Análisis de Datos

Autor/a
Afiliación

Mayra Alejandra Velasco

Universidad del Cauca

Fecha de publicación

14 de abril de 2025

Análisis descriptivos de los datos

Analisis para las variables cualitativas separados por condición

Variable Marriage status

Data_w$Condition Data_w[, c(“Marriage_Status”)] n porcentaje
Control Free union 3 15.789474
Control Married 13 68.421053
Control Separated 1 5.263158
Control Single 2 10.526316
Violence Free union 7 20.000000
Violence Married 7 20.000000
Violence Separated 3 8.571429
Violence Single 13 37.142857
Violence Widower 5 14.285714

Variable cage

Data_w$Condition Data_w[, c(“CAGE”)] n porcentaje
Control Consumo de riesgo 1 5.263158
Control Consumo perjudicial 2 10.526316
Control Negativo 16 84.210526
Violence Consumo de riesgo 1 2.857143
Violence Negativo 34 97.142857

Variable medicamento

Data_w$Condition Data_w[, c(“Medicaments”)] n porcentaje
Control No 13 68.421053
Control Yes 6 31.578947
Violence No 25 71.428571
Violence Si 1 2.857143
Violence Yes 9 25.714286

variable Job_status

Data_w$Condition Data_w[, c(“Job_status”)] n porcentaje
Control Full time job 6 31.578947
Control Half time job 2 10.526316
Control No job 7 36.842105
Control independent 4 21.052632
Violence Full time job 7 20.000000
Violence Half time job 3 8.571429
Violence No job 15 42.857143
Violence independent 10 28.571429
               
                Control Violence
  Full time job       6        7
  Half time job       2        3
  independent         4       10
  No job              7       15

    Pearson's Chi-squared test

data:  tabla_Job_status
X-squared = 1.1145, df = 3, p-value = 0.7736

Variable Disability

Data_w$Condition Data_w[, c(“Disability”)] n porcentaje
Control No 19 100
Violence No 28 80
Violence Yes 7 20
               
                Control Violence
  Full time job       6        7
  Half time job       2        3
  independent         4       10
  No job              7       15

    Fisher's Exact Test for Count Data

data:  tabla_Disability
p-value = 0.04362
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.8504064       Inf
sample estimates:
odds ratio 
       Inf 

Variable PTSD

Data_w$Condition Data_w[, c(“PTSD”)] n porcentaje
Control No 19 100.000000
Violence No 34 97.142857
Violence Yes 1 2.857143

Variable Ilegal armed group

Data_w$Condition Data_w[, c(“Illegal_armed_group”)] n porcentaje
Control No 19 100.000000
Violence 2 5.714286
Violence No 16 45.714286
Violence Yes 17 48.571429

Variable Displaced

Data_w$Condition Data_w[, c(“Displaced”)] n porcentaje
Control No 19 100.00000
Violence No 5 14.28571
Violence Yes 30 85.71429

Variable Sexo

Data_w$Condition Data_w[, c(“Sex”)] n porcentaje
Control 0 12 63.15789
Control 1 7 36.84211
Violence 0 26 74.28571
Violence 1 9 25.71429
   
    Control Violence
  0      12       26
  1       7        9

    Pearson's Chi-squared test

data:  tabla
X-squared = 0.73136, df = 1, p-value = 0.3924

Análisis de datos cuantitativos separados por condición

Condition Estadistico Cortisol Age FAST TOTAL_HOPKINS TOTAL_IFS.EF TOTAL_PTSD TOTAL_EDVC TOTAL_EEP DEPRESION_HOPKINS IFS_WORK.MEMORY.INDEX ANSIEDAD_HOPKINS MOCA_total ITQ Since_.year_violence School_years
Control max 107.40000 67.000000 14.000000 19.000000 29.000000 12.000000 27.000000 31.000000 10.000000 9.000000 9.000000 30.000000 0.00000 0.000000 17.000000
Control mean 68.80907 55.421053 7.210526 10.473684 24.000000 4.578947 9.473684 20.894737 5.421053 6.000000 5.052632 25.526316 0.00000 0.000000 13.210526
Control min 13.58877 42.000000 0.000000 4.000000 21.000000 0.000000 3.000000 14.000000 2.000000 3.000000 1.000000 21.000000 0.00000 0.000000 5.000000
Control sd 28.56367 6.517632 4.860029 4.376305 2.211083 4.004384 5.430044 4.201782 2.588775 1.732051 2.391505 3.203616 0.00000 0.000000 3.154872
Violence max 97.10016 67.000000 51.000000 72.000000 26.000000 43.000000 26.000000 47.000000 44.000000 6.000000 28.000000 27.000000 26.00000 34.000000 21.000000
Violence mean 57.37997 51.828571 17.828571 29.885714 20.285714 21.600000 15.800000 28.285714 16.400000 3.857143 13.485714 20.142857 15.77143 17.742857 11.371429
Violence min 12.50410 40.000000 0.000000 3.000000 18.000000 2.000000 3.000000 20.000000 1.000000 2.000000 0.000000 8.000000 2.00000 4.000000 1.000000
Violence sd 24.42507 8.893109 12.596652 17.634811 1.978880 11.919337 6.863372 6.322562 10.884960 1.115212 7.815412 4.759775 6.90305 6.321499 4.994619

Análisis estadisticos variables Cuantitativas

Existen diferencias en la escolaridad

Existen diferencias en la edad entre la condicion (control y conflicto)

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.88813, p-value = 0.02982


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.93093, p-value = 0.02982

Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  2.6981 0.1065
      52               

Los datos no pasan normalidad ni homogeneidad de varianza se trabaja con U de mann whitney

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  School_years by Condition
W = 401, p-value = 0.2138
alternative hypothesis: true location shift is not equal to 0


Cohen's d

d estimate: 0.413763 (small)
95 percent confidence interval:
     lower      upper 
-0.1636082  0.9911342 

Edad Existen diferencias en la edad entre la condicion (control y conflicto)

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.97033, p-value = 0.7831


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.90687, p-value = 0.006082

Levene's Test for Homogeneity of Variance (center = median)
      Df F value  Pr(>F)  
group  1  4.7618 0.03364 *
      52                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los datos no cumplen con normalidad ni homogeneidad de varianza se trabaja con u de mann whitney

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  Age by Condition
W = 411.5, p-value = 0.1545
alternative hypothesis: true location shift is not equal to 0


Cohen's d

d estimate: 0.4408187 (small)
95 percent confidence interval:
     lower      upper 
-0.1372986  1.0189359 
[1] 8.149567

Existen diferencias sig entre la variable condition y los niveles de cortisol

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.93782, p-value = 0.2408


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.96205, p-value = 0.2631

Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  0.8308 0.3663
      52               

Los datos presentan normalidad y homogeneidad de varianza p>0.05

Prueba de comparación t.student


    Welch Two Sample t-test

data:  Data_w$Cortisol by Data_w$Condition
t = 1.4757, df = 32.422, p-value = 0.1497
alternative hypothesis: true difference in means between group Control and group Violence is not equal to 0
95 percent confidence interval:
 -4.339095 27.197298
sample estimates:
 mean in group Control mean in group Violence 
              68.80907               57.37997 

Cohen's d

d estimate: 0.4407248 (small)
95 percent confidence interval:
     lower      upper 
-0.1373898  1.0188394 

No existen diferencias significaticas p=0.1497 entre el grupos control (68.809 +/- 28.56) y el grupo violence (57.380 +/- 24.42)

Variable FAST

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.91059, p-value = 0.07589


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.92866, p-value = 0.02553

Levene's Test for Homogeneity of Variance (center = median)
      Df F value  Pr(>F)  
group  1  6.5371 0.01352 *
      52                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

los datos no pasan prueba de normalidad ni homogeneidad de varianza por lo cual se realizan pruebas no parametricas

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  FAST by Condition
W = 145.5, p-value = 0.0007182
alternative hypothesis: true location shift is not equal to 0

Los datos presentaron diferencias significativas p= 0.00072 entre el grupo control (7.21 +/- 4.86) y el grupo violence (17.82 +/- 12.59)

Variable Total Hopkins

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.95688, p-value = 0.5126


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.96253, p-value = 0.272

Levene's Test for Homogeneity of Variance (center = median)
      Df F value    Pr(>F)    
group  1  19.543 5.032e-05 ***
      52                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los datos presentaron normalidad p>0.05 pero no presentaron homogeneidad de varianza p<0.05 igual se trabaja con prueba t pero con varianzas no iguales

Prueba de comparación t.studen


    Welch Two Sample t-test

data:  Data_w$TOTAL_HOPKINS by Condition
t = -6.1716, df = 41.151, p-value = 2.431e-07
alternative hypothesis: true difference in means between group Control and group Violence is not equal to 0
95 percent confidence interval:
 -25.76352 -13.06054
sample estimates:
 mean in group Control mean in group Violence 
              10.47368               29.88571 

Existen diferencias significativas p= 2.431e-07 entre el grupo control (10.47 +/- 4.37) y el grupo violence (29.88 +/- 17.63)

Variable Total IFS.EF

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.91215, p-value = 0.08108


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.89663, p-value = 0.003213

Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1   0.056 0.8138
      52               

Violence no pasa prueba de normalidad p<0.05 por lo cual debemos realizar pruebas no parametricas

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  TOTAL_IFS.EF by Condition
W = 598, p-value = 1.301e-06
alternative hypothesis: true location shift is not equal to 0

Existen diferencias significativas para el total IFS EF entre el gruppo control (24 +/- 2.21) y el grupo violence (20.28 +/- 1.98)

Variable Total_PTSD

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.90678, p-value = 0.06462


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.95774, p-value = 0.1955

Levene's Test for Homogeneity of Variance (center = median)
      Df F value    Pr(>F)    
group  1  18.838 6.587e-05 ***
      52                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los datos presentaron normalidad p>0.05 pero no homogeneidad de varianza se realiza prueba parametrica

Prueba de comparación t.studen


    Welch Two Sample t-test

data:  Data_w$TOTAL_PTSD by Condition
t = -7.6869, df = 45.863, p-value = 8.757e-10
alternative hypothesis: true difference in means between group Control and group Violence is not equal to 0
95 percent confidence interval:
 -21.47856 -12.56354
sample estimates:
 mean in group Control mean in group Violence 
              4.578947              21.600000 

Existen diferencias significativas p=8.757e-10 entre el grupo control (4.58 +/- 4) y el grupo violence (21.6 +/- 11.919)

Variable cortisol y desplazados

Prueba de normalidad

$No

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.94413, p-value = 0.2015


$Yes

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.95525, p-value = 0.2331

Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  0.4486  0.506
      52               

Los datos son normales y presentan homogeneidad se procede a realizar una prueba de t studen

Prueba de comparación t.studen


    Welch Two Sample t-test

data:  Data_w$Cortisol by Displaced
t = 1.5503, df = 47.875, p-value = 0.1276
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
 -3.293123 25.470329
sample estimates:
 mean in group No mean in group Yes 
         67.56166          56.47305 

Los datos no presentaron diferencias significativas

Variable Moca_total

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.88803, p-value = 0.02971


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.92383, p-value = 0.01841

Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  1.5952 0.2122
      52               

Los datos no se distribuyen normalmente p<0.05 por lo cual se realiza una prueba no parametrica

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  MOCA_total by Condition
W = 542, p-value = 0.0001436
alternative hypothesis: true location shift is not equal to 0

Se observor una diferencia p = 0.0001 significativa en el MOCA total entre el grupo control (25.52 +/- 3.2) y el grupo violence (20.14 +/- 4.7)

Variable TOTAL_EDVC

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.83156, p-value = 0.003411


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.94122, p-value = 0.06094

Levene's Test for Homogeneity of Variance (center = median)
      Df F value  Pr(>F)  
group  1  2.9073 0.09415 .
      52                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los datos no pasan normalidad P<0.05 por lo cual se debe realizar pruebas no parametricas

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  TOTAL_EDVC by Condition
W = 161.5, p-value = 0.001961
alternative hypothesis: true location shift is not equal to 0

Existe diferencias significativas p=0.0019 en el total EDVC entre el grupo control (9.47 +/- 5.4) y el grupo violence (15.8 +/- 6.86)

Variable tatol EEP

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.93131, p-value = 0.183


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.90731, p-value = 0.006253

Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  1.9095 0.1729
      52               

Los datos no presentan homogeneidad de varianza por lo cual se realiza una prueba no parametrica

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  TOTAL_EEP by Condition
W = 93.5, p-value = 1.498e-05
alternative hypothesis: true location shift is not equal to 0

Se observa que hay una diferencia significativa en el total de EEP entre el grupo control (20.89 +/- 4.2) y el grupo violence (28.28 +/- 6.32)

Depresion Hopkins

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.90606, p-value = 0.0627


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.93391, p-value = 0.03661

Levene's Test for Homogeneity of Variance (center = median)
      Df F value    Pr(>F)    
group  1  15.696 0.0002276 ***
      52                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los datos no se distriuyen de forma normal p<0.05 por lo cual se realizan pruebas no parametricas

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  DEPRESION_HOPKINS by Condition
W = 104, p-value = 3.463e-05
alternative hypothesis: true location shift is not equal to 0

Se observa una diferencia significativa p=3.46e-05 entre el grupo control(5.42 +/- 2.5) y el grupo violence (16.4 +/- 10.88)

Varibale IFS work memory

Prueba de normalidad

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.95426, p-value = 0.4653


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.91592, p-value = 0.0109

Levene's Test for Homogeneity of Variance (center = median)
      Df F value  Pr(>F)  
group  1  4.3932 0.04097 *
      52                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los datos no cumplen con normalidad p<0.05 por lo cual se realiza una prueba no parametrica.

Prueba de comparación u mann whitney


    Wilcoxon rank sum test with continuity correction

data:  IFS_WORK.MEMORY.INDEX by Condition
W = 561, p-value = 2.545e-05
alternative hypothesis: true location shift is not equal to 0

Existe una diferncia significativa p=2.545e-05 entre el grupo control (6 +/- 1.7) y el grupo violence (3.8 +/- 1.11)

Variables Ansiedad Hopkins

$Control

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.94264, p-value = 0.294


$Violence

    Shapiro-Wilk normality test

data:  X[[i]]
W = 0.96284, p-value = 0.2777

Levene's Test for Homogeneity of Variance (center = median)
      Df F value    Pr(>F)    
group  1  17.783 9.916e-05 ***
      52                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Los datos pasan normalidad p>0.05 pero no tienen homogeneidad de varianza se continua con un analisis parametrico

Prueba de comparación t.studen


    Welch Two Sample t-test

data:  ANSIEDAD_HOPKINS by Condition
t = -5.8954, df = 44.254, p-value = 4.716e-07
alternative hypothesis: true difference in means between group Control and group Violence is not equal to 0
95 percent confidence interval:
 -11.315492  -5.550673
sample estimates:
 mean in group Control mean in group Violence 
              5.052632              13.485714 

Se observa ua diferencia significativa p= 4.71e-07 entre el grupo control (5.05 +/- 2.3) y el grupo violence (13.48 +/- 7.8)

Analisis de correlacion

Variables de correlacion MoCA, IFS Total, Hopkins Total, PTSD, EDVC, EEP, FAST.

subdatos <- Data_w[, c("FAST", "TOTAL_HOPKINS", "TOTAL_IFS.EF", "TOTAL_PTSD", "TOTAL_EDVC", "TOTAL_EEP", "MOCA_total")]

correlacion <- cor(subdatos, method = "pearson") 
# También puedes usar "spearman" o "kendall"
print(correlacion)
                    FAST TOTAL_HOPKINS TOTAL_IFS.EF TOTAL_PTSD  TOTAL_EDVC
FAST           1.0000000     0.6960764   -0.3156552  0.7366066  0.34829298
TOTAL_HOPKINS  0.6960764     1.0000000   -0.4697888  0.7831927  0.36133178
TOTAL_IFS.EF  -0.3156552    -0.4697888    1.0000000 -0.4045203 -0.15532184
TOTAL_PTSD     0.7366066     0.7831927   -0.4045203  1.0000000  0.47138305
TOTAL_EDVC     0.3482930     0.3613318   -0.1553218  0.4713831  1.00000000
TOTAL_EEP      0.4729835     0.5664526   -0.3316772  0.6605767  0.46253660
MOCA_total    -0.1649257    -0.3032582    0.6056766 -0.2859183 -0.07012968
               TOTAL_EEP  MOCA_total
FAST           0.4729835 -0.16492570
TOTAL_HOPKINS  0.5664526 -0.30325824
TOTAL_IFS.EF  -0.3316772  0.60567657
TOTAL_PTSD     0.6605767 -0.28591827
TOTAL_EDVC     0.4625366 -0.07012968
TOTAL_EEP      1.0000000 -0.40118529
MOCA_total    -0.4011853  1.00000000
colnames(correlacion) <- c("FAST", "Hopkins", "IFS Total", "PTSD", "EDVC", "EEP", "MoCA")
rownames(correlacion) <- c("FAST", "Hopkins", "IFS Total", "PTSD", "EDVC", "EEP", "MoCA")

# Instala si no tienes estas librerías
# install.packages("corrplot")
library(corrplot)
Warning: package 'corrplot' was built under R version 4.4.3
corrplot 0.95 loaded
# Mapa de calor de correlaciones

corrplot(correlacion, method = "color", type = "upper", tl.col = "black", tl.srt = 45)

# Instala si no tienes esta librería
# install.packages("Hmisc")
library(Hmisc)

Adjuntando el paquete: 'Hmisc'
The following objects are masked from 'package:summarytools':

    label, label<-
The following objects are masked from 'package:dplyr':

    src, summarize
The following objects are masked from 'package:base':

    format.pval, units
# Correlaciones con p-valores
res <- rcorr(as.matrix(subdatos))
res$r
                    FAST TOTAL_HOPKINS TOTAL_IFS.EF TOTAL_PTSD  TOTAL_EDVC
FAST           1.0000000     0.6960764   -0.3156552  0.7366066  0.34829298
TOTAL_HOPKINS  0.6960764     1.0000000   -0.4697888  0.7831927  0.36133178
TOTAL_IFS.EF  -0.3156552    -0.4697888    1.0000000 -0.4045203 -0.15532184
TOTAL_PTSD     0.7366066     0.7831927   -0.4045203  1.0000000  0.47138305
TOTAL_EDVC     0.3482930     0.3613318   -0.1553218  0.4713831  1.00000000
TOTAL_EEP      0.4729835     0.5664526   -0.3316772  0.6605767  0.46253660
MOCA_total    -0.1649257    -0.3032582    0.6056766 -0.2859183 -0.07012968
               TOTAL_EEP  MOCA_total
FAST           0.4729835 -0.16492570
TOTAL_HOPKINS  0.5664526 -0.30325824
TOTAL_IFS.EF  -0.3316772  0.60567657
TOTAL_PTSD     0.6605767 -0.28591827
TOTAL_EDVC     0.4625366 -0.07012968
TOTAL_EEP      1.0000000 -0.40118529
MOCA_total    -0.4011853  1.00000000
# Matriz de correlaciones
res$P
                      FAST TOTAL_HOPKINS TOTAL_IFS.EF   TOTAL_PTSD   TOTAL_EDVC
FAST                    NA  5.110526e-09 2.006669e-02 2.167888e-10 0.0098543742
TOTAL_HOPKINS 5.110526e-09            NA 3.383289e-04 2.583045e-12 0.0072646085
TOTAL_IFS.EF  2.006669e-02  3.383289e-04           NA 2.414329e-03 0.2620779308
TOTAL_PTSD    2.167888e-10  2.583045e-12 2.414329e-03           NA 0.0003208472
TOTAL_EDVC    9.854374e-03  7.264608e-03 2.620779e-01 3.208472e-04           NA
TOTAL_EEP     3.041267e-04  8.013648e-06 1.428235e-02 5.471324e-08 0.0004292892
MOCA_total    2.333494e-01  2.580586e-02 1.218816e-06 3.609361e-02 0.6143257255
                 TOTAL_EEP   MOCA_total
FAST          3.041267e-04 2.333494e-01
TOTAL_HOPKINS 8.013648e-06 2.580586e-02
TOTAL_IFS.EF  1.428235e-02 1.218816e-06
TOTAL_PTSD    5.471324e-08 3.609361e-02
TOTAL_EDVC    4.292892e-04 6.143257e-01
TOTAL_EEP               NA 2.642567e-03
MOCA_total    2.642567e-03           NA
# Matriz de p-valores