set.seed(42)
x1 <- rnorm(100)
x2 <- x1 + rnorm(100, 0, 0.01)
x3 <- rnorm(100)
y <- 3 + 2*x1 - 1*x3 + rnorm(100)
model <- lm(y ~ x1 + x2 + x3)
summary(model)
##
## Call:
## lm(formula = y ~ x1 + x2 + x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7944 -0.5867 -0.1038 0.6188 2.3280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.03150 0.08914 34.007 <2e-16 ***
## x1 1.17483 9.89434 0.119 0.906
## x2 0.88292 9.89031 0.089 0.929
## x3 -1.03161 0.08882 -11.614 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8867 on 96 degrees of freedom
## Multiple R-squared: 0.8927, Adjusted R-squared: 0.8893
## F-statistic: 266.2 on 3 and 96 DF, p-value: < 2.2e-16
set.seed(123)
data <- rexp(100, rate = 1)
median_value <- median(data)
median_value
## [1] 0.847754
set.seed(123)
x <- c(5, 7, 8, 10, 12)
bootstrap_means <- replicate(1000, {
sample_x <- sample(x, replace = TRUE)
mean(sample_x)})
mean_of_bootstrap_means <- mean(bootstrap_means)
mean_of_bootstrap_means
## [1] 8.3572
set.seed(123)
categories <- sample(c("A", "B", "C"), size = 100, replace = TRUE, prob = c(0.2, 0.3, 0.5))
count_B <- sum(categories == "B")
count_B
## [1] 29
set.seed(123)
data <- rbinom(100, size = 10, prob = 0.3)
mean(data)
## [1] 3.02
set.seed(123)
data <- rnorm(100)
mean_data <- mean(data)
sd_data <- sd(data)
jumlah_luar_2sd <- sum(data < (mean_data - 2*sd_data) | data > (mean_data + 2*sd_data))
jumlah_luar_2sd
## [1] 5
set.seed(123)
x <- 1:10
y <- 2 * x + rnorm(10, mean = 0, sd = 1)
model <- lm(y ~ x)
summary(model)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1348 -0.5624 -0.1393 0.3854 1.6814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5255 0.6673 0.787 0.454
## x 1.9180 0.1075 17.835 1e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9768 on 8 degrees of freedom
## Multiple R-squared: 0.9755, Adjusted R-squared: 0.9724
## F-statistic: 318.1 on 1 and 8 DF, p-value: 1e-07
set.seed(123)
data <- rnorm(100)
filtered_data <- data[data > 1]
length(filtered_data)
## [1] 17
set.seed(123)
x <- c(5, 8, 12, 13, 15, 18, 21)
n <- length(x)
boot_medians <- replicate(10000, median(sample(x, size = n, replace = TRUE)))
CI <- quantile(boot_medians, probs = c(0.025, 0.975))
CI
## 2.5% 97.5%
## 8 18
set.seed(123)
data <- rnorm(100, mean = 70, sd = 5)
max(data)
## [1] 80.93666
set.seed(123)
data <- runif(100, min = 20, max = 80)
range_value <- max(data) - min(data)
range_value
## [1] 59.6187
Simulasikan 50 data dari N(100,15) dan 50 data dari N(80,10), lalu gabungkan. Berapa rata-rata dari seluruh data gabungan? Gunakan set.seed(123)
set.seed(123)
data1 <- rnorm(50, mean = 100, sd = 15)
data2 <- rnorm(50, mean = 80, sd = 10)
combined_data <- c(data1, data2)
mean_combined <- mean(combined_data)
mean_combined
## [1] 90.99007
set.seed(123)
data_poisson <- rpois(100, lambda = 4)
mode_value <- as.numeric(names(sort(table(data_poisson), decreasing = TRUE)[1]))
mode_value
## [1] 2
set.seed(123)
data_binom <- rbinom(1000, size = 10, prob = 0.3)
mean_successes <- mean(data_binom)
mean_successes
## [1] 2.989
set.seed(123)
data_normal <- rnorm(100, mean = 50, sd = 10)
std_dev <- sd(data_normal)
std_dev
## [1] 9.128159