Introduction

This analysis aims to predict residential sale prices in Ames, Iowa using a linear regression model with four key predictors. I will focus on variables that reflect size, location, and condition of the properties.*

Method

## 
## Call:
## lm(formula = sale_price ~ log_gr_liv_area + clean_quality + year_built + 
##     neighborhood, data = t)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -216317  -26532   -1904   17989  408433 
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    -2.475e+06  7.662e+04 -32.298  < 2e-16 ***
## log_gr_liv_area                 1.345e+05  2.773e+03  48.511  < 2e-16 ***
## clean_quality                   4.386e+02  1.198e+03   0.366 0.714234    
## year_built                      8.497e+02  3.886e+01  21.867  < 2e-16 ***
## neighborhoodEdwards            -1.755e+04  4.568e+03  -3.841 0.000125 ***
## neighborhoodNorth_Ames         -4.806e+03  3.825e+03  -1.256 0.209049    
## neighborhoodNorthridge_Heights  7.669e+04  4.561e+03  16.816  < 2e-16 ***
## neighborhoodOld_Town           -4.436e+03  4.986e+03  -0.890 0.373627    
## neighborhoodSomerset            9.737e+03  4.390e+03   2.218 0.026652 *  
## neighborhoodOther               6.377e+02  3.202e+03   0.199 0.842136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 45490 on 2920 degrees of freedom
## Multiple R-squared:  0.6767, Adjusted R-squared:  0.6758 
## F-statistic: 679.2 on 9 and 2920 DF,  p-value: < 2.2e-16

Model Performance

## RMSE:  45411.99
## R-squared:  0.6767485

Residuals & Plot

Key Findings

Conclusion

Our model achieved an R^2 of 0.6767485 and RMSE of 45411.99, which suggests a fairly strong predictive power using only four variables. The results affirm that size, quality, age, and neighborhood are key drivers in housing prices.

RPubs Publication

[http://rpubs.com/zz00019/1299131]

```