x <- c(5, 8, 12, 13, 15, 18, 21)
set.seed(123)
n_boot <- 10000
medians <- numeric(n_boot)
for (i in 1:n_boot) {
sample_x <- sample(x, size = length(x), replace = TRUE)
medians[i] <- median(sample_x) }
ci <- quantile(medians, probs = c(0.025, 0.975))
print(ci)
## 2.5% 97.5%
## 8 18
set.seed(123)
data <- rnorm(100, mean = 0, sd = 1)
filtered_data <- data[data > 1]
length(filtered_data)
## [1] 17
set.seed(123)
x <- c(5, 7, 8, 10, 12)
n_boot <- 1000
means <- numeric(n_boot)
for (i in 1:n_boot) {
sample_x <- sample(x, size = length(x), replace = TRUE)
means[i] <- mean(sample_x)
mean(means)
}
set.seed(123)
data <- rnorm(100, mean = 70, sd = 5)
max(data)
## [1] 80.93666
set.seed(123)
data <- rbinom(100, size = 10, prob = 0.3)
mean(data)
## [1] 3.02
set.seed(123)
x <- 1:10
y <- 2 * x + rnorm(10, 0, 1)
model <- lm(y ~ x)
coef(model)[2]
## x
## 1.918029
# Set seed
set.seed(123)
data <- runif(100, min = 20, max = 80)
# Hitung range
range_value <- diff(range(data))
range_value
## [1] 59.6187
Soal nomor 11
set.seed(123)
data <- rbinom(1000, size = 10, prob = 0.3)
mean(data)
## [1] 2.989
Soal nomor 13
set.seed(123)
data <- rnorm(100, mean = 50, sd = 10)
sd(data)
## [1] 9.128159
Nomor 14
set.seed(123)
data <- rexp(100, rate = 1)
median(data)
## [1] 0.847754
Nomor 15
set.seed(123)
data <- rnorm(100)
lower_bound <- -2
upper_bound <- 2
outliers <- sum(data < lower_bound | data > upper_bound)
outliers
## [1] 4
Nomor 16
# Set seed
set.seed(123)
data1 <- rnorm(50, mean = 100, sd = 15)
data2 <- rnorm(50, mean = 80, sd = 10)
data_gabungan <- c(data1, data2)
mean(data_gabungan)
## [1] 90.99007
Nomor 17
set.seed(123)
data <- rpois(100, lambda = 4)
modus <- as.numeric(names(sort(table(data), decreasing = TRUE)[1]))
modus
## [1] 2
Nomor 18
# Set seed
set.seed(42)
x1 <- rnorm(100)
x2 <- x1 + rnorm(100, 0, 0.01)
x3 <- rnorm(100)
y <- 3 + 2*x1 - 1*x3 + rnorm(100)
model <- lm(y ~ x1 + x2 + x3)
summary(model)
##
## Call:
## lm(formula = y ~ x1 + x2 + x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7944 -0.5867 -0.1038 0.6188 2.3280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.03150 0.08914 34.007 <2e-16 ***
## x1 1.17483 9.89434 0.119 0.906
## x2 0.88292 9.89031 0.089 0.929
## x3 -1.03161 0.08882 -11.614 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8867 on 96 degrees of freedom
## Multiple R-squared: 0.8927, Adjusted R-squared: 0.8893
## F-statistic: 266.2 on 3 and 96 DF, p-value: < 2.2e-16
Nomor 20
set.seed(123)
data <- sample(c("A", "B", "C"), size = 100, replace = TRUE, prob = c(0.2, 0.3, 0.5))
sum(data == "B")
## [1] 29