##chargement des packages----
library(questionr)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.1 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tableone)
library(labelled)
library(gtsummary)
## #Uighur
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(readxl)
library(effects)
## Le chargement a nécessité le package : carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(survival)
library(survminer)
## Le chargement a nécessité le package : ggpubr
##
## Attachement du package : 'survminer'
##
## L'objet suivant est masqué depuis 'package:survival':
##
## myeloma
library(ggplot2)
library(dplyr)
library(knitr)
library(cowplot)
##
## Attachement du package : 'cowplot'
##
## L'objet suivant est masqué depuis 'package:ggpubr':
##
## get_legend
##
## L'objet suivant est masqué depuis 'package:lubridate':
##
## stamp
##chargement des données
informations <- read_excel("informations.xlsx")
## New names:
## • `Dosage (mg/j)` -> `Dosage (mg/j)...13`
## • `Dosage (mg/j)` -> `Dosage (mg/j)...15`
##tableau descriptif patients ----
tbl_summary(
informations, include = c("Age", "Sexe", "Maladie",
"Mutation", "anticancereux_prescrit","ligne.cat",
"comedication","n_comedication" ,"tac"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 125 |
| Age |
68 [40 - 88] |
| Sexe |
|
| F |
79 (63.2%) |
| M |
46 (36.8%) |
| Maladie |
|
| Adénocarcinome |
101 (92.7%) |
| Adénocarcinome, carcinome neuroendocrine non à petite cellule, non épidermoïde |
1 (0.9%) |
| Cancer épidermoïde |
2 (1.8%) |
| Carcinome non à petites cellules |
2 (1.8%) |
| Thymome |
1 (0.9%) |
| Thymome B3 |
1 (0.9%) |
| Tumeurs neuroendocrines digestives et pulmonaires |
1 (0.9%) |
| Unknown |
16 |
| Mutation |
|
| ALK |
26 (21.1%) |
| ALK/BRAF |
1 (0.8%) |
| Aucune |
7 (5.7%) |
| BRAF |
6 (4.9%) |
| EGFR |
55 (44.7%) |
| EGFR MET |
2 (1.6%) |
| EGFR TP53 PI3CA |
2 (1.6%) |
| HER2 |
1 (0.8%) |
| KIF5 B-RET |
1 (0.8%) |
| KRAS |
12 (9.8%) |
| KRAS STK11 |
1 (0.8%) |
| MET |
2 (1.6%) |
| RET |
1 (0.8%) |
| ROS |
1 (0.8%) |
| ROS1 |
5 (4.1%) |
| Unknown |
2 |
| anticancereux_prescrit |
|
| Afatinib |
5 (4.0%) |
| Alectinib |
7 (5.6%) |
| Brigatinib |
9 (7.2%) |
| Cabozantinib |
3 (2.4%) |
| Crizotinib |
3 (2.4%) |
| Dabrafénib Trametinib |
6 (4.8%) |
| Evérolimus |
6 (4.8%) |
| Géfitinib |
1 (0.8%) |
| Lenvatinib |
1 (0.8%) |
| Lorlatinib |
14 (11.2%) |
| Lorlatinib Dabrafénib |
1 (0.8%) |
| Mobocertinib |
3 (2.4%) |
| Osimertinib |
48 (38.4%) |
| Osimertinib Crizotinib |
2 (1.6%) |
| Osimertinib Tepotinib |
1 (0.8%) |
| Pralsetinib |
1 (0.8%) |
| Sotorasib |
14 (11.2%) |
| ligne.cat |
|
| 1 |
7 (11.9%) |
| 2 |
17 (28.8%) |
| 3 et plus |
35 (59.3%) |
| Unknown |
66 |
| comedication |
|
| Non |
5 (4.0%) |
| Oui |
120 (96.0%) |
| n_comedication |
6.0 [0.0 - 21.0] |
| tac |
|
| IM |
1 (0.8%) |
| Non |
78 (62.4%) |
| Oui |
46 (36.8%) |
##tableau descriptif activité pharmacie ----
tbl_summary(
informations, include = c("consultation_initiale", "analyse_pharmaceutique",
"cr_analys_pharma_envoye", "delai_consult_pharma", "envoi_evaluable",
"oncologue_destinataire_cr","ide_destinataire_cr", "officine_destinataire_cr",
"med_t_destinataire_cr", "consult_toxicite"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 125 |
| consultation_initiale |
|
| Non |
118 (94.4%) |
| Oui |
7 (5.6%) |
| analyse_pharmaceutique |
|
| Non |
11 (8.8%) |
| Oui |
114 (91.2%) |
| cr_analys_pharma_envoye |
|
| IM |
28 (22.4%) |
| Non |
14 (11.2%) |
| Oui |
83 (66.4%) |
| delai_consult_pharma |
3 [-58 - 725] |
| Unknown |
15 |
| envoi_evaluable |
|
| Non |
12 (9.6%) |
| Oui |
113 (90.4%) |
| oncologue_destinataire_cr |
|
| IM |
38 (30.4%) |
| Non |
14 (11.2%) |
| Oui |
73 (58.4%) |
| ide_destinataire_cr |
|
| IM |
38 (30.4%) |
| Non |
25 (20.0%) |
| Oui |
62 (49.6%) |
| officine_destinataire_cr |
|
| IM |
38 (30.4%) |
| Non |
77 (61.6%) |
| Oui |
10 (8.0%) |
| med_t_destinataire_cr |
|
| IM |
39 (31.2%) |
| Non |
86 (68.8%) |
| consult_toxicite |
|
| Non |
60 (48.0%) |
| Oui |
65 (52.0%) |
##Retours des analyses pharmaceutiques
##chargement des données
analyse_pharma <- read_excel("analyse_pharma.xlsx")
analyse_pharma_eligible<-filter(analyse_pharma, c(eligible=="oui"))
interaction<-filter(analyse_pharma_eligible, c(ligne_ddi==1))
##description des interactions globales
tbl_summary(
interaction, include = c("interaction_retrouvee", "Proposition_STP", 'intervention_pharmacien'),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 507 |
| interaction_retrouvee |
|
| Non |
9 (1.8%) |
| Oui |
498 (98.2%) |
| Proposition_STP |
|
| Oui |
52 (100.0%) |
| Unknown |
455 |
| intervention_pharmacien |
|
| Adaptation plan de prise |
160 (32.5%) |
| Arrêt comédication |
16 (3.2%) |
| Modification posologique anticancéreux |
7 (1.4%) |
| Modification posologique comédication |
4 (0.8%) |
| Optimisation en fonction des indications |
1 (0.2%) |
| Substitution comédication |
3 (0.6%) |
| Surveillance renforcée EI |
302 (61.3%) |
| Unknown |
14 |
##interactions anticancéreux sur comed
atk_comed<-filter(interaction, c(type_interaction=="Anticancéreux sur comédication"))
tbl_summary(
atk_comed, include = c("risque_interaction", "anticancereux_concerne", "cat_atc"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 337 |
| risque_interaction |
|
| Diminution efficacité comédication |
203 (60.2%) |
| Majoration toxicité comédication |
91 (27.0%) |
| Majoration toxicité ou diminution efficacité comed |
41 (12.2%) |
| Potentialisation d'EI |
2 (0.6%) |
| anticancereux_concerne |
|
| Afatinib |
1 (0.3%) |
| Alectinib |
1 (0.3%) |
| Alectinib (métabolite actif) |
1 (0.3%) |
| Brigatinib |
26 (7.7%) |
| Cabozantinib |
8 (2.4%) |
| Crizotinib |
20 (5.9%) |
| Dabrafénib |
35 (10.4%) |
| Evérolimus |
8 (2.4%) |
| Lorlatinib |
46 (13.6%) |
| Mobocertinib |
7 (2.1%) |
| Osimertinib |
137 (40.7%) |
| Sotorasib |
45 (13.4%) |
| Tramétinib |
2 (0.6%) |
| cat_atc |
|
| Agents acting on the renin |
10 (3.0%) |
| Analgesics |
72 (21.4%) |
| Anesthetics |
4 (1.2%) |
| ANTI-ACNE PREPARATIONS |
2 (0.6%) |
| Antianemic preparations |
2 (0.6%) |
| Antibacterials for systemic use |
1 (0.3%) |
| Antidiarrheals, intestinal antiinflammatory/antiinfective agents |
6 (1.8%) |
| Antiemetics and antinauseants |
5 (1.5%) |
| Antiepileptics |
6 (1.8%) |
| Antigout preparations |
3 (0.9%) |
| Antihistamines for systemic use |
1 (0.3%) |
| Antithrombotic agents |
15 (4.5%) |
| Beta blocking agents |
14 (4.2%) |
| Calcium channel blockers |
14 (4.2%) |
| Cardiac therapy |
3 (0.9%) |
| Corticosteroids for systemic use |
33 (9.8%) |
| Cough and cold preparations |
1 (0.3%) |
| Diuretics |
14 (4.2%) |
| DRUGS FOR ACID RELATED DISORDERS |
32 (9.5%) |
| Drugs for functional gastrointestinal disorders |
1 (0.3%) |
| Drugs for obstructive airway diseases |
8 (2.4%) |
| Drugs used in diabetes |
1 (0.3%) |
| Laxatives |
7 (2.1%) |
| Lipid modifying agents |
29 (8.6%) |
| Psychoanaleptics |
14 (4.2%) |
| Psycholeptics |
35 (10.4%) |
| Urologicals |
4 (1.2%) |
#sources interactions
tbl_summary(
atk_comed, include = c("BCRP", "P-gp", "MATE1", "MRP2", "OAT3", "OATP1",
"OATP1B1", "OATP1B3", "OTC2", "CYP2C8", "CYP2C9", "CYP2C19",
"CYP3A", "absorption"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 337 |
| BCRP |
|
| Modéré |
1 (0.3%) |
| Non |
308 (91.4%) |
| Oui |
28 (8.3%) |
| P-gp |
|
| Modéré |
24 (7.1%) |
| Non |
290 (86.1%) |
| Oui |
23 (6.8%) |
| MATE1 |
|
| Non |
336 (99.7%) |
| Oui |
1 (0.3%) |
| MRP2 |
|
| Non |
329 (97.6%) |
| Oui |
8 (2.4%) |
| OAT3 |
|
| Non |
333 (98.8%) |
| Oui |
4 (1.2%) |
| OATP1 |
|
| Non |
336 (99.7%) |
| Oui |
1 (0.3%) |
| OATP1B1 |
|
| Non |
335 (99.4%) |
| Oui |
2 (0.6%) |
| OATP1B3 |
|
| Non |
333 (98.8%) |
| Oui |
4 (1.2%) |
| OTC2 |
|
| Non |
336 (99.7%) |
| Oui |
1 (0.3%) |
| CYP2C8 |
|
| Non |
336 (99.7%) |
| Oui |
1 (0.3%) |
| CYP2C9 |
|
| Faible |
2 (0.6%) |
| Non |
332 (98.5%) |
| Oui |
3 (0.9%) |
| CYP2C19 |
|
| Faible |
2 (0.6%) |
| Non |
335 (99.4%) |
| CYP3A |
|
| Faible |
135 (40.1%) |
| Modéré |
71 (21.1%) |
| Non |
83 (24.6%) |
| Oui |
48 (14.2%) |
| absorption |
|
| Absorption |
2 (0.6%) |
| Non |
335 (99.4%) |
##interactions comed sur atk
comed_atk<-filter(interaction, c(type_interaction=="Comédication sur anticancéreux"))
tbl_summary(
comed_atk, include = c("risque_interaction", "anticancereux_concerne", "cat_atc"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 142 |
| risque_interaction |
|
| Diminution efficacité anticancéreux |
34 (25.8%) |
| Majoration toxicité anticancéreux |
96 (72.7%) |
| Potentialisation d'EI |
2 (1.5%) |
| Unknown |
10 |
| anticancereux_concerne |
|
| Afatinib |
8 (5.6%) |
| Alectinib |
1 (0.7%) |
| Alectinib + mtb actif |
1 (0.7%) |
| Brigatinib |
5 (3.5%) |
| Cabozantinib |
7 (4.9%) |
| Crizotinib |
8 (5.6%) |
| Dabrafénib |
11 (7.7%) |
| Evérolimus |
7 (4.9%) |
| Lenvatinib |
1 (0.7%) |
| Lorlatinib |
6 (4.2%) |
| Mobocertinib |
5 (3.5%) |
| Osimertinib |
61 (43.0%) |
| Sotorasib |
13 (9.2%) |
| Tramétinib |
8 (5.6%) |
| cat_atc |
|
| Agents acting on the renin |
14 (9.9%) |
| Analgesics |
2 (1.4%) |
| Antibacterials for systemic use |
2 (1.4%) |
| Antidiarrheals, intestinal antiinflammatory/antiinfective agents |
14 (9.9%) |
| Antiemetics and antinauseants |
1 (0.7%) |
| Antiepileptics |
1 (0.7%) |
| Antiinflammatory and antirheumatic products |
2 (1.4%) |
| Antithrombotic agents |
2 (1.4%) |
| Antivirals for systemic use |
2 (1.4%) |
| Beta blocking agents |
1 (0.7%) |
| Calcium channel blockers |
15 (10.6%) |
| Cardiac therapy |
3 (2.1%) |
| Corticosteroids for systemic use |
1 (0.7%) |
| Cough and cold preparations |
1 (0.7%) |
| Diuretics |
6 (4.2%) |
| DRUGS FOR ACID RELATED DISORDERS |
46 (32.4%) |
| Drugs for functional gastrointestinal disorders |
2 (1.4%) |
| Lipid modifying agents |
8 (5.6%) |
| Nasal preparations |
2 (1.4%) |
| Other drugs for disorders of the musculo |
1 (0.7%) |
| Pituitary and hypothalamic hormones |
1 (0.7%) |
| Psychoanaleptics |
8 (5.6%) |
| Psycholeptics |
3 (2.1%) |
| TOPICAL PRODUCTS FOR JOINT AND MUSCULAR PAIN |
1 (0.7%) |
| VASOPROTECTIVES |
3 (2.1%) |
#sources interactions
tbl_summary(
comed_atk, include = c("BCRP", "P-gp", "MATE1", "MRP2", "OAT3", "OATP1",
"OATP1B1", "OATP1B3", "OTC2", "CYP2C8", "CYP2C9", "CYP2C19",
"CYP3A", "absorption"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 142 |
| BCRP |
|
| Modéré |
1 (0.7%) |
| Non |
100 (70.4%) |
| Oui |
41 (28.9%) |
| P-gp |
|
| Modéré |
7 (4.9%) |
| Non |
99 (69.7%) |
| Oui |
36 (25.4%) |
| MATE1 |
|
| Non |
135 (95.1%) |
| Oui |
7 (4.9%) |
| MRP2 |
|
| Non |
141 (99.3%) |
| Oui |
1 (0.7%) |
| OAT3 |
|
| Non |
142 (100.0%) |
| OATP1 |
|
| Non |
142 (100.0%) |
| OATP1B1 |
|
| Non |
142 (100.0%) |
| OATP1B3 |
|
| Non |
142 (100.0%) |
| OTC2 |
|
| Non |
142 (100.0%) |
| CYP2C8 |
|
| Faible |
1 (0.7%) |
| Non |
141 (99.3%) |
| CYP2C9 |
|
| Modéré |
1 (0.7%) |
| Non |
141 (99.3%) |
| CYP2C19 |
|
| Non |
142 (100.0%) |
| CYP3A |
|
| Faible |
7 (4.9%) |
| Modéré |
9 (6.3%) |
| Non |
123 (86.6%) |
| Oui |
2 (1.4%) |
| Puissant |
1 (0.7%) |
| absorption |
|
| Absoption HE |
2 (1.4%) |
| Absorption |
17 (12.0%) |
| Non |
109 (76.8%) |
| pH gastrique |
14 (9.9%) |
##interactions comed sur comed
comed_comed<-filter(interaction, c(type_interaction=="Comédication sur comédication"))
tbl_summary(
comed_comed, include = c("risque_interaction", "anticancereux_concerne", "comedication_concernee"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 23 |
| risque_interaction |
|
| Diminution efficacité comédication |
18 (78.3%) |
| Majoration toxicité ou diminution efficacité comed |
2 (8.7%) |
| Potentialisation d'EI |
3 (13.0%) |
| anticancereux_concerne |
|
| Bisoprolol |
1 (14.3%) |
| Candésartan |
1 (14.3%) |
| Doxycycline |
1 (14.3%) |
| Escitalopram |
1 (14.3%) |
| Formotérol |
1 (14.3%) |
| Insuline |
1 (14.3%) |
| Tramadol |
1 (14.3%) |
| Unknown |
16 |
| comedication_concernee |
|
| Amiodarone |
1 (4.3%) |
| Bétaxolol |
1 (4.3%) |
| Calcium |
1 (4.3%) |
| CARBOLEVURE |
1 (4.3%) |
| Diosmectite |
7 (30.4%) |
| FERO-GRAD VITAMINE C |
1 (4.3%) |
| GAVISCON |
6 (26.1%) |
| Octreotide |
2 (8.7%) |
| Racécadotril |
1 (4.3%) |
| Siméticone |
1 (4.3%) |
| Zopiclone, bromazépam, hydroxyzine, alprazolam |
1 (4.3%) |
#sources interactions
tbl_summary(
comed_comed, include = c("BCRP", "P-gp", "MATE1", "MRP2", "OAT3", "OATP1",
"OATP1B1", "OATP1B3", "OTC2", "CYP2C8", "CYP2C9", "CYP2C19",
"CYP3A", "absorption"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 23 |
| BCRP |
|
| Non |
23 (100.0%) |
| P-gp |
|
| Non |
23 (100.0%) |
| MATE1 |
|
| Non |
23 (100.0%) |
| MRP2 |
|
| Non |
23 (100.0%) |
| OAT3 |
|
| Non |
23 (100.0%) |
| OATP1 |
|
| Non |
23 (100.0%) |
| OATP1B1 |
|
| Non |
23 (100.0%) |
| OATP1B3 |
|
| Non |
23 (100.0%) |
| OTC2 |
|
| Non |
23 (100.0%) |
| CYP2C8 |
|
| Non |
23 (100.0%) |
| CYP2C9 |
|
| Non |
23 (100.0%) |
| CYP2C19 |
|
| Non |
23 (100.0%) |
| CYP3A |
|
| Non |
22 (95.7%) |
| Oui |
1 (4.3%) |
| absorption |
|
| Absorption |
17 (73.9%) |
| Non |
6 (26.1%) |
##interactions atk sur atk
atk_atk<-filter(interaction, c(type_interaction=="Anticancéreux sur anticancéreux"))
tbl_summary(
atk_atk, include = c("risque_interaction", "anticancereux_concerne", "comedication_concernee"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 5 |
| risque_interaction |
|
| Diminution efficacité anticancéreux |
2 (40.0%) |
| Majoration toxicité anticancéreux |
3 (60.0%) |
| anticancereux_concerne |
|
| Crizotinib |
1 (20.0%) |
| Osimertinib |
2 (40.0%) |
| Tépotinib |
1 (20.0%) |
| Tramétinib |
1 (20.0%) |
| comedication_concernee |
|
| Crizotinib |
1 (20.0%) |
| Dabrafénib |
1 (20.0%) |
| Osimertinib |
2 (40.0%) |
| Tépotinib |
1 (20.0%) |
#sources interactions
tbl_summary(
atk_atk, include = c("BCRP", "P-gp", "MATE1", "MRP2", "OAT3", "OATP1",
"OATP1B1", "OATP1B3", "OTC2", "CYP2C8", "CYP2C9", "CYP2C19",
"CYP3A", "absorption"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 5 |
| BCRP |
|
| Non |
5 (100.0%) |
| P-gp |
|
| Non |
2 (40.0%) |
| Oui |
3 (60.0%) |
| MATE1 |
|
| Non |
5 (100.0%) |
| MRP2 |
|
| Non |
5 (100.0%) |
| OAT3 |
|
| Non |
5 (100.0%) |
| OATP1 |
|
| Non |
5 (100.0%) |
| OATP1B1 |
|
| Non |
5 (100.0%) |
| OATP1B3 |
|
| Non |
5 (100.0%) |
| OTC2 |
|
| Non |
5 (100.0%) |
| CYP2C8 |
|
| Non |
5 (100.0%) |
| CYP2C9 |
|
| Non |
5 (100.0%) |
| CYP2C19 |
|
| Non |
5 (100.0%) |
| CYP3A |
|
| Faible |
1 (20.0%) |
| Non |
2 (40.0%) |
| Oui |
2 (40.0%) |
| absorption |
|
| Non |
5 (100.0%) |
#Analyse des interactions avec TAC
##chargement des données
analyse_tac <- read_excel("analyse_tac.xlsx")
###descriptif
tbl_summary(
analyse_tac, include = c("type_traitement","intervention_pharmacien","nom"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
N = 235 |
| type_traitement |
|
| Alimentation |
10 (4.3%) |
| Apithérapie |
4 (1.7%) |
| Aromathérapie |
9 (3.8%) |
| Aucun |
83 (35.5%) |
| Complément alimentaire |
84 (35.9%) |
| Dispositif médical |
1 (0.4%) |
| Elixir |
1 (0.4%) |
| Gemmothérapie |
1 (0.4%) |
| Homéopathie |
37 (15.8%) |
| Mycothérapie |
2 (0.9%) |
| Phytothérapie |
2 (0.9%) |
| Unknown |
1 |
| intervention_pharmacien |
|
| Absence d'interaction |
1 (0.9%) |
| Contre-indiquée si porteur de PAC |
1 (0.9%) |
| Déconseillée |
76 (71.0%) |
| Déconseillée en gélule |
1 (0.9%) |
| Ok |
24 (22.4%) |
| Prise à 2h de distance |
4 (3.7%) |
| Unknown |
128 |
| nom |
|
| 100% FPP (extrait fermenté de papaye) de IMMUNE’AGE |
1 (0.7%) |
| ACEROLA C-max |
1 (0.7%) |
| Aceticum acidum 15CH |
1 (0.7%) |
| Ail de LA ROYALE |
1 (0.7%) |
| ALVITYL |
1 (0.7%) |
| ALVITYL Vitalité |
1 (0.7%) |
| ANACAPS |
1 (0.7%) |
| Apis 15CH |
1 (0.7%) |
| Apis mellifica 8DH, Aurum muriaticum natronatum 7DH, Avena Sativa 4DH, Hypericum Perforatum 4DH, Ignatia amara 5DH, Phosphoricum acidum 5DH |
1 (0.7%) |
| Aragonite D1 50%, calcarea carb D4 25%, quercus D3 |
1 (0.7%) |
| Argile par voie orale |
2 (1.3%) |
| Armoise |
1 (0.7%) |
| Artémisia Annua de HERBAL D-TOX |
1 (0.7%) |
| ARTERIA |
1 (0.7%) |
| Ashwagandha |
1 (0.7%) |
| BERBERIS RADIX D3, CARDUS MARIANUS D2, CHELIDONIUM RADIX D3, COLCHICUM D2, CURCUMA D2, SULFUR D8, TARAXACUM STANNO CULTUM D3 |
1 (0.7%) |
| BERROCA |
2 (1.3%) |
| BIBHITAKI FRUIT |
1 (0.7%) |
| BION Vitalité |
1 (0.7%) |
| BIOTIC P7 |
1 (0.7%) |
| BIOTICS 3B-G (vitamine B) |
1 (0.7%) |
| Bovista gigantea 5CH |
1 (0.7%) |
| BROMELAINE |
1 (0.7%) |
| Charbon végétal activé |
1 (0.7%) |
| Chelidonium D1, Curcuma D1, Taraxacum stanno cultum D3 |
1 (0.7%) |
| China 9CH |
1 (0.7%) |
| Chlorella + Spiruline de Biotona |
1 (0.7%) |
| Chlorure de magnésium et vitamine B6 |
2 (1.3%) |
| CHRYSANTELLUM |
1 (0.7%) |
| Compléments alimentaires |
1 (0.7%) |
| CORIOLUS VERSICOLOR EXTRAKT |
1 (0.7%) |
| Corrosol |
1 (0.7%) |
| Cuprum metallicum 9CH |
1 (0.7%) |
| Curcuma + poivre noir de LA ROYALE |
1 (0.7%) |
| D-Mulsion FORTE (vitamine D) de BIOTICS RESEARCH |
1 (0.7%) |
| D3 PROTECT (vitamine D3) |
1 (0.7%) |
| Desmodium |
2 (1.3%) |
| Dilution 5, 7 et 9CH |
1 (0.7%) |
| Epices, thés, infusions, graines… |
1 (0.7%) |
| EPS desmodium |
1 (0.7%) |
| EPS rhodiole et mélisse |
1 (0.7%) |
| ERGY D (Vit D) |
2 (1.3%) |
| ERGYMAG (Mg + zn) |
1 (0.7%) |
| ERGYMAG (Mg + Zn) |
1 (0.7%) |
| ERGYSIL (ortie, silicium, sélénium) |
1 (0.7%) |
| Ferments lactiques des laboratoire Dieti Natura |
1 (0.7%) |
| Ferrum metallicum 7 CH |
1 (0.7%) |
| Ferrum sid D10, Phosphorus D8, Silicea D12 W788 60cc dilution |
1 (0.7%) |
| Fleurs de Bach |
1 (0.7%) |
| FLEXOFYTOL (curcuma) |
1 (0.7%) |
| Floracare XL (bifidobactéries et des lactobacilles) de BIOTICS RESEARCH |
1 (0.7%) |
| Gelée royale |
1 (0.7%) |
| Glutathion |
1 (0.7%) |
| Glutathion Liposomé + de HOD |
1 (0.7%) |
| Graine de plantain |
1 (0.7%) |
| HAIR VOLUME |
1 (0.7%) |
| Huile essentielle de ravintsara |
1 (0.7%) |
| Huile essentielle de Romarin à verbénone |
1 (0.7%) |
| Huile essentielle de Tea tree |
1 (0.7%) |
| Huile essentielle de thym |
1 (0.7%) |
| Huile végétale de millepertuis |
2 (1.3%) |
| Huile végétale de rose musquée |
1 (0.7%) |
| Huille essentielle d'helichryse |
1 (0.7%) |
| Huille essentielle de lavandin |
1 (0.7%) |
| IMMUN ACTIFS |
1 (0.7%) |
| Influenzinum 15CH |
1 (0.7%) |
| INTENZYME FORTE |
1 (0.7%) |
| KIDNEY CLEANSE |
1 (0.7%) |
| KLARELINE |
1 (0.7%) |
| Lachesis 9CH, phosphorus 9CH, nux vomica 9CH |
1 (0.7%) |
| LACTIBIANE REFERENCE |
1 (0.7%) |
| LENODIAR |
1 (0.7%) |
| Levure de riz rouge, oméga 3 et CoQ10 |
1 (0.7%) |
| Lithothamne de LA ROYALE |
1 (0.7%) |
| Lycopodium clavatum 15CH |
1 (0.7%) |
| Lycopodium clavatum D10 |
1 (0.7%) |
| Macérat de gui de LA ROYALE |
1 (0.7%) |
| MAGN ACTIFS |
2 (1.3%) |
| Maitake |
1 (0.7%) |
| Medulo D8 |
1 (0.7%) |
| Mélisse en gélules ou tisanes |
1 (0.7%) |
| MENO ACTIFS |
1 (0.7%) |
| Miel, propolis |
1 (0.7%) |
| Natrum muriaticum 15 CH |
1 (0.7%) |
| Natrum sulfuricum 15CH |
1 (0.7%) |
| Nux vomica 9CH |
1 (0.7%) |
| Oméga 3 |
1 (0.7%) |
| OMEGA 3 de Solgar |
1 (0.7%) |
| OMEGABIANE DHA |
1 (0.7%) |
| OPTIFLOR |
1 (0.7%) |
| Phosphorus 30CH |
1 (0.7%) |
| Plumbum mellitum D12 30g Trit |
1 (0.7%) |
| Pollen de fleurs |
1 (0.7%) |
| Pollen en pelotes Bio Miel Besacier |
1 (0.7%) |
| PROCARTIL (glucosamine, chondrotoïne, manganèse, cuivre) |
1 (0.7%) |
| PROPOMAX (propolis verte et brune bio, bioflavonoides et artepilline c) |
1 (0.7%) |
| Prostate 8DH |
2 (1.3%) |
| Psyllium |
1 (0.7%) |
| RENFORSTIM |
1 (0.7%) |
| Ribes nigrum 1DH |
1 (0.7%) |
| Ruscus aculeatus 4DH |
1 (0.7%) |
| Selenium ACE Optimum 50+ |
1 (0.7%) |
| SEREMAG (magnésium, taurine et vitamine B6) |
1 (0.7%) |
| Serum de Yersin 9 CH |
1 (0.7%) |
| Sève de bouleau 1DH |
1 (0.7%) |
| STRESS’O (rhadiola, choline, lavande vrai) de PHYSIOSENS |
1 (0.7%) |
| Sulfate de magnésium |
1 (0.7%) |
| Sulfurum 7CH |
1 (0.7%) |
| Teinture mère de Calendula |
2 (1.3%) |
| Teinture mère de Dionaea Muscipula |
1 (0.7%) |
| Teinture mère GINKGO BILOBA |
1 (0.7%) |
| TEMPORAL (Levure de riz rouge, policaosanol, CoQ10) |
1 (0.7%) |
| Thé au citron ou orange-canelle |
1 (0.7%) |
| Thymuline 4CH |
1 (0.7%) |
| THYROSTIM (L-thyroxine, vit C, vit D, zinc…) de Copmed |
1 (0.7%) |
| Tisane |
1 (0.7%) |
| Tisane d’olivier et d’hibiscus |
1 (0.7%) |
| Tisane de thym et sauge |
2 (1.3%) |
| Tisane verveine |
1 (0.7%) |
| Tuberculinum 15CH |
1 (0.7%) |
| UNIBIANE HCA (garcinia) |
1 (0.7%) |
| UNIBIANE R-α lipoïque |
1 (0.7%) |
| Vitamine B12 |
1 (0.7%) |
| Vitamine C |
2 (1.3%) |
| VITAMINE C 1000 mg |
1 (0.7%) |
| Vitamine C liposomale de Biocyte |
1 (0.7%) |
| Vitamine C liposomale de LA ROYALE |
1 (0.7%) |
| Vitamine D |
1 (0.7%) |
| VITAMINE D3 |
1 (0.7%) |
| Vitamine d3 + k2 de Sunday Naturel |
1 (0.7%) |
| VITAMINE D3 2000UI |
1 (0.7%) |
| VITAMINE D3 800UI de Sante verte |
1 (0.7%) |
| Vitamine K2 |
1 (0.7%) |
| VITAMINE K2 |
1 (0.7%) |
| Weleda c692 |
1 (0.7%) |
| Weleda c720 |
1 (0.7%) |
| Zinc |
3 (2.0%) |
| Zinc (amino chelate) |
1 (0.7%) |
| Unknown |
84 |
#Consultations de toxicités
ct_classes <- read_excel("ct_classes.xlsx")
tbl_summary(
ct_classes, include = c("tox_digestive","tox_cutanee", "tox_muqueuse",
"tox_cardiovasc", "tox_ophtalmo",
"tox_pulmonaire", "tox_generale",
"tox_hemato", "tox_musculo_squeletique",
"tox_uro_nephro", "tox_hepatique",
"tox_neuro", "tox_psy", "tox_bio"),
statistic = all_continuous() ~ "{median} [{min} - {max}]",
by="medicament",
digits=all_categorical()~ c(0,1)
)
| Characteristic |
Afatinib, N = 5 |
Alectinib, N = 5 |
Brigatinib, N = 7 |
Cabozantinib, N = 2 |
Crizotinib, N = 2 |
Dabrafénib/Trametinib, N = 2 |
Evérolimus, N = 5 |
Lenvatinib, N = 1 |
Lorlatinib, N = 6 |
Mobocertinib, N = 2 |
Osimertinib, N = 26 |
Osimertinib/Crizotinib, N = 1 |
Sotorasib, N = 5 |
| tox_digestive |
5 (100.0%) |
3 (60.0%) |
0 (0.0%) |
1 (50.0%) |
2 (100.0%) |
1 (50.0%) |
2 (40.0%) |
1 (100.0%) |
2 (33.3%) |
2 (100.0%) |
17 (65.4%) |
1 (100.0%) |
4 (80.0%) |
| tox_cutanee |
4 (80.0%) |
2 (40.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
1 (50.0%) |
1 (20.0%) |
0 (0.0%) |
1 (16.7%) |
2 (100.0%) |
16 (61.5%) |
0 (0.0%) |
3 (60.0%) |
| tox_muqueuse |
4 (80.0%) |
1 (20.0%) |
0 (0.0%) |
1 (50.0%) |
0 (0.0%) |
1 (50.0%) |
0 (0.0%) |
0 (0.0%) |
1 (16.7%) |
1 (50.0%) |
8 (30.8%) |
0 (0.0%) |
0 (0.0%) |
| tox_cardiovasc |
0 (0.0%) |
3 (60.0%) |
1 (14.3%) |
2 (100.0%) |
1 (50.0%) |
1 (50.0%) |
2 (40.0%) |
1 (100.0%) |
2 (33.3%) |
0 (0.0%) |
2 (7.7%) |
0 (0.0%) |
0 (0.0%) |
| tox_ophtalmo |
2 (40.0%) |
1 (20.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
1 (50.0%) |
2 (7.7%) |
0 (0.0%) |
0 (0.0%) |
| tox_pulmonaire |
0 (0.0%) |
3 (60.0%) |
3 (42.9%) |
0 (0.0%) |
0 (0.0%) |
1 (50.0%) |
0 (0.0%) |
0 (0.0%) |
1 (16.7%) |
0 (0.0%) |
3 (11.5%) |
0 (0.0%) |
2 (40.0%) |
| tox_generale |
3 (60.0%) |
1 (20.0%) |
2 (28.6%) |
1 (50.0%) |
1 (50.0%) |
0 (0.0%) |
3 (60.0%) |
0 (0.0%) |
1 (16.7%) |
2 (100.0%) |
9 (34.6%) |
0 (0.0%) |
3 (60.0%) |
| tox_hemato |
1 (20.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
4 (15.4%) |
0 (0.0%) |
1 (20.0%) |
| tox_musculo_squeletique |
2 (40.0%) |
4 (80.0%) |
2 (28.6%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
1 (100.0%) |
3 (50.0%) |
0 (0.0%) |
7 (26.9%) |
0 (0.0%) |
3 (60.0%) |
| tox_uro_nephro |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
1 (20.0%) |
1 (100.0%) |
0 (0.0%) |
0 (0.0%) |
1 (3.8%) |
0 (0.0%) |
1 (20.0%) |
| tox_hepatique |
0 (0.0%) |
0 (0.0%) |
2 (28.6%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
1 (16.7%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
| tox_neuro |
2 (40.0%) |
0 (0.0%) |
3 (42.9%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
3 (11.5%) |
0 (0.0%) |
3 (60.0%) |
| tox_psy |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
1 (50.0%) |
0 (0.0%) |
1 (20.0%) |
0 (0.0%) |
2 (33.3%) |
1 (50.0%) |
0 (0.0%) |
0 (0.0%) |
1 (20.0%) |
| tox_bio |
0 (0.0%) |
3 (60.0%) |
2 (28.6%) |
0 (0.0%) |
0 (0.0%) |
0 (0.0%) |
1 (20.0%) |
0 (0.0%) |
1 (16.7%) |
0 (0.0%) |
1 (3.8%) |
0 (0.0%) |
0 (0.0%) |