8165677
##   0.2        5                  20              40       0.8204000
##   0.2        5                  20              45       0.8144870
##   0.2        5                  20              50       0.8136069
##   0.2        5                  30               5       0.7798703
##   0.2        5                  30              10       0.7739333
##   0.2        5                  30              15       0.7795609
##   0.2        5                  30              20       0.7872471
##   0.2        5                  30              25       0.7943583
##   0.2        5                  30              30       0.7979073
##   0.2        5                  30              35       0.8020489
##   0.2        5                  30              40       0.8097550
##   0.2        5                  30              45       0.8067986
##   0.2        5                  30              50       0.8044238
##   0.3        1                  10               5       0.7629877
##   0.3        1                  10              10       0.7665432
##   0.3        1                  10              15       0.7759878
##   0.3        1                  10              20       0.7795500
##   0.3        1                  10              25       0.7807374
##   0.3        1                  10              30       0.7836916
##   0.3        1                  10              35       0.7860729
##   0.3        1                  10              40       0.7872494
##   0.3        1                  10              45       0.7869531
##   0.3        1                  10              50       0.7810315
##   0.3        1                  20               5       0.7709289
##   0.3        1                  20              10       0.7709463
##   0.3        1                  20              15       0.7751251
##   0.3        1                  20              20       0.7798418
##   0.3        1                  20              25       0.7783538
##   0.3        1                  20              30       0.7792667
##   0.3        1                  20              35       0.7842755
##   0.3        1                  20              40       0.7813300
##   0.3        1                  20              45       0.7786697
##   0.3        1                  20              50       0.7810292
##   0.3        1                  30               5       0.7694604
##   0.3        1                  30              10       0.7670770
##   0.3        1                  30              15       0.7727393
##   0.3        1                  30              20       0.7706565
##   0.3        1                  30              25       0.7712688
##   0.3        1                  30              30       0.7736501
##   0.3        1                  30              35       0.7754192
##   0.3        1                  30              40       0.7777764
##   0.3        1                  30              45       0.7807635
##   0.3        1                  30              50       0.7766022
##   0.3        2                  10               5       0.7688984
##   0.3        2                  10              10       0.7952495
##   0.3        2                  10              15       0.8044216
##   0.3        2                  10              20       0.7999771
##   0.3        2                  10              25       0.8002756
##   0.3        2                  10              30       0.8002691
##   0.3        2                  10              35       0.8038465
##   0.3        2                  10              40       0.8059009
##   0.3        2                  10              45       0.8047331
##   0.3        2                  10              50       0.8064978
##   0.3        2                  20               5       0.7706652
##   0.3        2                  20              10       0.7893124
##   0.3        2                  20              15       0.7934674
##   0.3        2                  20              20       0.7997028
##   0.3        2                  20              25       0.8020688
##   0.3        2                  20              30       0.8005982
##   0.3        2                  20              35       0.8056242
##   0.3        2                  20              40       0.8094696
##   0.3        2                  20              45       0.8094630
##   0.3        2                  20              50       0.8097441
##   0.3        2                  30               5       0.7668286
##   0.3        2                  30              10       0.7759986
##   0.3        2                  30              15       0.7845825
##   0.3        2                  30              20       0.7869814
##   0.3        2                  30              25       0.7854759
##   0.3        2                  30              30       0.7902036
##   0.3        2                  30              35       0.7887287
##   0.3        2                  30              40       0.8014521
##   0.3        2                  30              45       0.7976024
##   0.3        2                  30              50       0.8014476
##   0.3        3                  10               5       0.7872383
##   0.3        3                  10              10       0.8032321
##   0.3        3                  10              15       0.8020578
##   0.3        3                  10              20       0.8035415
##   0.3        3                  10              25       0.8044347
##   0.3        3                  10              30       0.8056111
##   0.3        3                  10              35       0.8118247
##   0.3        3                  10              40       0.8053193
##   0.3        3                  10              45       0.8082626
##   0.3        3                  10              50       0.8070818
##   0.3        3                  20               5       0.7789771
##   0.3        3                  20              10       0.7943605
##   0.3        3                  20              15       0.7993868
##   0.3        3                  20              20       0.8100491
##   0.3        3                  20              25       0.8085589
##   0.3        3                  20              30       0.8103476
##   0.3        3                  20              35       0.8130209
##   0.3        3                  20              40       0.8118291
##   0.3        3                  20              45       0.8100688
##   0.3        3                  20              50       0.8121321
##   0.3        3                  30               5       0.7760032
##   0.3        3                  30              10       0.7837135
##   0.3        3                  30              15       0.7881273
##   0.3        3                  30              20       0.7955347
##   0.3        3                  30              25       0.7973170
##   0.3        3                  30              30       0.8020577
##   0.3        3                  30              35       0.8065023
##   0.3        3                  30              40       0.8056025
##   0.3        3                  30              45       0.8124085
##   0.3        3                  30              50       0.8094522
##   0.3        4                  10               5       0.7914216
##   0.3        4                  10              10       0.8044435
##   0.3        4                  10              15       0.8029532
##   0.3        4                  10              20       0.8014718
##   0.3        4                  10              25       0.8091667
##   0.3        4                  10              30       0.8085698
##   0.3        4                  10              35       0.8064805
##   0.3        4                  10              40       0.8088597
##   0.3        4                  10              45       0.8032060
##   0.3        4                  10              50       0.8002779
##   0.3        4                  20               5       0.7766132
##   0.3        4                  20              10       0.7943364
##   0.3        4                  20              15       0.7999903
##   0.3        4                  20              20       0.8044326
##   0.3        4                  20              25       0.8088727
##   0.3        4                  20              30       0.8112496
##   0.3        4                  20              35       0.8100426
##   0.3        4                  20              40       0.8088617
##   0.3        4                  20              45       0.8097463
##   0.3        4                  20              50       0.8088705
##   0.3        4                  30               5       0.7733495
##   0.3        4                  30              10       0.7795389
##   0.3        4                  30              15       0.7904824
##   0.3        4                  30              20       0.8011491
##   0.3        4                  30              25       0.8020489
##   0.3        4                  30              30       0.8038574
##   0.3        4                  30              35       0.8097637
##   0.3        4                  30              40       0.8139054
##   0.3        4                  30              45       0.8112301
##   0.3        4                  30              50       0.8121298
##   0.3        5                  10               5       0.7896197
##   0.3        5                  10              10       0.8011842
##   0.3        5                  10              15       0.7982321
##   0.3        5                  10              20       0.8014827
##   0.3        5                  10              25       0.8008968
##   0.3        5                  10              30       0.8094764
##   0.3        5                  10              35       0.8038379
##   0.3        5                  10              40       0.8032452
##   0.3        5                  10              45       0.8035328
##   0.3        5                  10              50       0.8044172
##   0.3        5                  20               5       0.7828288
##   0.3        5                  20              10       0.7979292
##   0.3        5                  20              15       0.8070925
##   0.3        5                  20              20       0.8109445
##   0.3        5                  20              25       0.8141798
##   0.3        5                  20              30       0.8130077
##   0.3        5                  20              35       0.8159532
##   0.3        5                  20              40       0.8124065
##   0.3        5                  20              45       0.8115242
##   0.3        5                  20              50       0.8088553
##   0.3        5                  30               5       0.7733320
##   0.3        5                  30              10       0.7792449
##   0.3        5                  30              15       0.7922952
##   0.3        5                  30              20       0.8005741
##   0.3        5                  30              25       0.8064891
##   0.3        5                  30              30       0.8076743
##   0.3        5                  30              35       0.8088639
##   0.3        5                  30              40       0.8082627
##   0.3        5                  30              45       0.8115242
##   0.3        5                  30              50       0.8100426
##   Kappa      Accuracy SD  Kappa SD  
##   0.5076039  0.04109361   0.08625388
##   0.5075779  0.04036660   0.08278741
##   0.5096842  0.04089764   0.08441598
##   0.5125854  0.04194913   0.08649251
##   0.5151579  0.04249631   0.08761360
##   0.5189609  0.04085342   0.08474285
##   0.5268325  0.04268683   0.08845805
##   0.5226071  0.04398196   0.09038121
##   0.5377509  0.04815179   0.09983048
##   0.5522024  0.04537137   0.09274322
##   0.5148522  0.04690653   0.09776215
##   0.5143781  0.04557419   0.09404177
##   0.5124787  0.04643057   0.09657169
##   0.5176696  0.04816493   0.10003366
##   0.5211326  0.05030914   0.10434950
##   0.5194282  0.04762548   0.09840924
##   0.5239292  0.04869914   0.10054480
##   0.5218169  0.04553362   0.09342422
##   0.5261565  0.04281365   0.08773389
##   0.5284063  0.04429297   0.09036232
##   0.5096842  0.04089764   0.08441598
##   0.5184834  0.04699744   0.09746740
##   0.5096842  0.04089764   0.08441598
##   0.5138082  0.04238335   0.08715462
##   0.5152669  0.04277144   0.08795833
##   0.5129152  0.04233791   0.08675609
##   0.5086150  0.04202676   0.08582201
##   0.5094311  0.04434393   0.09012278
##   0.5111905  0.04318451   0.08829421
##   0.5189913  0.04327424   0.08807619
##   0.5175588  0.02955306   0.06099920
##   0.5013281  0.03731496   0.07342117
##   0.5121850  0.03797362   0.07542406
##   0.5327311  0.03862864   0.07848536
##   0.5531304  0.03573868   0.07272478
##   0.5728126  0.03283221   0.06661084
##   0.5755592  0.03461442   0.07131651
##   0.5748925  0.03836310   0.08139844
##   0.5733039  0.03454678   0.07166469
##   0.5756245  0.03245140   0.06730315
##   0.5213100  0.02152455   0.05095544
##   0.5078162  0.03784780   0.07526784
##   0.5011413  0.03772270   0.07459307
##   0.5222073  0.04018724   0.07902225
##   0.5377672  0.03852563   0.07825214
##   0.5487356  0.03902357   0.07981537
##   0.5594051  0.03405851   0.07093463
##   0.5708445  0.03416711   0.06997745
##   0.5675487  0.03747646   0.07736933
##   0.5760492  0.03485519   0.07229500
##   0.5213100  0.02152455   0.05095544
##   0.5141004  0.03128100   0.06776064
##   0.5062801  0.03251339   0.06590047
##   0.5054374  0.03108089   0.06284462
##   0.5165689  0.03513114   0.07021495
##   0.5310920  0.03712679   0.07574970
##   0.5302199  0.03325284   0.06819921
##   0.5389278  0.03808922   0.07891001
##   0.5322533  0.03797813   0.07925735
##   0.5384944  0.03187188   0.06692075
##   0.5183923  0.02297541   0.05138336
##   0.5176027  0.03201758   0.06379236
##   0.5489239  0.03039948   0.06503384
##   0.5761347  0.03134652   0.06335007
##   0.5826072  0.03154359   0.06439724
##   0.5851293  0.03120455   0.06523071
##   0.5818726  0.03251205   0.06837112
##   0.5907046  0.03192052   0.06552983
##   0.5916830  0.02959812   0.06073760
##   0.5875177  0.03077353   0.06402562
##   0.5213100  0.02152455   0.05095544
##   0.5092355  0.03742428   0.07470615
##   0.5159406  0.04203777   0.08433922
##   0.5478035  0.03694859   0.07551868
##   0.5557258  0.04015328   0.08266016
##   0.5676968  0.03434081   0.07128932
##   0.5759916  0.03629467   0.07558158
##   0.5791580  0.03584918   0.07508882
##   0.5791266  0.03251351   0.06710495
##   0.5764155  0.03254344   0.06915580
##   0.5213100  0.02152455   0.05095544
##   0.5080019  0.03698989   0.07280167
##   0.5113073  0.02953740   0.06184614
##   0.5273182  0.03267575   0.06922616
##   0.5271039  0.03249820   0.06699687
##   0.5366589  0.03786335   0.07765569
##   0.5387421  0.03903135   0.08054338
##   0.5429512  0.03777564   0.07852863
##   0.5441142  0.03770652   0.07877465
##   0.5470530  0.03685731   0.07717848
##   0.5232440  0.02454842   0.05699751
##   0.5454102  0.02764014   0.05840005
##   0.5793553  0.03210739   0.07044302
##   0.5959995  0.02856420   0.06010641
##   0.5981550  0.02658368   0.05474358
##   0.6002488  0.02663878   0.05598578
##   0.5950835  0.02749477   0.05832082
##   0.5991693  0.03020445   0.06441936
##   0.6085242  0.03199389   0.06838405
##   0.6060848  0.03256386   0.06952893
##   0.5190530  0.02298929   0.05365006
##   0.5241182  0.02828445   0.06279925
##   0.5343323  0.03650077   0.07897491
##   0.5482101  0.03329880   0.07189492
##   0.5551829  0.03419294   0.07319042
##   0.5646453  0.03651268   0.07755369
##   0.5741573  0.03327655   0.07076414
##   0.5789351  0.03132005   0.06616363
##   0.5838577  0.02930055   0.06211104
##   0.5950659  0.02822253   0.05985576
##   0.5213100  0.02152455   0.05095544
##   0.5129001  0.02551997   0.05532715
##   0.5143028  0.03680123   0.07461167
##   0.5210360  0.03972924   0.08163682
##   0.5253807  0.03840247   0.07947669
##   0.5417008  0.03802720   0.07989643
##   0.5464618  0.03973444   0.08429474
##   0.5591978  0.04384399   0.09134254
##   0.5644824  0.03952669   0.08309843
##   0.5732771  0.03611418   0.07591907
##   0.5284078  0.02380003   0.05473521
##   0.5566749  0.03418736   0.07660423
##   0.5795601  0.03295329   0.07133374
##   0.5880549  0.03116554   0.06688114
##   0.5894423  0.02819350   0.06100916
##   0.5958218  0.02912897   0.06300663
##   0.5984637  0.03081703   0.06632380
##   0.6051336  0.03164944   0.06772540
##   0.6130816  0.03372100   0.07173444
##   0.6103864  0.03614719   0.07651870
##   0.5211476  0.02174908   0.05131352
##   0.5198622  0.02529036   0.05730606
##   0.5447671  0.03361916   0.07361804
##   0.5494535  0.03217431   0.06704887
##   0.5678168  0.03011052   0.06290892
##   0.5772009  0.02945917   0.06179046
##   0.5924384  0.03436586   0.07326183
##   0.5976637  0.03319264   0.06984863
##   0.5878723  0.03450372   0.07338230
##   0.6015569  0.03102212   0.06512620
##   0.5213100  0.02152455   0.05095544
##   0.5158157  0.02797872   0.05910639
##   0.5211805  0.03293776   0.06891332
##   0.5241776  0.03544275   0.07358851
##   0.5364619  0.04158817   0.08542879
##   0.5379413  0.03705418   0.07788416
##   0.5459351  0.03166404   0.06666944
##   0.5570653  0.03668386   0.07642142
##   0.5634764  0.03602403   0.07542007
##   0.5720147  0.03589099   0.07582715
##   0.5096842  0.04089764   0.08441598
##   0.5097745  0.04042629   0.08382582
##   0.5113034  0.04028399   0.08190335
##   0.5280877  0.04328993   0.08949897
##   0.5427489  0.04542295   0.09173215
##   0.5388583  0.04392948   0.08916430
##   0.5559891  0.04237092   0.08631715
##   0.5514131  0.03770301   0.07735375
##   0.5594434  0.03954732   0.08125163
##   0.5555267  0.04101671   0.08454199
##   0.5065067  0.04000939   0.08188262
##   0.5099226  0.04110228   0.08426382
##   0.5202525  0.04402044   0.08958087
##   0.5290694  0.04691860   0.09668624
##   0.5404020  0.04625627   0.09508709
##   0.5367168  0.04154235   0.08470142
##   0.5492057  0.04051175   0.08295952
##   0.5465520  0.03830180   0.07826517
##   0.5484461  0.03701835   0.07596669
##   0.5575396  0.04079483   0.08395236
##   0.5125757  0.04551904   0.09405954
##   0.5132541  0.04233581   0.08730651
##   0.5141972  0.04737213   0.09703677
##   0.5172625  0.04406786   0.09041093
##   0.5218390  0.04582741   0.09341824
##   0.5257537  0.04423183   0.09154254
##   0.5338981  0.04639196   0.09574870
##   0.5298938  0.04709359   0.09658647
##   0.5297235  0.04427554   0.09167856
##   0.5315917  0.04560200   0.09470374
##   0.5079217  0.03853810   0.07627750
##   0.5360035  0.03524754   0.06972443
##   0.5739809  0.02615674   0.05398488
##   0.5747495  0.02801653   0.05824022
##   0.5762993  0.02613900   0.05267640
##   0.5801644  0.02994956   0.06217244
##   0.5837482  0.03072015   0.06434400
##   0.5786283  0.03082365   0.06446365
##   0.5782029  0.03342865   0.06948328
##   0.5820599  0.03249122   0.06758447
##   0.5075192  0.03639621   0.07580686
##   0.5206488  0.03481448   0.07139675
##   0.5409527  0.03389840   0.06868138
##   0.5519179  0.03932030   0.08155925
##   0.5703539  0.03685034   0.07738060
##   0.5721592  0.03821345   0.07983189
##   0.5793062  0.03274957   0.06818837
##   0.5821861  0.03734070   0.07817908
##   0.5772583  0.03350335   0.06955575
##   0.5752508  0.03111882   0.06356680
##   0.5054414  0.03721578   0.07392187
##   0.5014728  0.03258299   0.06757576
##   0.5136569  0.03671668   0.07512743
##   0.5288001  0.03911664   0.08216517
##   0.5425643  0.03773109   0.07919908
##   0.5428113  0.04025326   0.08417897
##   0.5421458  0.04164559   0.08755444
##   0.5531057  0.03870218   0.08179105
##   0.5653479  0.03702377   0.07863791
##   0.5659117  0.02997941   0.06337842
##   0.5355387  0.02755000   0.05764481
##   0.5682288  0.03150435   0.06734523
##   0.5806250  0.03024239   0.06471188
##   0.5818961  0.02982371   0.06318456
##   0.5898285  0.02852691   0.05891095
##   0.5897497  0.03179742   0.06652565
##   0.5928928  0.03423097   0.07040280
##   0.5907854  0.03443952   0.07040868
##   0.5989032  0.03445367   0.07087042
##   0.5956191  0.03389762   0.06959290
##   0.5162144  0.03101454   0.06443504
##   0.5382354  0.03966719   0.08405207
##   0.5530446  0.03535511   0.07440991
##   0.5727021  0.03274281   0.06810121
##   0.5779696  0.03160342   0.06779031
##   0.5851008  0.03484363   0.07418638
##   0.5987294  0.03265857   0.06847261
##   0.6033878  0.03330392   0.06936604
##   0.6015052  0.03618210   0.07661692
##   0.6006915  0.03505363   0.07414880
##   0.5157394  0.02363133   0.05414740
##   0.5063243  0.03909304   0.08285609
##   0.5429770  0.03145474   0.06685636
##   0.5330626  0.03763184   0.08145356
##   0.5570273  0.03948657   0.08265040
##   0.5683632  0.03730431   0.07849854
##   0.5631842  0.03663926   0.07678405
##   0.5758562  0.03483930   0.07315695
##   0.5712759  0.03045508   0.06327053
##   0.5869201  0.03721804   0.07814438
##   0.5471224  0.03383751   0.07245848
##   0.5851025  0.02875253   0.06083880
##   0.5754297  0.03077736   0.06437173
##   0.5818841  0.03110770   0.06679376
##   0.6002900  0.02942571   0.06159563
##   0.6011870  0.03030955   0.06426296
##   0.6079054  0.02847538   0.06059109
##   0.5990938  0.02417482   0.05233494
##   0.6013742  0.02210729   0.04810795
##   0.6061870  0.02791413   0.05881502
##   0.5171456  0.02503762   0.05743251
##   0.5387677  0.03297126   0.06992072
##   0.5639126  0.03331173   0.07277313
##   0.5808149  0.03127880   0.06619241
##   0.5927774  0.02720043   0.05811248
##   0.5991408  0.03406167   0.07042201
##   0.6047117  0.03330791   0.06925659
##   0.6189718  0.02876857   0.05908081
##   0.6154176  0.02933371   0.06084238
##   0.6145587  0.02983024   0.06136669
##   0.5108602  0.02753795   0.05908533
##   0.5200771  0.02963807   0.06317179
##   0.5448621  0.03163938   0.06643466
##   0.5572472  0.03715770   0.07711604
##   0.5729225  0.03819616   0.07986788
##   0.5849380  0.04387361   0.09126109
##   0.5915193  0.03492118   0.07253683
##   0.5982519  0.03531545   0.07359388
##   0.5905825  0.03301882   0.06948311
##   0.5968970  0.02975709   0.06225711
##   0.5481971  0.03105093   0.06775289
##   0.5772178  0.02378279   0.04990814
##   0.5971521  0.02734852   0.05777045
##   0.6066114  0.02748552   0.05777791
##   0.6075743  0.02789555   0.05801328
##   0.6053878  0.02752251   0.05761901
##   0.5907568  0.02862461   0.06049590
##   0.5940568  0.02869773   0.05988225
##   0.5901794  0.02382209   0.04986138
##   0.5968362  0.02389333   0.04969293
##   0.5223668  0.02616293   0.05792231
##   0.5523792  0.02878512   0.06159664
##   0.5660404  0.02952033   0.06356401
##   0.5915798  0.02519588   0.05303270
##   0.6020469  0.02752672   0.05668169
##   0.6119612  0.02517679   0.05263668
##   0.6149341  0.02421316   0.05030188
##   0.6228926  0.02930726   0.06109909
##   0.6112014  0.02558445   0.05293903
##   0.6096875  0.02772749   0.05825149
##   0.5170963  0.02476453   0.05553599
##   0.5151831  0.03428780   0.07097545
##   0.5307831  0.03262224   0.06886704
##   0.5506689  0.03772972   0.07864446
##   0.5670876  0.03468113   0.07156817
##   0.5751079  0.03111586   0.06496373
##   0.5839473  0.03177174   0.06729742
##   0.6006997  0.02424229   0.05127555
##   0.5945101  0.02645968   0.05671359
##   0.5897804  0.02693891   0.05647164
##   0.5042317  0.04384368   0.09169462
##   0.5116983  0.04635709   0.09471758
##   0.5313406  0.04366831   0.09057961
##   0.5417169  0.03600518   0.07295383
##   0.5442813  0.03760072   0.07806973
##   0.5506486  0.03492069   0.07075305
##   0.5546959  0.03571396   0.07309115
##   0.5568940  0.04199370   0.08714508
##   0.5564235  0.04430977   0.09116239
##   0.5444169  0.04369730   0.09047547
##   0.5212752  0.04707608   0.09720894
##   0.5214658  0.04499715   0.09306589
##   0.5309629  0.04174981   0.08537250
##   0.5422248  0.04156958   0.08675282
##   0.5400004  0.04451907   0.09187509
##   0.5411602  0.03883559   0.08014758
##   0.5513452  0.04385616   0.09079675
##   0.5450848  0.03872794   0.08008243
##   0.5402264  0.03435820   0.07034475
##   0.5449724  0.03538585   0.07296943
##   0.5188928  0.04727114   0.09785920
##   0.5137496  0.04858935   0.10136736
##   0.5259463  0.04446813   0.09003924
##   0.5206879  0.04832771   0.09887403
##   0.5227818  0.04496342   0.09210506
##   0.5283646  0.03762565   0.07612483
##   0.5311199  0.04211432   0.08647997
##   0.5358893  0.04620546   0.09478386
##   0.5415556  0.03892112   0.08122184
##   0.5337292  0.04504885   0.09346850
##   0.5044123  0.03775535   0.07447129
##   0.5642861  0.03142521   0.06605216
##   0.5863658  0.02643911   0.05574419
##   0.5788642  0.03157367   0.06709909
##   0.5805628  0.03552186   0.07430208
##   0.5802454  0.03754532   0.07901513
##   0.5887020  0.03661169   0.07723999
##   0.5935198  0.03418836   0.07300737
##   0.5912376  0.03279460   0.06912068
##   0.5954065  0.03463777   0.07258563
##   0.5089089  0.03655702   0.07330838
##   0.5502465  0.03551789   0.07336626
##   0.5628419  0.03490337   0.07189782
##   0.5760193  0.02298250   0.04879009
##   0.5821927  0.02977339   0.06225723
##   0.5800978  0.03052812   0.06414805
##   0.5906182  0.02667596   0.05631229
##   0.5991200  0.02777143   0.05892695
##   0.5988207  0.03564606   0.07645734
##   0.6001534  0.03607723   0.07664771
##   0.4989912  0.03302064   0.06698692
##   0.5208135  0.03716078   0.07714448
##   0.5422144  0.03392747   0.06919272
##   0.5477268  0.03304372   0.07001594
##   0.5454116  0.03798427   0.08016327
##   0.5562474  0.03870330   0.08041220
##   0.5550359  0.03518586   0.07339118
##   0.5817618  0.03630595   0.07601738
##   0.5744521  0.02986221   0.06199226
##   0.5821185  0.03600664   0.07428438
##   0.5441500  0.04197669   0.09029240
##   0.5841730  0.03171718   0.06397713
##   0.5834974  0.03399715   0.07024507
##   0.5867952  0.03128235   0.06673191
##   0.5890839  0.03428360   0.07308671
##   0.5916379  0.03414146   0.07275355
##   0.6053033  0.03153638   0.06636247
##   0.5925895  0.03097384   0.06430859
##   0.5986427  0.03381693   0.07090420
##   0.5961111  0.02935593   0.06152150
##   0.5226873  0.02758189   0.06096110
##   0.5632308  0.03816074   0.08161615
##   0.5749646  0.03041004   0.06504771
##   0.5997318  0.03525065   0.07495393
##   0.5973271  0.02959861   0.06275124
##   0.6016746  0.03006988   0.06406117
##   0.6073858  0.03462254   0.07299245
##   0.6058377  0.03301105   0.06848608
##   0.6020970  0.03125907   0.06454750
##   0.6057274  0.03241306   0.06752622
##   0.5148866  0.02905466   0.06433447
##   0.5390347  0.03444367   0.07208687
##   0.5498964  0.04034992   0.08495636
##   0.5691522  0.03893100   0.08172473
##   0.5729750  0.03301208   0.07051275
##   0.5841490  0.02770665   0.05794515
##   0.5936804  0.02405845   0.05203295
##   0.5919237  0.02549919   0.05342341
##   0.6058790  0.02843001   0.05988551
##   0.5999448  0.02753489   0.05859149
##   0.5552277  0.03164579   0.06690612
##   0.5869941  0.02537365   0.05411274
##   0.5867479  0.02977445   0.06139830
##   0.5846483  0.03051675   0.06451691
##   0.6007183  0.02836043   0.05951653
##   0.5995462  0.02510463   0.05209373
##   0.5967910  0.02685240   0.05463060
##   0.6008504  0.02893028   0.06099129
##   0.5897348  0.03273025   0.06770714
##   0.5838191  0.02802303   0.05836531
##   0.5209105  0.03655691   0.07452222
##   0.5635245  0.03541104   0.07421372
##   0.5779275  0.03093168   0.06593276
##   0.5889012  0.02866678   0.06051698
##   0.5986066  0.02909130   0.06081404
##   0.6041638  0.03004180   0.06282546
##   0.6016781  0.03020032   0.06330321
##   0.5992187  0.03053641   0.06493718
##   0.6017382  0.02806929   0.05880999
##   0.6001568  0.03377323   0.07066079
##   0.5120004  0.03332007   0.07139964
##   0.5301313  0.03469333   0.07131935
##   0.5566584  0.03874601   0.08242654
##   0.5804191  0.03394473   0.07152096
##   0.5836423  0.03216495   0.06764591
##   0.5887043  0.02847678   0.06055578
##   0.6018528  0.02752930   0.05873195
##   0.6104733  0.02355763   0.04976941
##   0.6046108  0.03010337   0.06286530
##   0.6067995  0.02414104   0.05078873
##   0.5520928  0.03020684   0.06206806
##   0.5799999  0.02759902   0.05974073
##   0.5758925  0.03759393   0.08009871
##   0.5846172  0.03451766   0.07274120
##   0.5839624  0.03765868   0.07840593
##   0.6020309  0.03161781   0.06545618
##   0.5897636  0.03581917   0.07437561
##   0.5891368  0.03432899   0.07127742
##   0.5899718  0.03482340   0.07264926
##   0.5920343  0.03432148   0.07072547
##   0.5336794  0.04045648   0.08430304
##   0.5736655  0.04120289   0.08451669
##   0.5948249  0.03199455   0.06570885
##   0.6026876  0.02995352   0.06227179
##   0.6108138  0.03077921   0.06367999
##   0.6082740  0.02804759   0.05863661
##   0.6142975  0.02844371   0.06003546
##   0.6074679  0.02931430   0.06172579
##   0.6056868  0.02681293   0.05639974
##   0.6002665  0.03161779   0.06557887
##   0.5104267  0.03222468   0.06566327
##   0.5332100  0.04378971   0.09090689
##   0.5617907  0.03623420   0.07596338
##   0.5806184  0.03298525   0.06823559
##   0.5943340  0.02943948   0.06157529
##   0.5970835  0.03087593   0.06494774
##   0.5999543  0.02633078   0.05563549
##   0.5988983  0.02944703   0.06202289
##   0.6051584  0.02715112   0.05723168
##   0.6021276  0.02462742   0.05376976
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final values used for the model were n.trees = 40, interaction.depth
##  = 5, shrinkage = 0.2 and n.minobsinnode = 20.
trellis.par.set(caretTheme())
plot(gbmFit)

ggplot(gbmFit)

##Accuracy  0.8118678 (Stand.Dev. 0.03860621)