# for Core packages
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# for financial analysis
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.26     ✔ xts                  0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary()            masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# for times series
library(timetk)
## 
## Attaching package: 'timetk'
## 
## The following object is masked from 'package:tidyquant':
## 
##     FANG

Goal: Apply Matt Dancho’s tutorial to state unemployment initial claims of New England states.

The following is the replication of Matt Dancho’s tutorial on this page

start_date <- "1989-01-01"

symbols_txt <- c("CTICLAIMS", # Connecticut
                 "MEICLAIMS", # Maine
                 "MAICLAIMS", # Massachusetts
                 "NHICLAIMS", # New Hampshire
                 "RIICLAIMS", # Rhode Island
                 "VTICLAIMS") # Vermont

claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
    mutate(symbol = fct_recode(symbol,
                               "Connecticut"   = "CTICLAIMS",
                               "Maine"         = "MEICLAIMS",
                               "Massachusetts" = "MAICLAIMS",
                               "New Hampshire" = "NHICLAIMS",
                               "Rhode Island"  = "RIICLAIMS",
                               "Vermont"       = "VTICLAIMS")) %>%
    rename(claims = price)

Plotting time series

claims_tbl
## # A tibble: 11,358 × 3
##    symbol      date       claims
##    <fct>       <date>      <int>
##  1 Connecticut 1989-01-07   8345
##  2 Connecticut 1989-01-14   6503
##  3 Connecticut 1989-01-21   3821
##  4 Connecticut 1989-01-28   4663
##  5 Connecticut 1989-02-04   4162
##  6 Connecticut 1989-02-11   4337
##  7 Connecticut 1989-02-18   4079
##  8 Connecticut 1989-02-25   3556
##  9 Connecticut 1989-03-04   3826
## 10 Connecticut 1989-03-11   3515
## # ℹ 11,348 more rows
claims_tbl %>%
    plot_time_series(.date_var = date, .value = claims)
claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1893
## 2 Massachusetts  1893
## 3 Maine          1893
## 4 New Hampshire  1893
## 5 Rhode Island   1893
## 6 Vermont        1893
claims_tbl %>%
    group_by(symbol) %>%
    plot_time_series(.date_var = date, 
                     .value = claims, 
                     .facet_ncol = 2, 
                     .facet_scales = "free", 
                     .interactive = FALSE)

Static ggplot2 Visulization and Customization

claims_tbl %>%
    plot_time_series(date, claims,
                     .color_var = month(date, label = TRUE),
                     .interactive = FALSE,
                     #customize 
                     .title = "Unemployment Claims Data", 
                     .x_lab = "Year", 
                     .y_lab = "unemployment Claims Filed", 
                     .color_lab = "Month")

Box plots

claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1893
## 2 Massachusetts  1893
## 3 Maine          1893
## 4 New Hampshire  1893
## 5 Rhode Island   1893
## 6 Vermont        1893
claims_tbl %>%
    filter_by_time(.date_var = date, .end_date = "2009") %>%
    group_by(symbol) %>%
    plot_time_series_boxplot(.date_var = date, 
                             .value = claims, 
                             .period = "1 year", 
                             .facet_ncol = 2)

Regression plots

claims_tbl %>%
    group_by(symbol) %>%
    plot_time_series_regression(.date_var = date, 
                                .formula = log(claims) ~ as.numeric(date) + month(date, label = TRUE),
                                .facet_ncol = 2, 
                                .interactive = FALSE, 
                                .show_summary = FALSE)

Plotting Seasonality and Correlation

Correlation Plots

claims_tbl %>%
    group_by(symbol) %>%
    plot_acf_diagnostics(date, claims, .lags = "1 month")
claims_tbl %>%
    group_by(symbol) %>%
    plot_acf_diagnostics(date, claims, .ccf_vars = c(date, claims), 
                         .lags = "3 months")

Seasonality

claims_tbl %>% 
    plot_seasonal_diagnostics(date, claims)
claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1893
## 2 Massachusetts  1893
## 3 Maine          1893
## 4 New Hampshire  1893
## 5 Rhode Island   1893
## 6 Vermont        1893
claims_tbl %>%
    group_by(symbol) %>%
    plot_seasonal_diagnostics(date, claims)

STL Diagnostics

claims_tbl %>%
    group_by(symbol) %>%
    plot_stl_diagnostics(
        date, claims, 
        .feature_set = c("observed", "season", "trend", "remainder"))
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year

Time Series Data Wrangling

Summarize by Time

claims_tbl %>% 
    group_by(symbol) %>%
    summarize_by_time(.date_var = date, volume = sum(claims), .by = "year") %>%
    plot_time_series(date, volume, .facet_ncol = 2, .interactive = FALSE)

claims_tbl %>%
    group_by(symbol) %>%
    summarise_by_time(.date_var = date, adjusted = mean(claims), .by = "year") %>%
    plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)

Filter By Time

claims_tbl %>%
    group_by(symbol) %>%
    filter_by_time(.date_var = date,
                   .start_date = "1989", 
                   .end_date = "2009") %>%
    plot_time_series(date, claims, .facet_ncol = 2)

Padding Data

claims_tbl %>%
    group_by(symbol) %>%
    pad_by_time(date, .by = "day", .fill_na_direction = "down")
## # A tibble: 79,470 × 3
## # Groups:   symbol [6]
##    symbol      date       claims
##    <fct>       <date>      <int>
##  1 Connecticut 1989-01-07   8345
##  2 Connecticut 1989-01-08   8345
##  3 Connecticut 1989-01-09   8345
##  4 Connecticut 1989-01-10   8345
##  5 Connecticut 1989-01-11   8345
##  6 Connecticut 1989-01-12   8345
##  7 Connecticut 1989-01-13   8345
##  8 Connecticut 1989-01-14   6503
##  9 Connecticut 1989-01-15   6503
## 10 Connecticut 1989-01-16   6503
## # ℹ 79,460 more rows

Sliding (Rolling) Calculations

claims_tbl %>%
    head(10) %>%
    mutate(rolling_avg_2 = slidify_vec(claims, mean, .period = 2, 
                                       .align = "right", 
                                       .partial = TRUE))
## # A tibble: 10 × 4
##    symbol      date       claims rolling_avg_2
##    <fct>       <date>      <int>         <dbl>
##  1 Connecticut 1989-01-07   8345         8345 
##  2 Connecticut 1989-01-14   6503         7424 
##  3 Connecticut 1989-01-21   3821         5162 
##  4 Connecticut 1989-01-28   4663         4242 
##  5 Connecticut 1989-02-04   4162         4412.
##  6 Connecticut 1989-02-11   4337         4250.
##  7 Connecticut 1989-02-18   4079         4208 
##  8 Connecticut 1989-02-25   3556         3818.
##  9 Connecticut 1989-03-04   3826         3691 
## 10 Connecticut 1989-03-11   3515         3670.
lm_roll <- slidify(~ lm(..1 ~ ..2), .period = 90, 
                   .unlist = FALSE, .align = "right")

claims_tbl %>%
    select(symbol, date, claims) %>%
    group_by(symbol) %>%
    mutate(numeric_date = as.numeric(date)) %>%
    mutate(rolling_lm = lm_roll(claims, numeric_date)) %>%
    filter(!is.na(rolling_lm))
## # A tibble: 10,824 × 5
## # Groups:   symbol [6]
##    symbol      date       claims numeric_date rolling_lm
##    <fct>       <date>      <int>        <dbl> <list>    
##  1 Connecticut 1990-09-22   3927         7569 <lm>      
##  2 Connecticut 1990-09-29   4471         7576 <lm>      
##  3 Connecticut 1990-10-06   4430         7583 <lm>      
##  4 Connecticut 1990-10-13   4494         7590 <lm>      
##  5 Connecticut 1990-10-20   4894         7597 <lm>      
##  6 Connecticut 1990-10-27   4653         7604 <lm>      
##  7 Connecticut 1990-11-03   4719         7611 <lm>      
##  8 Connecticut 1990-11-10   5347         7618 <lm>      
##  9 Connecticut 1990-11-17   4824         7625 <lm>      
## 10 Connecticut 1990-11-24   5367         7632 <lm>      
## # ℹ 10,814 more rows