This map shows the election results from Davidson County for the 2024 election of Harris vs Trump. Towards downtown Nashville and La Vergne, more people voted for her than for Trump, and as you progress to the rural areas, more people voted for Trump. The most votes overall in this area was in the 4-2 precinct.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("mapview"))
install.packages("mapview")
if (!require("sf"))
install.packages("sf")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
# Getting the election data
VoteData <- read.csv("https://github.com/drkblake/Data/raw/refs/heads/main/Davidson_Vote_Data.csv")
# Getting the map
download.file("https://github.com/drkblake/Data/raw/refs/heads/main/Davidson_Precincts.zip","DavidsonPrecinctMap.zip")
unzip("DavidsonPrecinctMap.zip")
MapInfo <- read_sf("Davidson_Precincts.shp")
# Enhancing the data
VoteData2 <- VoteData %>%
mutate(Total = Trump + Harris + Other,
Pct_Trump = round((Trump / Total)*100,1),
Pct_Harris = round((Harris / Total)*100,1),
Pct_Other = round((Other / Total)*100,1),
Margin_Trump = Trump - Harris,
Margin_Harris = Harris - Trump,
Winner = case_when(Trump > Harris ~ "Trump",
Harris > Trump ~ "Harris",
Other > (Trump + Harris) ~ "Other",
.default = "Tie"))
# Merging the data and the map
DataAndMap <- left_join(VoteData2,MapInfo)
# Converting the merged data and map into an sf object
DataAndMap <- st_as_sf(DataAndMap)
# Trump percentage map
mypalette = colorRampPalette(c('blue', 'red'))
# Harris percentage map
mypalette = colorRampPalette(c('red', 'blue'))
PctHarrisMap <- mapview(
DataAndMap,
zcol = "Pct_Harris",
col.regions = mypalette,
map.types = ("OpenStreetMap"),
layer.name = "Pct. Harris",
popup = popupTable(
DataAndMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"Precinct",
"Trump",
"Harris",
"Other",
"Total",
"Pct_Trump",
"Pct_Harris",
"Pct_Other",
"Margin_Trump",
"Margin_Harris",
"Winner"
)
)
)
PctHarrisMap
# Sort the data by the Total variable
# and make it stay sorted in the chart
ChartData <- DataAndMap %>%
arrange(Total) %>%
mutate(Precinct = factor(Precinct, levels = Precinct))
# Create and format the chart
Chart <- plot_ly(data = ChartData, orientation = 'h') %>%
add_trace(
x = ~Trump,
y = ~Precinct,
name = 'Trump',
type = 'bar',
marker = list(color = 'red') # We have made the red bars
) %>%
add_trace(
x = ~Harris,
y = ~Precinct,
name = 'Harris',
type = 'bar',
marker = list(color = 'darkblue') # We have added the blue bars
) %>%
add_trace(
x = ~Other,
y = ~Precinct,
name = 'Other',
type = 'bar',
marker = list(color = 'gray') #We have added the gray bars
) %>%
add_trace(
x = ~Other,
y = ~Precinct,
type = 'bar',
name = '',
marker = list(color = 'rgba(0,0,0,0)'),
text = ~Winner,
textposition = 'outside',
showlegend = FALSE # We have added the "winner" labels
) %>%
layout(
barmode = 'stack',
xaxis = list(title = 'Number of Votes'),
yaxis = list(title = 'Precinct',
tickfont = list(size = 10),
automargin = TRUE)) # We have made it a stacked bar chart
# Show the plot
Chart
PctHarrisMap