1. Problema 1

Reduzca las siguientes matrices a forma de diagonal y luego a forma canonica equivalente.

1.1. Matriz \(A_1\)

1.1.1. Matriz original

\[ A_1 = A =\begin{bmatrix} 7 & 13 \\ 2 & 9 \end{bmatrix} \]

1.1.2. Matriz aumentada horizontalmente para \(A\)

\[ A|I=\left[\begin{array}{cc|cc} 7 & 13 & 1 & 0 \\ 2 & 9 & 0 & 1 \end{array}\right] \begin{matrix} F_1 = \frac{1}{7}F_1 \\ F_2=F_2-2F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{cc|cc} 1 & \frac{13}{7} & \frac{1}{7} & 0 \\ 0 & \frac{37}{7} & -\frac{2}{7} & 1 \end{array}\right] \begin{matrix} F_2=\frac{7}{37}F_2 \end{matrix} \]

\[ \sim \left[\begin{array}{cc|cc} 1 & \frac{13}{7} & \frac{1}{7} & 0 \\ 0 & 1 & -\frac{2}{37} & \frac{7}{37} \end{array}\right] \]

1.1.3. De lo anterior obtenemos \(PA\) y \(P\)

\[ PA = \left[\begin{array}{cc} 1 & \frac{13}{7} \\ 0 & 1 \end{array}\right] \] \[ P = \left[\begin{array}{cc} \frac{1}{7} & 0 \\ -\frac{2}{37} & \frac{7}{37} \end{array}\right] \]

1.1.4. Matriz aumentada verticalmente para \(PA\)

\[ \frac{PA}{I} = \left[\begin{array}{cc} 1 & \frac{13}{7} \\ 0 & 1 \\[1ex] \hline 1 & 0 \\ 0 & 1 \end{array}\right] \begin{matrix} C_2=C_2-\frac{13}{7}C_1 \end{matrix} \]

1.1.5. Reduccion a forma diagonal de \(A\)

\[ \sim \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \hline 1 & -\frac{13}{7} \\ 0 & 1 \end{array}\right] \]

1.1.6. De lo anterior obtenemos \(Q\)

\[ Q = \left[\begin{array}{cc} 1 & -\frac{13}{7} \\ 0 & 1 \end{array}\right] \]

1.1.7. Verificando \(PAQ\)

\[ PA = \left[\begin{array}{cc} 1 & \frac{13}{7} \\ 0 & 1 \end{array}\right] \times Q = \left[\begin{array}{cc} 1 & -\frac{13}{7} \\ 0 & 1 \end{array}\right] \]

1.1.8. Hemos obtenido la forma canonica equivalente de la matriz \(A_1\).

\[ C =PAQ = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \]

1.2. Matriz \(A_2\)

1.2.1. Matriz original

\[ A_2= A=\left[\begin{array}{ccc} 3 & 6 & 48 \\ 1 & 9 & 2 \\ 4 & 1 & 3 \end{array}\right] \]

1.2.2. Matriz aumentada horizontalmente para \(A\)

\[ A|I=\left[\begin{array}{ccc|ccc} 3 & 6 & 48 & 1 & 0 & 0 \\ 1 & 9 & 2 & 0 & 1 & 0 \\ 4 & 1 & 3 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_1 = \frac{1}{3}F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 2 & 16 & \frac{1}{3} & 0 & 0 \\ 1 & 9 & 2 & 0 & 1 & 0 \\ 4 & 1 & 3 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_2 = F_2 - F_1 \\ F_3 = F_3 - F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 2 & 16 & \frac{1}{3} & 0 & 0 \\ 0 & 7 & -14 & -\frac{1}{3} & 1 & 0 \\ 0 & -7 & -61 & -\frac{4}{3} & 0 & 1 \end{array}\right] \begin{matrix} F_3 = F_3 + F_2 \end{matrix} \] \[ \sim \left[\begin{array}{ccc|ccc} 1 & 2 & 16 & \frac{1}{3} & 0 & 0 \\ 0 & 7 & -14 & -\frac{1}{3} & 1 & 0 \\ 0 & 0 & -75 & -\frac{5}{3} & 1 & 1 \end{array}\right] \begin{matrix} F_2 = \frac{1}{7}F_2 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 2 & 16 & \frac{1}{3} & 0 & 0 \\ 0 & 1 & -2 & -\frac{1}{21} & \frac{1}{7} & 0 \\ 0 & 0 & 1 & \frac{1}{45} & -\frac{1}{75} & -\frac{1}{75} \end{array}\right] \]

1.2.3. De lo anterior obtenemos \(PA\) y \(P\)

\[ PA = \left[\begin{array}{ccc} 1 & 2 & 16 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}\right] \] \[ P =\left[\begin{array}{ccc} \frac{1}{3} & 0 & 0 \\ -\frac{1}{21} & \frac{1}{7} & 0 \\ \frac{1}{45} & -\frac{1}{75} & -\frac{1}{75} \end{array}\right] \]

1.2.4. Matriz aumentada verticalmente para \(PA\)

\[ \frac{PA}{I}=\left[\begin{array}{ccc} 1 & 2 & 16 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \begin{matrix} C_2 = C_2-2C_1 \\ C_3 = C_3-16C_1 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \\ \hline 1 & -2 & -16 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \begin{matrix} C_3 = C_3+2C_2 \end{matrix} \]

1.2.5. Reduccion a forma diagonal de \(A\)

\[ \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline 1 & -2 & -20 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right] \]

1.2.6. De lo anterior obtenemos \(Q\)

\[ Q = \left[\begin{array}{ccc} 1 & -2 & -20 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right] \]

1.2.7. Verificando \(PAQ\)

\[ PA = \left[\begin{array}{ccc} 1 & 2 & 16 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}\right] \times Q = \left[\begin{array}{ccc} 1 & -2 & -20 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right] \]

1.2.8. Hemos obtenido la forma canonica equivalente de la matriz \(A_2\).

\[ C=PAQ=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \]

1.3. Matriz \(A_3\)

1.3.1. Matriz original

\[ A_3=A=\left[\begin{array}{ccc} 1 & 0 & -1 \\ 3 & -4 & 2 \\ 5 & -4 & 0 \\ 1 & 4 & -6 \end{array}\right] \]

1.3.2. Matriz aumentada horizontalmente para \(A\)

\[ A|I = \left[\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & 0 & 0 \\ 3 & -4 & 2 & 0 & 1 & 0 & 0 \\ 5 & -4 & 0 & 0 & 0 & 1 & 0 \\ 1 & 4 & -6 & 0 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_2 = F_2-3F_1 \\ F_3 = F_3-5F_1\\ F_4 = F_4-F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & 0 & 0\\ 0 & -4 & 5 & -3 & 1 & 0 & 0 \\ 0 & -4 & 5 & -5 & 0 & 1 & 0\\ 0 & 4 & -5 & -1 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_2 = \frac{1}{4}F_2 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -\frac{5}{4} & \frac{3}{4} & -\frac{1}{4} & 0 & 0 \\ 0 & -4 & 5 & -5 & 0 & 1 & 0 \\ 0 & 4 & -5 & -1 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_3 = F_3+4F_2\\ F_4 = F_4-4F_2 \end{matrix} \] \[ \sim \left[\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & 0 & 0\\ 0 & 1 & -\frac{5}{4} & \frac{3}{4} & -\frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & -2 & -1 & 1 & 0 \\ 0 & 0 & 0 & -4 & 1 & 0 & 1 \end{array}\right] \]

1.3.3. De lo anterior obtenemos \(PA\) y \(P\)

\[ PA = \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \] \[ P=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ \frac{3}{4} & -\frac{1}{4} & 0 & 0 \\ -2 & -1 & 1 & 0 \\ -4 & 1 & 0 & 1 \end{array}\right] \]

1.3.4. Matriz aumentada verticalmente para \(PA\)

\[ \frac{PA}{I}=\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \begin{matrix} C_3 = C_3+C_1 \end{matrix} \] \[ \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \begin{matrix} C_3 = C_3+\frac{5}{4}C_2 \end{matrix} \]

1.3.5. Reduccion a forma diagonal de \(A\)

\[ \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 1 & \frac{5}{4} \\ 0 & 0 & 1 \end{array}\right] \]

1.3.6. De lo anterior obtenemos \(Q\)

\[ Q=\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & \frac{5}{4} \\ 0 & 0 & 1 \end{array}\right] \]

1.3.7. Verificando \(PAQ\)

\[ PA = \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \times Q=\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & \frac{5}{4} \\ 0 & 0 & 1 \end{array}\right] \]

1.3.8. Hemos obtenido la forma canonica equivalente de la matriz \(A_3\).

\[ C=PAQ=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]

1.4. Matriz \(A_3\)

1.4.1. Matriz original

\[ A_4 = A = \left[\begin{array}{cccc} 3 & 6 & 2 & 4 \\ 9 & 1 & 3 & 2 \\ 6 & -5 & 1 & -2 \end{array}\right] \]

1.4.2. Matriz aumentada horizontalmente para \(A\)

\[ A|I = \left[\begin{array}{cccc|ccc} 3 & 6 & 2 & 4 & 1 & 0 & 0 \\ 9 & 1 & 3 & 2 & 0 & 1 & 0 \\ 6 & -5 & 1 & -2 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_1 = \frac{1}{3}F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{cccc|ccc} 1 & 2 & \frac{2}{3} & \frac{4}{3} & \frac{1}{3} & 0 & 0 \\ 9 & 1 & 3 & 2 & 0 & 1 & 0 \\ 6 & -5 & 1 & -2 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_2 = F_2-9F_1\\ F_3 = F_3-6F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{cccc|ccc} 1 & 2 & \frac{2}{3} & \frac{4}{3} & \frac{1}{3} & 0 & 0 \\ 0 & -17 & -3 & -10 & -3 & 1 & 0 \\ 0 & -17 & -3 & -10 & -2 & 0 & 1 \end{array}\right] \begin{matrix} F_2 = -\frac{1}{17}F_2 \end{matrix} \]

\[ \sim \left[\begin{array}{cccc|ccc} 1 & 2 & \frac{2}{3} & \frac{4}{3} & \frac{1}{3} & 0 & 0 \\ 0 & 1 & \frac{3}{17} & \frac{10}{17} & \frac{3}{17} & -\frac{1}{17} & 0 \\ 0 & -17 & -3 & -10 & -2 & 0 & 1 \end{array}\right] \begin{matrix} F_3 = F_3+17F_2 \end{matrix} \]

\[ \sim \left[\begin{array}{cccc|ccc} 1 & 2 & \frac{2}{3} & \frac{4}{3} & \frac{1}{3} & 0 & 0 \\ 0 & 1 & \frac{3}{17} & \frac{10}{17} & \frac{3}{17} & -\frac{1}{17} & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 1 \end{array}\right] \]

1.4.3. De lo anterior obtenemos \(PA\) y \(P\)

\[ PA = \left[\begin{array}{cccc} 1 & 2 & \frac{2}{3} & \frac{4}{3} \\ 0 & 1 & \frac{3}{17} & \frac{10}{17} \\ 0 & 0 & 0 & 0 \end{array}\right] \] \[ P=\left[\begin{array}{ccc} \frac{1}{3} & 0 & 0 \\ \frac{3}{17} & -\frac{1}{17} & 0 \\ 1 & -1 & 1 \end{array}\right] \]

1.4.4. Matriz aumentada verticalmente para \(PA\)

\[ \frac{PA}{I}=\left[\begin{array}{cccc} 1 & 2 & \frac{2}{3} & \frac{4}{3} \\ 0 & 1 & \frac{3}{17} & \frac{10}{17} \\ 0 & 0 & \frac{0}{1} & \frac{0}{1} \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \begin{matrix} C_2 = C_2-C_1 \\ C_3 = C_3-\frac{2}{3}C_1\\ C_4 = C_4-\frac{4}{3}C_1 \end{matrix} \]

\[ \sim \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & \frac{3}{17} & \frac{10}{17} \\ 0 & 0 & \frac{0}{1} & 0 \\ \hline 1 & -2 & -\frac{2}{3} & -\frac{4}{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \begin{matrix} C_3 = C_3-\frac{3}{17}C_2\\ C_4 = C_4-\frac{10}{17}C2 \end{matrix} \]

1.4.5. Reduccion a forma diagonal de \(A\)

\[ \sim \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 1 & -2 & -\frac{16}{51} & -\frac{8}{51} \\ 0 & 1 & -\frac{3}{17} & -\frac{10}{17} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \]

1.4.6. De lo anterior obtenemos \(Q\)

\[ Q=\left[\begin{array}{cccc} 1 & -2 & -\frac{16}{51} & -\frac{8}{51} \\ 0 & 1 & -\frac{3}{17} & -\frac{10}{17} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \]

1.4.7. Verificando \(PAQ\)

\[ PA = \left[\begin{array}{cccc} 1 & 2 & \frac{2}{3} & \frac{4}{3} \\ 0 & 1 & \frac{3}{17} & \frac{10}{17} \\ 0 & 0 & 0 & 0 \end{array}\right] \times Q=\left[\begin{array}{cccc} 1 & -2 & -\frac{16}{51} & -\frac{8}{51} \\ 0 & 1 & -\frac{3}{17} & -\frac{10}{17} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \]

1.4.8. Hemos obtenido la forma canonica equivalente de la matriz \(A_4\).

\[ C= PAQ = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \]

2. Problema 2

Para cada una de las matrices encuentre una matriz \(Q^T\) tal que \(Q^{T}AQ = \left[\begin{array}{cc} D & 0 \\ 0 & 1 \end{array}\right]\) donde \(D\) es una diagonal no singular de rango igual al de \(A\).

2.1. Matriz \(B_1\)

2.1.1. Matriz original

\[ B_1 = B = \left[\begin{array}{ccc} 4 & 4 & 10 \\ 4 & 20 & 18 \\ 10 & 18 & 29 \end{array}\right] \]

2.1.2. Matriz aumentada horizontalmente para \(B\)

\[ B|I = \left[\begin{array}{ccc|ccc} 4 & 4 & 10 & 1 & 0 & 0 \\ 4 & 20 & 18 & 0 & 1 & 0 \\ 10 & 18 & 29 & 0 & 0 & 1 \end{array}\right] \begin{matrix} F_2 = F_2-F_1 \\ F_3 = F_3-\frac{10}{4}F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 4 & 4 & 10 & 1 & 0 & 0 \\ 0 & 16 & 8 & -1 & 1 & 0 \\ 0 & 8 & 4 & -\frac{5}{2} & 0 & 1 \end{array}\right] \begin{matrix} F_3 = F_3-\frac{1}{2}F_2 \\ \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 4 & 4 & 10 & 1 & 0 & 0 \\ 0 & 16 & 8 & -1 & 1 & 0 \\ 0 & 0 & 0 & -2 & -\frac{1}{2} & 1 \end{array}\right] \]

2.1.3. Rango de la Matriz B

\[Rango(B)=2\]

2.1.4. De lo anterior obtenemos lo siguiente \(Q^TB\), \(Q^T\) y \(Q\).

\[ Q^T\times B=\left[ \begin{array}{ccc} 4 & 4 & 10\\ 0 & 16 & 8 \\ 0 & 0 & 0 \end{array} \right] \]

\[ Q^T=\left[ \begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & -\frac{1}{2} & 1 \end{array} \right] \]

\[ Q=\left[ \begin{array}{ccc} 1 & -1 & -2 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{array} \right] \]

2.1.5. Verificando \(Q^{T}BQ\)

\[ Q^{T}BQ = \left[ \begin{array}{ccc} 4 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 0 \end{array} \right] \]

2.1.6. Obtenemos \(D\) de \(Q^{T}BQ\)

Nota: \(D\) tiene el mismo rango que la matriz \(B\).

\[ D=\left[ \begin{array}{cc} 4 & 0 \\ 0 & 16 \end{array} \right] \]

2.2. Matriz \(B_2\)

2.2.1. Matriz original

\[ B_2 = B = \left[ \begin{array}{ccc} 4 & 6 & 12 \\ 6 & 8 & 1 \\ 12 & 1 & 5 \end{array} \right] \]

2.2.2. Matriz aumentada horizontalmente para \(B\)

\[ B|I=\left[ \begin{array}{ccc|ccc} 4 & 6 & 12 & 1 & 0 & 0 \\ 6 & 8 & 1 & 0 & 1 & 0 \\ 12 & 1 & 5 & 0 & 0 & 1 \end{array} \right] \begin{matrix} F_2 = F_2-\frac{3}{2}F_1 \\ F_3 = F_3-\frac{3}{4}F_1 \end{matrix} \] \[ \sim \left[ \begin{array}{ccc|ccc} 4 & 6 & 12 & 1 & 0 & 0 \\ 0 & -1 & -17 & -\tfrac{3}{2} & 1 & 0 \\ 0 & -17 & -31 & -3 & 0 & 1 \end{array} \right] \begin{matrix} F_3 = F_3-17F_2 \end{matrix} \]

\[ \sim \left[ \begin{array}{ccc|ccc} 4 & 6 & 12 & 1 & 0 & 0 \\ 0 & -1 & -17 & -\tfrac{3}{2} & 1 & 0 \\ 0 & 0 & 258 & \tfrac{45}{2} & -17 & 1 \end{array} \right] \]

2.2.3. Rango de la Matriz B

\[ Rango(B)=3\]

2.2.4. De lo anterior obtenemos lo siguiente \(Q^TB\), \(Q^T\) y \(Q\).

\[ Q^TB=\left[ \begin{array}{ccc} 4 & 6 & 12 \\ 0 & -1 & -17 \\ 0 & 0 & 258 \end{array} \right] \]

\[ Q^T=\left[ \begin{array}{ccc} 1 & 0 & 0 \\ - \frac{3}{2} & 1 & 0 \\ \frac{45}{2} & -17 & 1 \end{array} \right] \]

\[ Q=\left[ \begin{array}{ccc} 1 & -\frac{3}{2} & \frac{45}{2} \\ 0 & 1 & -17 \\ 0 & 0 & 1 \end{array} \right] \]

2.2.5. Verificando \(Q^{T}BQ\)

\[ Q^{T}BQ = \left[ \begin{array}{ccc} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 258 \end{array} \right] \]

2.2.6. Obtenemos \(D\) de \(Q^{T}BQ\)

\[ D = \left[ \begin{array}{ccc} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 258 \end{array} \right] \]

2.3. Matriz \(B_3\)

2.3.1. Matriz original

\[ B_3=B=\left[ \begin{array}{ccc} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{array} \right] \]

2.3.2. Matriz aumentada horizontalmente para \(B\)

\[ B|I=\left[ \begin{array}{ccc|ccc} 4 & -2 & 0 & 1 & 0 & 0 \\ -2 & 3 & -2 & 0 & 1 & 0 \\ 0 & -2 & 2 & 0 & 0 & 1 \end{array} \right] \begin{matrix} F_2 = F_2+\frac{1}{2}F_1 \end{matrix} \] \[ \sim \left[ \begin{array}{rrr|rrr} 4 & -2 & 0 & 1 & 0 & 0 \\ 0 & 2 & -2 & 0.5 & 1 & 0 \\ 0 & -2 & 2 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_3 = F_3+F_2 \end{matrix} \] \[ \sim \left[ \begin{array}{rrr|rrr} 4 & -2 & 0 & 1 & 0 & 0 \\ 0 & 2 & -2 & 0.5 & 1 & 0 \\ 0 & 0 & 0 & 0.5 & 1 & 1 \\ \end{array} \right] \]

2.3.3. Rango de la Matriz B

\[Rango(B)=2\]

2.3.4. De lo anterior obtenemos lo siguiente \(Q^TB\), \(Q^T\) y \(Q\).

\[ Q^TB= \left[ \begin{array}{rrr} 4 & -2 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \\ \end{array} \right] \]

\[ Q^T = \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & 1 & 1 \\ \end{array} \right] \] \[ Q = \left[ \begin{array}{rrr} 1 & 0.5 & 0.5 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right] \]

2.3.5. Verificando \(Q^{T}BQ\)

\[ Q^TBQ = \left[ \begin{array}{rrr} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ \end{array} \right] \]

2.3.6. Obtenemos \(D\) de \(Q^{T}BQ\)

\[ D = \left[ \begin{array}{rr} 4 & 0 \\ 0 & 2 \\ \end{array} \right] \]

2.4. Matriz \(B_4\)

2.4.1. Matriz original

\[ B_4=B=\left[ \begin{array}{cccc} 1 & 8 & 6 & 7 \\ 8 & 65 & 99 & 40 \\ 6 & 99 & 81 & 78 \\ 7 & 40 & 78 & 21 \end{array} \right] \]

2.4.2. Matriz aumentada horizontalmente para \(B\)

\[ B|I=\left[ \begin{array}{cccc|cccc} 1 & 8 & 6 & 7 & 1 & 0 & 0 & 0 \\ 8 & 65 & 99 & 40 & 0 & 1 & 0 & 0 \\ 6 & 99 & 81 & 78 & 0 & 0 & 1 & 0 \\ 7 & 40 & 78 & 21 & 0 & 0 & 0 & 1 \end{array} \right] \begin{matrix} F_2 = F_2-8F_1 \\ F_3 = F_3-6F_1 \\ F_4 = F_4-7F_1 \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc|cccc} 1 & 8 & 6 & 7 & 1 & 0 & 0 & 0 \\ 0 & 1 & 51 & -16 & -8 & 1 & 0 & 0 \\ 0 & 51 & 45 & 36 & -6 & 0 & 1 & 0 \\ 0 & -16 & 36 & -28 & -7 & 0 & 0 & 1 \end{array} \right] \begin{matrix} F_3 = F_3-51F_1 \\ F_4 = F_4+16F_1 \end{matrix} \]

\[ \sim\left[ \begin{array}{cccc|cccc} 1 & 8 & 6 & 7 & 1 & 0 & 0 & 0 \\ 0 & 1 & 51 & -16 & -8 & 1 & 0 & 0 \\ 0 & 0 & -2556 & 852 & 402 & -51 & 1 & 0 \\ 0 & 0 & 852 & -284 & -135 & 16 & 0 & 1 \end{array} \right] \begin{matrix} F_4 = F_4-\frac{1}{3}F_3 \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc|cccc} 1 & 8 & 6 & 7 & 1 & 0 & 0 & 0 \\ 0 & 1 & 51 & -16 & -8 & 1 & 0 & 0 \\ 0 & 0 & -2556 & 852 & 402 & -51 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & \frac{1}{3} & 1 \end{array} \right] \]

2.4.3. Rango de la Matriz B

\[Rango(B)=3\]

2.4.4. De lo anterior obtenemos lo siguiente \(Q^TB\), \(Q^T\) y \(Q\).

\[ Q^TB=\begin{bmatrix} 1 & 8 & 6 & 7 \\ 0 & 1 & 51 & -16 \\ 0 & 0 & -2556 & 852 \\ 0 & 0 & 0 & 0 \end{bmatrix} \] \[ Q^T=\begin{bmatrix} 1 & 0 & 0 & 0 \\ -8 & 1 & 0 & 0 \\ 402 & -51 & 1 & 0 \\ -1 & -1 & \frac{1}{3} & 1 \end{bmatrix} \]

\[ Q=\begin{bmatrix} 1 & -8 & 402 & -1 \\ 0 & 1 & -51 & -1 \\ 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

2.4.5. Verificando \(Q^{T}BQ\)

\[ Q^{T}BQ=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2556 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

2.4.6. Obtenemos \(D\) de \(Q^{T}BQ\)

\[ D=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2556 \end{bmatrix} \]

3. Problema 3

Empleando el metodo en la pagina 32, encuentre la inversa generalizada de las siguientes matrices:

3.1 Matriz \(A_1\)

3.1.1. Matriz original

\[ A_1=A=\begin{bmatrix} 4 & 1 & 2 & 0 \\ 1 & 1 & 5 & 15 \\ 3 & 1 & 3 & 5 \end{bmatrix} \begin{matrix} F_2 \leftrightarrow F_1 \end{matrix} \]

3.1.2. Buscamos el rango de la matriz

\[ ~\sim \begin{bmatrix} 1 & 1 & 5 & 15 \\ 4 & 1 & 2 & 0 \\ 3 & 1 & 3 & 5 \end{bmatrix} \begin{matrix} F_2 = F_2-4F_1 \\ F_3 = F_3-3F_1 \end{matrix} \]

\[ \sim \begin{bmatrix} 1 & 1 & 5 & 15 \\ 0 & -3 & -18 & -60 \\ 0 & -2 & -12 & -40 \end{bmatrix} \begin{matrix} F_3 = F_3-\frac{3}{2}F_1 \end{matrix} \]

\[ \sim \begin{bmatrix} 1 & 1 & 5 & 15 \\ 0 & -3 & -18 & -60 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

3.1.3. Rango de la matriz \(A\)

\[Rango(A)=2\]

3.1.4. De la matriz A, escogemos una matriz \(sub_A\) con las mismas dimensiones que el rango de \(A\)

\[ Sub_A=\begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix} \]

3.1.5. Hallamos la inversa de \(Sub_A\)

3.1.5.1 Obtenemos la determinante de \(Sub_A\)

\[Determinante(Sub_A)=3\]

3.1.5.2 Operamos la determinante de \(Sub_A\) con el arreglo de \(Sub_A\)

\[ Sub_{A}^{-}=\frac{1}{Determinante(Sub_A)}\times \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} \] \[ Sub_{A}^{-}=\begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{4}{3} \end{bmatrix} \]

3.1.6. Completamos la inversa de \(Sub_A\) de forma tal que obtengamos la inversa de A, es decir A^

\[ A^{-}=\begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{1}{3} & \frac{4}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

Nota: Si cumple con la verificación de AGA = A.

3.2. Matriz \(A_2\)

3.2.1. Matriz original

\[ A_2=A=\begin{bmatrix} 2 & 2 & 6 \\ 2 & 3 & 8 \\ 6 & 8 & 22 \end{bmatrix} \begin{matrix} F_2 = F_2-F_1 \\ F_3 = F_3-3F_1 \end{matrix} \]

3.2.2. Buscamos el rango de la matriz

\[ \sim \begin{bmatrix} 2 & 2 & 6 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \begin{matrix} F_3 = F_3-2F_2 \end{matrix} \]

\[ \sim \begin{bmatrix} 2 & 2 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \]

3.2.3. Rango de la matriz \(A\)

\[Rango(A)=2\]

3.2.4. De la matriz A, escogemos una matriz \(sub_A\) con las mismas dimensiones que el rango de \(A\)

\[ Sub_A=\begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix} \]

3.2.5. Hallamos la inversa de \(Sub_A\)

3.2.5.1 Obtenemos la determinante de \(Sub_A\)

\[Determinante(Sub_A)=2\]

3.2.5.2 Operamos la determinante de \(Sub_A\) con el arreglo de \(Sub_A\)

\[ A^{-}=\frac{1}{Determinante(Sub_A)}\times\begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix} \]

\[ Sub_{A}^{-}=\begin{bmatrix} \frac{3}{2} & -1 \\ -1 & 1 \end{bmatrix} \]

3.2.6. Completamos la inversa de \(Sub_A\) de forma tal que obtengamos la inversa de A, es decir A^{-}.

\[ A^{-}=\begin{bmatrix} \frac{3}{2} & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

Nota: Si cumple con la verificación de AGA = A.

4. Problema 4

Calcule las inversas generalizadas de las matrices \(A\) y \(B\) empleando operaciones entre filas (pag 25) y desde la forma diagonal (pag 27)

4.1. Matriz A

4.1.1. Utilizando operaciones entre filas

4.1.1.1 Matriz original

\[ A=\begin{bmatrix} 2 & 3 & -1 & -1 \\ 5 & 8 & 0 & 1 \\ 1 & 2 & -2 & 3 \end{bmatrix} \]

4.1.1.2. Matriz aumentada horizontalmente para \(A\)

\[ A|I = \left[ \begin{array}{cccc|ccc} 2 & 3 & -1 & -1 & 1 & 0 & 0 \\ 5 & 8 & 0 & 1 & 0 & 1 & 0 \\ 1 & 2 & -2 & 3 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_2 = F_2-\frac{5}{2}F_1\\ F_3 = F_3-\frac{1}{2}F_1 \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc|ccc} 2 & 3 & -1 & -1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{5}{2} & \frac{7}{2} & -\frac{5}{2} & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & \frac{3}{2} & -\frac{1}{2} & 0 & 1 \\ \end{array} \right] \begin{matrix} F_3 = F_3-F_2 \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc|ccc} 2 & 3 & -1 & -1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{5}{2} & \frac{7}{2} & -\frac{5}{2} & 1 & 0 \\ 0 & 0 & -4 & 0 & 2 & -1 & 1 \\ \end{array} \right] \]

4.1.1.3. Rango de \(A\)

\[Rango(A)=3\]

4.1.1.4. De la matriz anterior obtenemos las matrices \(PA\) y \(P\)

\[ PA = \left[ \begin{array}{rrrr} 2 & 3 & -1 & -1 \\ 0 & \frac{1}{2} & \frac{5}{2} & \frac{7}{2} \\ 0 & 0 & -4 & 0 \\ \end{array} \right] \]

\[ P = \left[ \begin{array}{rrr} 1 & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 2 & -1 & 1 \\ \end{array} \right] \]

4.1.1.5. De la matriz PA vamos a sacar la matriz T, la cual tendra dimensiones \(r \times r\) de la matriz A

\[ T=\left[ \begin{array}{ccc} 2 & 3 & -1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 \\ \end{array} \right] \]

4.1.1.6. Aumentamos la matriz T verticamente

\[ \frac{T}{I}=\left[\begin{array}{ccc} 2 & 3 & -1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -4 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right] \]

4.1.1.7. Hallamos la transpuesta de T

\[ T^T=\left[\begin{array}{ccc|ccc} 2 & 0 & 0 & 1 & 0 & 0 \\ 3 & \frac{1}{2} & 0 & 0 & 1 & 0 \\ -1 & \frac{5}{2} & -4 & 0 & 0 & 1 \\ \end{array}\right] \begin{matrix} F_2 = F_2-\frac{3}{2}F_1\\ F_3 = F_3+\frac{1}{2}F_1 \end{matrix} \] \[ \sim \left[\begin{array}{ccc|ccc} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{3}{2} & 1 & 0 \\ 0 & \frac{5}{2} & -4 & \frac{1}{2} & 0 & 1 \\ \end{array}\right] \begin{matrix} F_3 = F_3-5F_2 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{3}{2} & 1 & 0 \\ 0 & 0 & -4 & 8 & -5 & 1 \\ \end{array}\right] \begin{matrix} F_1 = \frac{1}{2}F_1\\ F_1 = 2F_1\\ F_1 = -\frac{1}{4}F_1 \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -3 & 2 & 0 \\ 0 & 0 & 1 & -2 & \frac{5}{4} & -\frac{1}{4} \\ \end{array}\right] \]

4.1.1.8. De lo anterior obtenemos la inversa de T

\[ T^{-}=\left[\begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ -3 & 2 & 0 \\ -2 & \frac{5}{4} & -\frac{1}{4} \\ \end{array}\right] \]

4.1.1.9. Hallamos la inversa multiplicando \(T^{-}\times P = G\)

\[ T^{-}\times P = G=\left[\begin{array}{ccc} \frac{4}{1} & \frac{-1}{1} & \frac{-2}{1} \\ \frac{-5}{2} & \frac{3}{4} & \frac{5}{4} \\ \frac{-1}{2} & \frac{1}{4} & \frac{-1}{4} \\ \frac{0}{1} & \frac{0}{1} & \frac{0}{1} \\ \end{array}\right] \]

4.1.2. Utilizando forma diagonal

4.1.2.1 Matriz original

\[ A=\begin{bmatrix} 2 & 3 & -1 & -1 \\ 5 & 8 & 0 & 1 \\ 1 & 2 & -2 & 3 \end{bmatrix} \]

4.1.2.2. Matriz aumentada horizontalmente para \(A\)

\[ A|I = \left[ \begin{array}{cccc|ccc} 2 & 3 & -1 & -1 & 1 & 0 & 0 \\ 5 & 8 & 0 & 1 & 0 & 1 & 0 \\ 1 & 2 & -2 & 3 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_2 = F_2-\frac{5}{2}F_1\\ F_3 = F_3-\frac{1}{2}F_1 \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc|ccc} 2 & 3 & -1 & -1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{5}{2} & \frac{7}{2} & -\frac{5}{2} & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & \frac{3}{2} & -\frac{1}{2} & 0 & 1 \\ \end{array} \right] \begin{matrix} F_3 = F_3-F_2 \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc|ccc} 2 & 3 & -1 & -1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{5}{2} & \frac{7}{2} & -\frac{5}{2} & 1 & 0 \\ 0 & 0 & -4 & 0 & 2 & -1 & 1 \\ \end{array} \right] \]

4.1.2.3. De la matriz anterior obtenemos las matrices \(PA\) y \(P\)

\[ PA = \left[ \begin{array}{rrrr} 2 & 3 & -1 & -1 \\ 0 & \frac{1}{2} & \frac{5}{2} & \frac{7}{2} \\ 0 & 0 & -4 & 0 \\ \end{array} \right] \]

\[ P = \left[ \begin{array}{rrr} 1 & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 2 & -1 & 1 \\ \end{array} \right] \]

4.1.2.4. Aumentamos la matriz PA verticamente

\[ \frac{PA}{I}=\left[\begin{array}{cccc} 2 & 3 & -1 & -1 \\ 0 & 0.5 & 2.5 & 3.5 \\ 0 & 0 & -4 & 0 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right] \begin{matrix} C_2 = C_2-\frac{3}{2}C_1 \\ C_3 = C_3+\frac{1}{2}C_1 \\ C_4 = C_4+\frac{1}{2}C_1 \\ \end{matrix} \] \[ \sim \left[\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & 0.5 & 2.5 & 3.5 \\ 0 & 0 & -4 & 0 \\ \hline 1 & -1.5 & 0.5 & 0.5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right] \begin{matrix} C_3 = C_3-5C_2 \\ C_4 = C_4-7C_2\\ \end{matrix} \]

\[ \sim \left[\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -4 & 0 \\ \hline 1 & -\frac{3}{2} & 8 & 11 \\ 0 & 1 & -5 & -7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right] \]

4.1.2.5. De la matriz anterior se obtuvo la matriz Q

\[ Q = \left[\begin{array}{cccc} 1 & -\frac{3}{2} & 8 & 11 \\ 0 & 1 & -5 & -7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right] \]

4.1.2.6. Hallamos PAQ

\[ PAQ = \left[\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ \end{array}\right] \]

4.1.2.7. De la matriz PAQ sacamo D

\[ D=\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & -4 \\ \end{array}\right] \]

4.1.2.8. Hallamos la inversa de D

\[ D^{-}=\left[\begin{array}{ccc} 0.5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -0.25 \\ \end{array}\right] \]

4.1.2.9. Completamos la matriz D con 0

\[ D^{-}=\left[\begin{array}{ccc} 0.5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -0.25 \\ 0 & 0 & 0 \end{array}\right] \]

4.1.2.10 Hallamos la inversa generalizada con la siguiente ecuacion \(QD^{-}P=G\)

\[ G=QD^{-}P=\left[\begin{array}{ccc} 4 & -1 & -2 \\ -2.5 & 0.75 & 1.25 \\ -0.5 & 0.25 & -0.25 \\ 0 & 0 & 0 \\ \end{array}\right] \]

4.2. Matriz B

4.2.1. Utilizando operaciones entre filas

4.2.1.1 Matriz original

\[ B=\left[ \begin{array}{rrrr} 1 & 2 & 3 & -1 \\ 4 & 5 & 6 & 2 \\ 7 & 8 & 10 & 7 \\ 2 & 1 & 1 & 6 \\ \end{array} \right] \]

4.2.1.2. Matriz aumentada horizontalmente para \(B\)

\[ B|I= \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 4 & 5 & 6 & 2 & 0 & 1 & 0 & 0 \\ 7 & 8 & 10 & 7 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 6 & 0 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_2 = F_2-4F_1 \\ F_3 = F_3-7F_1 \\ F_4 = F_4-2F_1 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 0 & -3 & -6 & 6 & -4 & 1 & 0 & 0 \\ 0 & -6 & -11 & 14 & -7 & 0 & 1 & 0 \\ 0 & -3 & -5 & 8 & -2 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_3 = F_3-2F_2 \\ F_4 = F_4-F_2 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 0 & -3 & -6 & 6 & -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 2 & -1 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_4 = F_4-F_3 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 0 & -3 & -6 & 6 & -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 1 \\ \end{array} \right] \]

4.2.1.3. Rango de \(B\)

\[Rango(B)=3\]

4.2.1.4. De la matriz anterior obtenemos las matrices \(PB\) y \(P\)

\[ PB=\left[ \begin{array}{rrrr} 1 & 2 & 3 & -1 \\ 0 & -3 & -6 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

\[ P=\left[ \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -1 & 1 \\ \end{array} \right] \]

4.2.1.5. De la matriz \(PB\) vamos a sacar la matriz \(T\), la cual tendra dimensiones \(r \times r\) de la matriz \(B\)

\[ T = \left[ \begin{array}{ccc} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \\ \end{array} \right] \]

4.2.1.8. De lo anterior obtenemos la inversa de \(T\)

De manera simil al anterior problema, se obtiene su inversa.

\[ T^{-}=\left[ \begin{array}{ccc} 1 & \frac{2}{3} & 1 \\ 0 & -\frac{1}{3} & -2 \\ 0 & 0 & 1 \\ \end{array} \right] \]

4.2.1.9. Hallamos la inversa multiplicando \(T^{-}\times P = G\)

\[ T^{-}\times P = G=\left[ \begin{array}{cccc} 1 & \frac{2}{3} & 1 & 0 \\ 0 & -\frac{1}{3} & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

4.2.2. Utilizando forma diagonal

4.2.2.1 Matriz original

\[ B=\left[ \begin{array}{rrrr} 1 & 2 & 3 & -1 \\ 4 & 5 & 6 & 2 \\ 7 & 8 & 10 & 7 \\ 2 & 1 & 1 & 6 \\ \end{array} \right] \]

4.2.2.2. Matriz aumentada horizontalmente para \(B\)

\[ B|I= \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 4 & 5 & 6 & 2 & 0 & 1 & 0 & 0 \\ 7 & 8 & 10 & 7 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 6 & 0 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_2 = F_2-4F_1 \\ F_3 = F_3-7F_1 \\ F_4 = F_4-2F_1 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 0 & -3 & -6 & 6 & -4 & 1 & 0 & 0 \\ 0 & -6 & -11 & 14 & -7 & 0 & 1 & 0 \\ 0 & -3 & -5 & 8 & -2 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_3 = F_3-2F_2 \\ F_4 = F_4-F_2 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 0 & -3 & -6 & 6 & -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 2 & -1 & 0 & 1 \\ \end{array} \right] \begin{matrix} F_4 = F_4-F_3 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{rrrr|rrrr} 1 & 2 & 3 & -1 & 1 & 0 & 0 & 0 \\ 0 & -3 & -6 & 6 & -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 1 \\ \end{array} \right] \]

4.2.2.3. De la matriz anterior obtenemos las matrices \(PB\) y \(P\)

\[ PB=\left[ \begin{array}{rrrr} 1 & 2 & 3 & -1 \\ 0 & -3 & -6 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

\[ P=\left[ \begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -1 & 1 \\ \end{array} \right] \]

4.2.2.4. Aumentamos la matriz \(PB\) verticamente

\[ \frac{PB}{I}=\left[ \begin{array}{cccc} 1 & 2 & 3 & -1 \\ 0 & -3 & -6 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} C_2 = C_2-2C_1 \\ C_3 = C_3-3C_1 \\ C_4 = C_4+C_1 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -3 & -6 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \hline 1 & -2 & -3 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} C_3 = C_3-2C_2 \\ C_4 = C_4+2C_2 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \hline 1 & -2 & 1 & -3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} C_4 = C_4-2C_3 \\ \end{matrix} \]

\[ \sim \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \hline 1 & -2 & 1 & -3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \]

4.2.2.5. De la matriz anterior se obtuvo la matriz \(Q\)

\[ Q=\left[ \begin{array}{cccc} 1 & -2 & 1 & -5 \\ 0 & 1 & -2 & 6 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \]

4.2.2.6. Hallamos \(PBQ\)

\[ PBQ = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

4.2.2.7. De la matriz \(PBQ\) sacamo \(D\)

\[ D = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \\ \end{array} \right] \]

4.2.2.8. Hallamos la inversa de \(D\)

\[ D^{-}=\left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 1 \\ \end{array} \right] \]

4.2.2.9. Completamos la matriz \(D\) con 0

\[ D^{-}=\left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

4.2.2.10 Hallamos la inversa generalizada con la siguiente ecuacion \(QD^{-}P=G\)

\[ QD^{-}P=G=\left[ \begin{array}{cccc} - \frac{2}{3} & - \frac{4}{3} & 1 & 0 \\ - \frac{2}{3} & \frac{11}{3} & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

5. Problema 5

Halle la inversa de Moore-Penrose de C

5.1. Matriz original

\[ C=\left[\begin{array}{ccc} 1 & 0 & 2 \\ 2 & -1 & 5 \\ 0 & 1 & -1 \\ 1 & 3 & -1 \\ \end{array}\right] \]

5.2. Aumentamos horizontalmente la matriz \(C\)

\[ C|I = \left[\begin{array}{ccc|ccc} 1 & 0 & 2 & 1 & 0 & 0 \\ 2 & -1 & 5 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 1 & 3 & -1 & 0 & 0 & 0 \\ \end{array}\right] \begin{matrix} F_2 = F_2-2F_1 \\ F_4 = F_4-F_1 \\ \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & -1 & 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 0 & 3 & -3 & -1 & 0 & 0 \\ \end{array}\right] \begin{matrix} F_3 = F_3+F_2 \\ F_4 = F_4+3F_2 \\ \end{matrix} \]

\[ \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & -1 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & -2 & 1 & 1 \\ 0 & 0 & 0 & -7 & 3 & 0 \\ \end{array}\right] \]

5.3. De la matriz anterior obtenemos \(PC\) y \(P\)

\[ PC = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array}\right] \]

\[ P = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -2 & 1 & 1 & 0 \\ -7 & 3 & 0 & 1 \\ \end{array}\right] \]

5.4. Hallamos el rango de C

\[Rango(C)=2\]

5.5 Aumentamos verticalmente la matriz \(PC\)

\[ \frac{C}{I}=\left[ \begin{array}{ccc} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} C_3 = C_3-2C_1 \end{matrix} \]

\[ \sim \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} C_3 = C_3+C_2 \end{matrix} \]

\[ \sim \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right] \begin{matrix} C_2 = -C_2 \end{matrix} \]

\[ \sim \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right] \]

5.6. De lo anterior se obtiene \(Q\)

\[ Q=\left[ \begin{array}{ccc} 1 & 0 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right] \]

5.7. Hallamos la inversa de \(P\) y \(Q\) utilizando solo el metodo de la matriz aumentada

\[ P^{-}=\left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & -3 & 0 & 1 \\ \end{array} \right] \]

\[ Q^{-}=\left[ \begin{array}{ccc} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right] \] Nota: Se cumple que \(P^{-}\times D \times Q^{-} = C\), donde C es nuestra matriz original.

5.8. Del valor la inversa de \(P\) y \(Q\) obtendremos \(K\) y \(L\) respectivamente.

\[ K=\left[ \begin{array}{cc} 1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & -3 \\ \end{array} \right] \]

\[ L=\left[ \begin{array}{ccc} 1 & 0 & 2 \\ 0 & -1 & 1 \\ \end{array} \right] \]

Nota: se cumple que \(C=KL\), donde C es la matriz original.

5.9. Buscamos hallar \(M = L^T \times [K^T\times A \times L^T]^{-} \times K^T\) donde M es la inversa generalizada de Moore-Penrose

\[ M = L^T \times [K^T\times A \times L^T]^{-} \times K^T=\left[ \begin{array}{cccc} \frac{2}{39} & \frac{1}{13} & \frac{1}{39} & \frac{5}{39} \\ \frac{17}{390} & \frac{1}{65} & \frac{14}{195} & \frac{101}{390} \\ \frac{23}{390} & \frac{9}{65} & -\frac{4}{195} & -\frac{1}{390} \\ \end{array} \right] \] Cumpliendose todas la propiedades de:

  • AMA=A
  • MAM=M
  • AM es simetrica
  • MA es simetrica

5.10. Finalmente hallamos \(A^{+}\), la cual es igual a \(A+=K \times [K^T \times A \times K]^{-} \times K^T\)

\[ A^{+}=K \times [K^T \times A \times K]^{-} \times K^T=\left[ \begin{array}{cccc} \frac{19}{658} & \frac{16}{259} & -\frac{2}{497} & \frac{2}{119} \\ \frac{16}{259} & \frac{8}{57} & -\frac{2}{119} & \frac{1}{88} \\ -\frac{2}{497} & -\frac{2}{119} & \frac{5}{571} & \frac{19}{854} \\ \frac{2}{119} & \frac{1}{88} & \frac{19}{854} & \frac{32}{383} \\ \end{array} \right] \]

6. Problema 6

Halle la inversa generalizada de las matrices de la pregunta 2.

Para ello se utiliza la siguiente formula:

Sea \(A\) una matriz simetrica \(m \times m\), entonces existe una matriz Q no singular, tal que:

\[ Q^TAQ=\left[ \begin{array}{cc} D & 0 \\ 0 & 0 \end{array} \right] \] donde: \(D\) es una matriz diagonal no singular y de rango igual al de \(A\).

A partir de lo anterior se reconstruye la inversa generalizada:

\[ G=Q\left[ \begin{array}{cc} D^{-1}_{r\times r} & 0 \\ 0 & 0 \end{array} \right]Q^T \]

6.1. Matriz \(B_1\)

6.1.1. Matriz original, Matriz Q y Matriz D obtenidas previamente

\[ B_1 = B = \left[\begin{array}{ccc} 4 & 4 & 10 \\ 4 & 20 & 18 \\ 10 & 18 & 29 \end{array}\right] \]

\[ Q=\left[ \begin{array}{ccc} 1 & -1 & -2 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{array} \right] \]

\[ D=\left[ \begin{array}{cc} 4 & 0 \\ 0 & 16 \end{array} \right] \]

6.1.2. Invertimos la matriz \(D\) y obtenemos \(D^{-}\)

\[ D^{-}=\left[ \begin{array}{cc} \frac{1}{4} & 0 \\ 0 & \frac{1}{16} \end{array} \right] \]

6.1.3. Complementamos la \(D^{-}\) con 0.

\[ D^{-}=\left[ \begin{array}{ccc} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{16} & 0 \\ 0 & 0 & 0 \end{array} \right] \]

6.1.4. Multiplicamos \(Q\times D^{-}\times Q^T\)

\[ G=Q\times D^{-}\times Q^T=\left[ \begin{array}{ccc} -\frac{13}{344} & \frac{3}{172} & \frac{15}{172} \\ \frac{3}{172} & \frac{31}{258} & -\frac{17}{258} \\ \frac{15}{172} & -\frac{17}{258} & \frac{1}{258} \end{array} \right] \]

Nota: si cumple la propiedad AGA.

6.2. Matriz \(B_2\)

6.2.1. Matriz original, Matriz Q y Matriz D obtenidas previamente

\[ B=\left[ \begin{array}{ccc} 4 & 6 & 12 \\ 6 & 8 & 1 \\ 12 & 1 & 5 \\ \end{array} \right] \]

\[ Q=\left[ \begin{array}{ccc} 1 & -\frac{3}{2} & \frac{45}{2} \\ 0 & 1 & -17 \\ 0 & 0 & 1 \\ \end{array} \right] \]

\[ D=\left[ \begin{array}{ccc} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 258 \\ \end{array} \right] \]

6.2.2. Invertimos la matriz \(D\) y obtenemos \(D^{-}\)

\[ D^{-}=\left[ \begin{array}{ccc} \frac{1}{4} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{1}{258} \\ \end{array} \right] \]

6.2.3. Complementamos la \(D^{-}\) con 0.

\[ D^{-}=\left[ \begin{array}{ccc} \frac{1}{4} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{1}{258} \\ \end{array} \right] \]

Nota: si cumple la propiedad AGA.

6.2.4. Multiplicamos \(Q\times D^{-}\times Q^T\)

\[ Q\times D^{-}\times Q^T= G=\left[ \begin{array}{ccc} -\frac{13}{344} & \frac{3}{172} & \frac{15}{172} \\ \frac{3}{172} & \frac{31}{258} & -\frac{17}{258} \\ \frac{15}{172} & -\frac{17}{258} & \frac{1}{258} \\ \end{array} \right] \]

Nota: si cumple la propiedad AGA.

6.3. Matriz \(B_3\)

6.3.1. Matriz original, Matriz Q y Matriz D obtenidas previamente

\[ B=\left[ \begin{array}{ccc} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \\ \end{array} \right] \]

\[ \left[ \begin{array}{ccc} 1 & 0.5 & 0.5 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right] \]

\[ D=\left[ \begin{array}{cc} 4 & 0 \\ 0 & 2 \\ \end{array} \right] \]

6.3.2. Invertimos la matriz \(D\) y obtenemos \(D^{-}\)

\[ D^{-}=\left[ \begin{array}{cc} \frac{1}{4} & 0 \\ 0 & \frac{1}{2} \\ \end{array} \right] \]

6.3.3. Complementamos la \(D^{-}\) con 0.

\[ D^{-}=\left[ \begin{array}{ccc} 0.25 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \\ \end{array} \right] \]

6.3.4. Multiplicamos \(Q\times D^{-}\times Q^T\)

\[ Q\times D^{-}\times Q^T=G=\left[ \begin{array}{ccc} 0.375 & 0.25 & 0 \\ 0.25 & 0.5 & 0 \\ 0 & 0 & 0 \\ \end{array} \right] \]

Nota: si cumple la propiedad AGA.

6.4. Matriz \(B_4\)

6.4.1. Matriz original, Matriz Q y Matriz D obtenidas previamente

\[ B_4=B=\left[ \begin{array}{cccc} 1 & 8 & 6 & 7 \\ 8 & 65 & 99 & 40 \\ 6 & 99 & 81 & 78 \\ 7 & 40 & 78 & 21 \\ \end{array} \right] \]

\[ Q=\left[ \begin{array}{cccc} 1 & -8 & 402 & -1 \\ 0 & 1 & -51 & -1 \\ 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \]

\[ D=\left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2556 \\ \end{array} \right] \]

6.4.2. Invertimos la matriz \(D\) y obtenemos \(D^{-}\)

\[ D^{-}=\left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{2556} \\ \end{array} \right] \]

6.4.3. Complementamos la \(D^{-}\) con 0.

\[ D^{-}=\left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{2556} & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

6.4.4. Multiplicamos \(Q\times D^{-}\times Q^T\)

\[ Q\times D^{-}\times Q^T=G=\left[ \begin{array}{cccc} \frac{126}{71} & \frac{3}{142} & -\frac{67}{426} & 0 \\ \frac{3}{142} & -\frac{5}{284} & \frac{17}{852} & 0 \\ -\frac{67}{426} & \frac{17}{852} & -\frac{1}{2556} & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]