if (!requireNamespace(“ISLR2”, quietly = TRUE)) install.packages(“ISLR2”) if (!requireNamespace(“GGally”, quietly = TRUE)) install.packages(“GGally”) if (!requireNamespace(“FNN”, quietly = TRUE)) install.packages(“FNN”)
library(ISLR2) library(GGally) library(FNN)
data(“Boston”) data(“Carseats”) data(“Auto”)
summary(Boston) dim(Boston) # Rows and Columns
ggpairs(Boston)
cor(Boston$crim, Boston)
summary(Boston\(crim) summary(Boston\)tax) summary(Boston$ptratio)
sum(Boston$chas == 1)
median(Boston$ptratio)
Boston[which.min(Boston$medv), ]
sum(Boston\(rm > 7) sum(Boston\)rm > 8) Boston[Boston$rm > 8, ]
train_data <- data.frame(x = c(1, 2, 3, 4, 5), y = c(10, 15, 20, 25, 30)) test_data <- data.frame(x = c(2.5, 3.5))
knn_regression <- knn.reg(train = data.frame(x = train_data\(x), test = data.frame(x = test_data\)x), y = train_data$y, k = 3)
print(knn_regression$pred) # Display predicted values
model_carseats <- lm(Sales ~ Price + Urban + US, data = Carseats) summary(model_carseats)
confint(model_carseats)
model_refined <- lm(Sales ~ Price + US, data = Carseats) summary(model_refined)
summary(model_carseats)\(adj.r.squared summary(model_refined)\)adj.r.squared
plot(model_refined)
x <- seq(-10, 10, length.out = 100)
beta_0 <- 2 beta_1 <- -1 log_odds <- beta_0 + beta_1 * x
alpha_orange_0 <- beta_0 + 3 alpha_orange_1 <- beta_1 - 0.6 alpha_apple_0 <- 3 alpha_apple_1 <- 0.6
log_odds_softmax <- (alpha_orange_0 - alpha_apple_0) + (alpha_orange_1 - alpha_apple_1) * x