Healthy Cities GIS Assignment

Author

Your Name

Load the libraries and set the working directory

library(leaflet)
library(tidyverse)
library(tidyr)
library(plotly)
setwd("~/aaaworkingdirectory")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
4  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
5  2017 CA        California Inglewood Census Tract    BRFSS      Health Outcom…
6  2017 CA        California Lakewood  City            BRFSS      Unhealthy Beh…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 CA        California Hawthorne Census Tract    Health … 0632548… Arthri…
2  2017 CA        California Hawthorne City            Unhealt… 632548   Curren…
3  2017 CA        California Hayward   City            Unhealt… 633000   Obesit…
4  2017 CA        California Indio     Census Tract    Health … 0636448… Arthri…
5  2017 CA        California Inglewood Census Tract    Health … 0636546… Diagno…
6  2017 CA        California Lakewood  City            Unhealt… 639892   Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with a cleaned dataset.

1. Once you run the above code and learn how to filter in this format, filter this dataset however you choose so that you have a subset with no more than 900 observations.

Filter chunk here

latlong_final <- latlong_clean2 |>
filter(PopulationCount < 250, MeasureId == "LPA", lat < 36)

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

plot1 <- latlong_final |>
  ggplot(aes(Data_Value, lat)) +
  geom_point(aes(color = StateAbbr)) +
  labs(x = "Rate of Adults with No Leisure-time Physical Activity",
       y = "Latitude",
       caption = "CDC",
       title = "Adults with No Leisure-time Physical Activity in Southern States",
       color = "State")
plot1
Warning: Removed 438 rows containing missing values or values outside the scale range
(`geom_point()`).

ggplotly()

3. Now create a map of your subsetted dataset.

First map chunk here

leaflet() |>
  setView(lat = 33.708035, lng = -98.533298, zoom =4) |>
  addProviderTiles("Esri.WorldStreetMap") |>
  addCircles( 
    data = latlong_final
)
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

popupmap <- paste0(
"<b>State: </b>", latlong_final$StateDesc, "<br>",
"<b>City: </b>", latlong_final$CityName, "<br>",
"<b>Population: </b>", latlong_final$PopulationCount, "<br>",
"<strong>Final Value: </strong>", latlong_final$Data_Value, "<br>"
)

leaflet() |>
  setView(lat = 33.708035, lng = -98.533298, zoom =4) |>
  addProviderTiles("Esri.WorldStreetMap") |>
  addCircles( 
    data = latlong_final,
    radius = sqrt(1.5^latlong_final$Data_Value)*4,
    popup = popupmap
)
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

In a paragraph, describe the plots you created and what they show.

The graphs that I made showed the rate of adults without any leisure-time physical activity in southern states. The first scatter plot that I made was the one that I thought was the most interesting. While it was just a blob for the most part, there was a slight trend for data points further to the north having a lower Rate. This trend didn’t show clearly in the map plots I made, which is why I’m pointing it out now. Other than that, I also thought it was interesting that you could see how the scatter plot was stratified by state, since there aren’t any long vertical states. The map plots that I made were less interesting, but it did show that the places with the highest rates of no leisure-time physical activity was mostly centered on large cities, although that could potentially be biased, since more data was probably collected in big cities than in rural areas.