This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
# PREPARE THE DATASET
################################################################################
# OUR PROBLEM: Binary classification problem used: to determine whether a patient
# will have a patient will have an onset of diabetes within the next
# five years.
# INPUT ATTRIBUTES: Numeric & describe mesdical details for female patients.
################################################################################
# Load the packages
library(mlbench)
## Warning: package 'mlbench' was built under R version 4.4.3
library(caret)
## Warning: package 'caret' was built under R version 4.4.3
## Loading required package: ggplot2
## Loading required package: lattice
# Load the dataset
data("PimaIndiansDiabetes")
# TRAIN THE MODELS
################################################################################
# Cross validation will be used to compare the models/algorithms.
# Resampling methods: data split and k-fold cross vaildation.
# CART -Classification and Regression Trees
# LDA - Linear Discriminant Analysis
# SVM - Support Vector Machine with Radical Basis Function
# KNN - k-Nearest Neighbors
# RF - Random Forest
################################################################################
#Prepare training scheme
trainControl<- trainControl(method = "repeatedcv", number = 10, repeats = 3)
#CART
set.seed(7)
fit.cart <- train(diabetes~., data = PimaIndiansDiabetes, method="rpart", trControl=trainControl)
#LDA
set.seed(7)
fit.lda <- train(diabetes~., data=PimaIndiansDiabetes, method="lda", trControl=trainControl)
#SVM
set.seed(7)
fit.svm <- train(diabetes~., data=PimaIndiansDiabetes, method="svmRadial", trControl=trainControl)
#KNN
set.seed(7)
fit.knn <- train(diabetes~., data=PimaIndiansDiabetes, method="knn", trControl=trainControl)
#Random Forest
set.seed(7)
fit.rf <- train(diabetes~., data=PimaIndiansDiabetes, method="rf", trControl=trainControl)
#Collect resamples
results <- resamples(list(CART=fit.cart, LDA=fit.lda, SVM=fit.svm, KNN=fit.knn, RF=fit.rf))
# COMPARE THE MODELS
#Summarize differences between models
summary(results)
##
## Call:
## summary.resamples(object = results)
##
## Models: CART, LDA, SVM, KNN, RF
## Number of resamples: 30
##
## Accuracy
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.6753247 0.7272727 0.7532468 0.7469697 0.7662338 0.7922078 0
## LDA 0.7142857 0.7508117 0.7662338 0.7791069 0.8000256 0.9078947 0
## SVM 0.7236842 0.7508117 0.7631579 0.7712919 0.7915243 0.8947368 0
## KNN 0.6753247 0.7036056 0.7272727 0.7369503 0.7662338 0.8311688 0
## RF 0.6842105 0.7305195 0.7597403 0.7638528 0.8019481 0.8421053 0
##
## Kappa
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.2762566 0.3620724 0.4241878 0.4151867 0.4861107 0.5250000 0
## LDA 0.3011551 0.4192537 0.4662541 0.4862025 0.5308596 0.7812500 0
## SVM 0.3391908 0.3997116 0.4460612 0.4621585 0.5234605 0.7475083 0
## KNN 0.2553191 0.3406000 0.3841761 0.3984995 0.4539789 0.6195363 0
## RF 0.2951613 0.3778304 0.4640696 0.4630809 0.5447483 0.6426332 0
# Box and Whisker Plots – looks at the spread of estimated accuracies
scales <- list(x = list(relation = "free"), y = list(relation = "free"))
bwplot(results, scales=scales)
# Density Plots – shows the distribution of model accuracy as density plots
scales <- list(x = list(relation = "free"), y = list(relation = "free"))
densityplot(results, scales=scales, pch ="|")
# Dot Plots – show both the mean estimated accuracy as well as the 95% confidence interval (e.g., the range in which 95% of observed scores fell)
scales <- list(x = list(relation = "free"), y = list(relation = "free"))
dotplot(results, scales=scales)
#pairwise scatter plots of prediction to compare models
splom(results)
#Calculate and summarize statistical significance
# Difference in model predictions
diffs <- diff(results)
#summarize p-values for pairwise comparisons
summary(diffs)
##
## Call:
## summary.diff.resamples(object = diffs)
##
## p-value adjustment: bonferroni
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
##
## Accuracy
## CART LDA SVM KNN RF
## CART -0.032137 -0.024322 0.010019 -0.016883
## LDA 0.0011862 0.007815 0.042157 0.015254
## SVM 0.0116401 0.9156892 0.034342 0.007439
## KNN 1.0000000 6.68e-05 0.0002941 -0.026902
## RF 0.2727542 0.4490617 1.0000000 0.0183793
##
## Kappa
## CART LDA SVM KNN RF
## CART -0.0710158 -0.0469717 0.0166872 -0.0478942
## LDA 0.0008086 0.0240440 0.0877029 0.0231215
## SVM 0.0258079 0.3562734 0.0636589 -0.0009225
## KNN 1.0000000 0.0003858 0.0040823 -0.0645814
## RF 0.0211763 1.0000000 1.0000000 0.0158974
##The lower diagonal of the table shows p-values for the null hypothesis
# (distributions are the same), smaller is better.
#The upper diagonal of the table shows the estimated difference between the distributions.
#Algorithm Test Harness
# Run algorithms using 10-fold cross-validation
trainControl <- trainControl(method="cv", number=10)
metric <- "Accuracy"
#Test harness involves 3 elements
# * The resampling method to split-up the dataset
# * The machine learning algorithm to evaluate
# * The performance measure metreic by which to evaluate predictions.
#Build Models
#Linear Discriminant Analysis (LDA)
#Classification and Regression Trees (CART)
#k – Nearest Neighbors (KNN)
#Support Vector Machines (SVM) with a radial kernel (for this example)
#Random Forest (RF)
data("iris")
# LDA
set.seed(7)
fit.lda <- train(Species~., data=iris, method="lda", metric=metric, trControl=trainControl)
# CART
set.seed(7)
fit.cart <- train(Species~., data=iris, method="rpart", metric=metric, trControl=trainControl)
# KNN
set.seed(7)
fit.knn <- train(Species~., data=iris, method="knn", metric=metric, trControl=trainControl)
# SVM
set.seed(7)
fit.svm <- train(Species~., data=iris, method="svmRadial", metric=metric, trControl=trainControl)
# Random Forest
set.seed(7)
fit.rf <- train(Species~., data=iris, method="rf", metric=metric, trControl=trainControl)
#Summarize the accuracy of the models
results <- resamples(list(lda=fit.lda, cart=fit.cart, knn=fit.knn, svm=fit.svm, rf=fit.rf))
summary(results)
##
## Call:
## summary.resamples(object = results)
##
## Models: lda, cart, knn, svm, rf
## Number of resamples: 10
##
## Accuracy
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## lda 0.9333333 0.9500000 1.0000000 0.9800000 1.0000000 1 0
## cart 0.8666667 0.9333333 0.9333333 0.9400000 0.9833333 1 0
## knn 0.8666667 0.9333333 1.0000000 0.9666667 1.0000000 1 0
## svm 0.8000000 0.9333333 0.9666667 0.9466667 1.0000000 1 0
## rf 0.8666667 0.9333333 0.9666667 0.9600000 1.0000000 1 0
##
## Kappa
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## lda 0.9 0.925 1.00 0.97 1.000 1 0
## cart 0.8 0.900 0.90 0.91 0.975 1 0
## knn 0.8 0.900 1.00 0.95 1.000 1 0
## svm 0.7 0.900 0.95 0.92 1.000 1 0
## rf 0.8 0.900 0.95 0.94 1.000 1 0
# Compare accuracy of models
dotplot(results)
#summarize Best model
print(fit.lda)
## Linear Discriminant Analysis
##
## 150 samples
## 4 predictor
## 3 classes: 'setosa', 'versicolor', 'virginica'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 135, 135, 135, 135, 135, 135, ...
## Resampling results:
##
## Accuracy Kappa
## 0.98 0.97
#MAKE PREDICTIONS
# Estimate skills of LDA on the validation dataset
predictions <- predict(fit.lda, iris)
confusionMatrix(predictions, iris$Species)
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 48 1
## virginica 0 2 49
##
## Overall Statistics
##
## Accuracy : 0.98
## 95% CI : (0.9427, 0.9959)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.97
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9600 0.9800
## Specificity 1.0000 0.9900 0.9800
## Pos Pred Value 1.0000 0.9796 0.9608
## Neg Pred Value 1.0000 0.9802 0.9899
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3200 0.3267
## Detection Prevalence 0.3333 0.3267 0.3400
## Balanced Accuracy 1.0000 0.9750 0.9800
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.