Statistic <- c(68,85,74,88,63,78,90,80,58,63)
Math <- c(85,91,74,100,82,84,78,100,51,70)
plot(Statistic,Math,
pch = 17,
col= "skyblue",
main ="成績表",
xlab ="統計成績",
ylab ="數學成績")

hist(Math,
col= "lightyellow",
main ="數學成績",
xlab ="數學成績",
ylab ="個數")

# Load ggplot2
library(ggplot2)
# Load ggplot2
library(ggplot2)
# Create data
data <- data.frame(
name=c("娛樂休閒","知識閱讀","體育競技","科學創新","公益活動") ,
value=c(185,82,36,28,25)
)
# Barplot
ggplot(data, aes(x=name, y=value)) +
geom_bar(stat = "identity", width=0.2, fill="#858ED1")

data<- c(185,82,36,28,25)
labels <- c("娛樂休閒","知識閱讀","體育競技","科學創新","公益活動")
pie(data,labels,main ="學生的比例", col=heat.colors(length(data)))

# Library
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.4 ✔ tibble 3.2.1
## ✔ purrr 1.0.4 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Create data
data <- data.frame(
name= c("娛樂休閒","知識閱讀","體育競技","科學創新","公益活動"),
value= c(185,82,36,28,25)
)
# plot
ggplot(data, aes(x=name, y=value)) +
geom_segment( aes(x=name, xend=name, y=0, yend=value)) +
geom_point( size=5, color="blue", fill=alpha("#858ED1", 0.3), alpha=0.7, shape=21, stroke=2)

Date <- read.csv("D:/table1_1.csv")
stem(Date$Japanese)
##
## The decimal point is 1 digit(s) to the right of the |
##
## 4 | 9
## 5 | 139
## 6 | 13
## 7 | 9
## 8 | 49
## 9 | 1
mean(Date$Japanese)
## [1] 67.9
median(Date$Japanese)
## [1] 62
as.numeric(names(table(Date$Japanese)))[which.max(table(Date$Japanese))]
## [1] 49
sd(Date$Japanese)
## [1] 16.25115
var(Date$Japanese)
## [1] 264.1
quantile(Date$Japanese, 1 / 4)
## 25%
## 54.5
quantile(Date$Japanese, 3 / 4)
## 75%
## 82.75