getwd()
## [1] "/cloud/project"
NBA=read.csv("NBA_train.csv")
str(NBA)
## 'data.frame':    835 obs. of  20 variables:
##  $ SeasonEnd: int  1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 ...
##  $ Team     : chr  "Atlanta Hawks" "Boston Celtics" "Chicago Bulls" "Cleveland Cavaliers" ...
##  $ Playoffs : int  1 1 0 0 0 0 0 1 0 1 ...
##  $ W        : int  50 61 30 37 30 16 24 41 37 47 ...
##  $ PTS      : int  8573 9303 8813 9360 8878 8933 8493 9084 9119 8860 ...
##  $ oppPTS   : int  8334 8664 9035 9332 9240 9609 8853 9070 9176 8603 ...
##  $ FG       : int  3261 3617 3362 3811 3462 3643 3527 3599 3639 3582 ...
##  $ FGA      : int  7027 7387 6943 8041 7470 7596 7318 7496 7689 7489 ...
##  $ X2P      : int  3248 3455 3292 3775 3379 3586 3500 3495 3551 3557 ...
##  $ X2PA     : int  6952 6965 6668 7854 7215 7377 7197 7117 7375 7375 ...
##  $ X3P      : int  13 162 70 36 83 57 27 104 88 25 ...
##  $ X3PA     : int  75 422 275 187 255 219 121 379 314 114 ...
##  $ FT       : int  2038 1907 2019 1702 1871 1590 1412 1782 1753 1671 ...
##  $ FTA      : int  2645 2449 2592 2205 2539 2149 1914 2326 2333 2250 ...
##  $ ORB      : int  1369 1227 1115 1307 1311 1226 1155 1394 1398 1187 ...
##  $ DRB      : int  2406 2457 2465 2381 2524 2415 2437 2217 2326 2429 ...
##  $ AST      : int  1913 2198 2152 2108 2079 1950 2028 2149 2148 2123 ...
##  $ STL      : int  782 809 704 764 746 783 779 782 900 863 ...
##  $ BLK      : int  539 308 392 342 404 562 339 373 530 356 ...
##  $ TOV      : int  1495 1539 1684 1370 1533 1742 1492 1565 1517 1439 ...
# View(NBA)
table(NBA$W,NBA$Playoffs)
##     
##       0  1
##   11  2  0
##   12  2  0
##   13  2  0
##   14  2  0
##   15 10  0
##   16  2  0
##   17 11  0
##   18  5  0
##   19 10  0
##   20 10  0
##   21 12  0
##   22 11  0
##   23 11  0
##   24 18  0
##   25 11  0
##   26 17  0
##   27 10  0
##   28 18  0
##   29 12  0
##   30 19  1
##   31 15  1
##   32 12  0
##   33 17  0
##   34 16  0
##   35 13  3
##   36 17  4
##   37 15  4
##   38  8  7
##   39 10 10
##   40  9 13
##   41 11 26
##   42  8 29
##   43  2 18
##   44  2 27
##   45  3 22
##   46  1 15
##   47  0 28
##   48  1 14
##   49  0 17
##   50  0 32
##   51  0 12
##   52  0 20
##   53  0 17
##   54  0 18
##   55  0 24
##   56  0 16
##   57  0 23
##   58  0 13
##   59  0 14
##   60  0  8
##   61  0 10
##   62  0 13
##   63  0  7
##   64  0  3
##   65  0  3
##   66  0  2
##   67  0  4
##   69  0  1
##   72  0  1
# Activity 12
# A) 835 observations of 20 variables
# B) Yes, because a team winning 38 game made it to the playoffs 8 times and did not make it 7 times.
# C) 49 to 72 wins can guarantee  for any team a presence in the playoffs based on historical data.
# D) There is a positive relationship between the points difference and the number of wins. As the points #difference increases, the number of wins increases. (See Scatterplot below).
#scatterplot(NBA$W,NBA$Playoffs)
# Compute Points Difference
NBA$PTSdiff = NBA$PTS - NBA$oppPTS 
plot(NBA$PTSdiff, NBA$W)

# Activity 12
# E) The predictor variable points difference is significant at a 5% significance level because p-value #according to the regression model below is at p-value: < 2.2e-16, which is significantly lower than 5%.
WinsReg = lm(W ~ PTSdiff, data = NBA)
summary(WinsReg)
## 
## Call:
## lm(formula = W ~ PTSdiff, data = NBA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.7393 -2.1018 -0.0672  2.0265 10.6026 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4.100e+01  1.059e-01   387.0   <2e-16 ***
## PTSdiff     3.259e-02  2.793e-04   116.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.061 on 833 degrees of freedom
## Multiple R-squared:  0.9423, Adjusted R-squared:  0.9423 
## F-statistic: 1.361e+04 on 1 and 833 DF,  p-value: < 2.2e-16
lm(formula = W ~ PTSdiff, data = NBA)
## 
## Call:
## lm(formula = W ~ PTSdiff, data = NBA)
## 
## Coefficients:
## (Intercept)      PTSdiff  
##    41.00000      0.03259
# Linear regression model for points scored
# Activity 12
# F) According to to model run below where Block is one of the features. It appears Block is not significant at #5% significance level.
PointsReg = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV + STL + BLK, data=NBA)
summary(PointsReg)
## 
## Call:
## lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV + 
##     STL + BLK, data = NBA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -527.40 -119.83    7.83  120.67  564.71 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.051e+03  2.035e+02 -10.078   <2e-16 ***
## X2PA         1.043e+00  2.957e-02  35.274   <2e-16 ***
## X3PA         1.259e+00  3.843e-02  32.747   <2e-16 ***
## FTA          1.128e+00  3.373e-02  33.440   <2e-16 ***
## AST          8.858e-01  4.396e-02  20.150   <2e-16 ***
## ORB         -9.554e-01  7.792e-02 -12.261   <2e-16 ***
## DRB          3.883e-02  6.157e-02   0.631   0.5285    
## TOV         -2.475e-02  6.118e-02  -0.405   0.6859    
## STL         -1.992e-01  9.181e-02  -2.169   0.0303 *  
## BLK         -5.576e-02  8.782e-02  -0.635   0.5256    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 185.5 on 825 degrees of freedom
## Multiple R-squared:  0.8992, Adjusted R-squared:  0.8981 
## F-statistic: 817.3 on 9 and 825 DF,  p-value: < 2.2e-16
summary(NBA$PTS)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    6901    7934    8312    8370    8784   10371
# Activity 12
# G) The maximum number of points in a season is 10371.
# Sum of Squarred Errors
PointsReg$residuals
##            1            2            3            4            5            6 
##   38.5722713  142.8720040  -92.8957180   -8.3913473 -258.4705615  171.4608325 
##            7            8            9           10           11           12 
##  150.4081623  169.3811429   40.7756197  -75.3256614  444.9088743   94.3864704 
##           13           14           15           16           17           18 
## -205.6809050  113.5969040   64.1993998  -76.5711999  249.4888007   28.0363236 
##           19           20           21           22           23           24 
##  329.4487991   96.3248342  349.2067913 -284.3765225  196.1611379  198.2493104 
##           25           26           27           28           29           30 
##  445.4100295   93.8946072 -316.2962802 -166.1909668   -5.8446359  211.2301997 
##           31           32           33           34           35           36 
##  155.7426615  -23.9248929  -77.9070033  218.9449693  164.1368602 -177.6479438 
##           37           38           39           40           41           42 
##   66.9205988  162.7892553   23.5961895   93.9839603  185.7015113  -50.2507837 
##           43           44           45           46           47           48 
##  -90.1181969  139.6866673 -231.1772776  111.2200135  185.9069491  210.6753018 
##           49           50           51           52           53           54 
##  -47.9420913 -257.8213675  225.7399197   70.4925628  432.6468031  187.4169561 
##           55           56           57           58           59           60 
##  -34.3947653  112.9305359  334.4717296  222.4169937   17.6755711  165.4512882 
##           61           62           63           64           65           66 
##  207.9970351   56.8277093  214.6051983  -23.0235142  341.7509536  -48.3807695 
##           67           68           69           70           71           72 
##  304.9203623  -36.7878762  -31.0357805   61.8847883 -153.0322403  121.7423324 
##           73           74           75           76           77           78 
##  -61.1581185  -47.9906548 -120.3599484  245.7621368 -264.3876116  161.1110819 
##           79           80           81           82           83           84 
##   87.3192423  426.2098591   -4.7790973  126.8613801  -97.5009340  329.9773912 
##           85           86           87           88           89           90 
##  -16.2338716    7.8513505  191.9280982   87.0090318 -142.5397602 -216.2264974 
##           91           92           93           94           95           96 
## -199.6293933   71.0810742  257.3751407 -227.1203824  -61.4866232   71.3329444 
##           97           98           99          100          101          102 
## -233.2637272  -34.7860771   84.9503466  108.6553543  -84.8168235  -90.0423121 
##          103          104          105          106          107          108 
##  341.2144522   52.8507112   47.8978397  181.0574099  160.7203318  237.0174702 
##          109          110          111          112          113          114 
##  314.9609845   51.9650831  300.2035074 -148.0931149  -13.3592416 -161.6184704 
##          115          116          117          118          119          120 
##   82.1172789  277.6080699  233.4334153 -225.7299932   69.0259972   37.3407430 
##          121          122          123          124          125          126 
##   18.2709681  121.8125335  217.9464858  -74.8210467   36.2611001  356.2366230 
##          127          128          129          130          131          132 
##  439.4127892  111.0266627   72.1377278   -6.1141295  331.6249450 -158.3642350 
##          133          134          135          136          137          138 
##   94.9048994  151.3242943 -284.7768411 -184.0287416 -103.9972773   54.1758237 
##          139          140          141          142          143          144 
##  139.3176593  125.3796164  -71.4407602   83.4742245 -131.6383234  -33.5752771 
##          145          146          147          148          149          150 
##   98.9460909  -59.8760139 -116.6711077 -110.4055752  290.8888709   38.5758792 
##          151          152          153          154          155          156 
##   -6.8265554 -284.8106013  149.5419209 -185.9270381  -13.5712897  -90.2301662 
##          157          158          159          160          161          162 
##   21.0080300   14.5295957 -346.4091267  -54.7198161   87.6823846  203.7903006 
##          163          164          165          166          167          168 
##  -30.7131853 -153.9699795  194.6791232 -357.4466727  133.8696823  -21.6271760 
##          169          170          171          172          173          174 
## -220.4987354 -153.7269937 -383.7168614  212.2104185 -100.3118791  -30.5085767 
##          175          176          177          178          179          180 
##  -57.7910608  205.9463003 -124.1358862  -61.2169391  -93.9538879 -135.6180284 
##          181          182          183          184          185          186 
##   69.1245169 -435.5355494  -47.8153585  115.1051439  222.5411686  104.6516380 
##          187          188          189          190          191          192 
##    7.8335700  178.0759383 -185.3383423  122.0537263  -29.4729351   27.1344203 
##          193          194          195          196          197          198 
##  189.2078833 -429.5919872   57.2397301 -170.2701567  -14.0836520   21.0147294 
##          199          200          201          202          203          204 
##   49.6548689 -127.4633821  -87.4084020  -77.6940715 -155.2913076    8.4930328 
##          205          206          207          208          209          210 
## -232.7210528   35.3384277  151.1394532  119.4563308 -416.3088878  134.8599211 
##          211          212          213          214          215          216 
##   33.3825347   48.4541197 -269.8021487  214.9045443   88.1318416  -24.0318730 
##          217          218          219          220          221          222 
##  188.2281015 -249.1537666  157.9872056 -146.6803006   72.9077663   31.1747176 
##          223          224          225          226          227          228 
##  337.2185582   69.7227713   -2.7440511  -55.2845827  -84.6255409 -151.4858821 
##          229          230          231          232          233          234 
##  234.7432200 -165.3909069 -172.9288404  386.6402387   34.4884530 -368.0387956 
##          235          236          237          238          239          240 
##  304.8349400 -173.0591889  168.9365987 -327.6509605   95.0370278  -75.5698743 
##          241          242          243          244          245          246 
##  -74.9702316  290.0371682  -21.8628806   72.5362398 -144.3565453  -44.7765529 
##          247          248          249          250          251          252 
## -155.4752429 -114.0232742   82.8841506 -306.5759686  256.9630856   75.4312937 
##          253          254          255          256          257          258 
## -108.9852622 -160.6985087   -1.0708625  389.4834173   48.4039145 -173.2376267 
##          259          260          261          262          263          264 
##  102.4859575  564.7127452 -135.6781765  435.5847710 -238.8763852   93.4120332 
##          265          266          267          268          269          270 
## -346.4790813   84.2266238  124.2627684  157.9013909   90.9742388 -319.7738668 
##          271          272          273          274          275          276 
##  111.6330940 -136.0189613  179.6895020 -139.8481361  -60.2214721   21.1448936 
##          277          278          279          280          281          282 
## -102.4930752   87.4261255   -2.2833983  -33.1839059 -313.4181662   -9.7903234 
##          283          284          285          286          287          288 
##  365.0041757 -170.9089658 -203.2682115  -59.0783300  344.4592952 -177.2934555 
##          289          290          291          292          293          294 
##  278.4424923   31.1539516  -19.4217087  146.9309508   49.6437593  323.4485389 
##          295          296          297          298          299          300 
##   47.1034178    3.9718411 -111.0589062  -40.0036081  187.1994351  134.5701059 
##          301          302          303          304          305          306 
## -130.3795390  227.3624370   16.4481298  -91.2556101  215.9887998   70.7747666 
##          307          308          309          310          311          312 
##   50.5357552  -86.7616664   66.3006293  348.5847817   69.7928527 -144.9174008 
##          313          314          315          316          317          318 
##   48.2485248  262.5189212  -11.0182067  276.2567984   40.2609782 -235.0009787 
##          319          320          321          322          323          324 
##   91.8230888  -36.7029055   66.1862316  127.1446887   34.6306466  -89.1508242 
##          325          326          327          328          329          330 
##  -38.0350890   74.6959695  -24.6713632 -139.6322463  120.5781319 -256.3194253 
##          331          332          333          334          335          336 
##   35.3325803 -238.1863124  204.2701943 -231.4333870 -242.0178081   27.3589769 
##          337          338          339          340          341          342 
##  442.7697537  -90.3428846 -252.6536092   31.2460678  -24.0030042 -113.6697991 
##          343          344          345          346          347          348 
##   74.2030422  -63.3601223   13.1314540  -58.4065092   16.5093336  -26.4233092 
##          349          350          351          352          353          354 
##  -49.9197611  102.5295504 -276.0762358 -171.2605451  235.4118705 -295.3696087 
##          355          356          357          358          359          360 
## -259.1915277 -209.8493128  -60.3803252   40.8738668 -162.3559100   -3.1584146 
##          361          362          363          364          365          366 
## -252.6683460 -359.6072976  219.8480950  107.9177034 -228.4285961   77.5838841 
##          367          368          369          370          371          372 
##   77.6092501  176.9728823   21.0277939  225.7947949   90.6177409  -95.0387148 
##          373          374          375          376          377          378 
##  243.8004275   63.7765295 -135.7112041  127.9942080  208.5134149 -226.2507886 
##          379          380          381          382          383          384 
##  -27.4427262  215.5791874   70.0554598 -220.3324085 -252.5213694 -117.0224660 
##          385          386          387          388          389          390 
##   36.9146043  188.5932206  -12.6241171   24.1401960   39.4113815  130.8261623 
##          391          392          393          394          395          396 
##  194.8028770  140.1603242  100.4917058  367.8120506  -77.1138759  190.1907177 
##          397          398          399          400          401          402 
##  430.4505906  243.1092461 -220.7690501 -135.3500281  182.9169784   58.1314347 
##          403          404          405          406          407          408 
##  -10.3705665  134.0505987  333.4363828  110.9704334   37.1431301  188.8559358 
##          409          410          411          412          413          414 
##  -88.4445131 -165.3268990  148.8624801   -4.7914163 -114.6045335  -90.1562962 
##          415          416          417          418          419          420 
##  -65.1353805    9.9207366  -20.2393315  147.7163583  153.4474395   95.5889698 
##          421          422          423          424          425          426 
## -329.6439893  323.3019593  345.3838501 -148.5288812  166.9648145  277.3541861 
##          427          428          429          430          431          432 
##  162.6383840  -78.9033000 -176.7932426  365.3962572  132.7242544   85.6582953 
##          433          434          435          436          437          438 
##  -19.3417988   95.4767236 -102.8199452  111.8183778  299.2808339 -124.0889739 
##          439          440          441          442          443          444 
##  -37.3805041  118.5055640   38.2173450 -122.8141423  -84.3447659  154.5643586 
##          445          446          447          448          449          450 
##   42.6355711   54.7178397  102.9846564   32.6861086  112.7943954 -163.3563028 
##          451          452          453          454          455          456 
##  150.7521084  217.5877806  -96.7133626   13.7243484  -33.1690450 -112.2550008 
##          457          458          459          460          461          462 
##  -15.7083565 -224.4198990   18.2593593 -393.0403979   49.2945267   52.0947949 
##          463          464          465          466          467          468 
##   43.2496203 -149.1223107   75.6856970  170.8878792 -257.6364448   51.6854016 
##          469          470          471          472          473          474 
##   11.8121415 -176.9048352 -149.5317630  -64.1990241  -71.3105611 -317.9190063 
##          475          476          477          478          479          480 
##  -65.8451642   97.8497015 -103.1692986    3.0848318 -104.6823532 -234.7534874 
##          481          482          483          484          485          486 
##   50.5295490  -75.4835788 -526.1468848 -393.9784124 -360.8366411  116.7193515 
##          487          488          489          490          491          492 
## -321.3756304  -28.1090479 -508.3250405  -39.9958738   67.9854387  -97.4641720 
##          493          494          495          496          497          498 
## -268.8364479  -26.0249946  188.1881640 -127.9366821  -86.3440758  133.8144538 
##          499          500          501          502          503          504 
##   29.4480488 -292.9821609 -124.9408024  101.3655240 -186.5181083  -63.5389375 
##          505          506          507          508          509          510 
## -212.2015589 -323.1476886 -125.6610320   56.9083106  -39.0559074   -1.9339391 
##          511          512          513          514          515          516 
## -319.9727619 -433.1243358 -431.1346590  -95.8909016  120.6089792 -409.7409083 
##          517          518          519          520          521          522 
## -352.9341830 -527.3988939  110.6694955 -193.5043557  -92.6385367 -143.5858243 
##          523          524          525          526          527          528 
## -189.7838251  172.1977457  -80.8020663 -342.9141699  124.8700974 -226.9524006 
##          529          530          531          532          533          534 
##  -73.5173798 -388.4868649   82.9536394  -96.7444961 -114.0835553   60.0566113 
##          535          536          537          538          539          540 
## -332.3804023 -175.5276633 -338.7116370 -148.1422366  -45.2258816 -270.5159099 
##          541          542          543          544          545          546 
## -159.8389177 -420.4637398 -133.0466450  183.8988039 -267.0297916   -5.2562902 
##          547          548          549          550          551          552 
## -228.0471046  -11.6818058 -255.6786897   -7.7244412 -115.5357863 -298.4118693 
##          553          554          555          556          557          558 
## -122.2961876   90.2924072  111.3930340 -245.4519945 -164.6445508  -29.3651223 
##          559          560          561          562          563          564 
##  -41.9781581   33.4260937   15.1663563  -29.4557965   44.0659204  247.9836928 
##          565          566          567          568          569          570 
##  -57.4318280 -238.6989443   -8.7249850   30.9454288 -343.6175905 -207.4418486 
##          571          572          573          574          575          576 
## -306.4223254  157.4538406 -502.4785715 -126.1415717   48.8616098  143.9835801 
##          577          578          579          580          581          582 
## -344.7694076 -116.5012114 -142.7898454 -127.9612584 -226.7659179   67.1679765 
##          583          584          585          586          587          588 
##  -94.0443422 -326.2414346  -84.6517620    4.5942017  -89.9757406  -97.0958454 
##          589          590          591          592          593          594 
##  -34.6927947   40.9701699  -88.3066869  126.5679875 -128.7529512 -166.6757304 
##          595          596          597          598          599          600 
## -208.2444446 -105.4053449  -69.9961388 -104.0297252 -475.1678378 -290.6421238 
##          601          602          603          604          605          606 
##  195.4801727 -116.0865727 -136.0505114 -118.3811054  125.8235124 -145.2484421 
##          607          608          609          610          611          612 
## -144.5655628 -435.6270621 -230.6201428 -112.7403208 -243.8883351   13.9124625 
##          613          614          615          616          617          618 
## -392.1393056 -233.5727670   88.6125994 -203.7574893 -207.3393547   36.7326516 
##          619          620          621          622          623          624 
##   71.7237279 -110.6124268 -151.5524839   95.2365977 -227.3589026  -98.5962165 
##          625          626          627          628          629          630 
## -210.8715081  -53.6787512   33.2644764 -380.2334407 -217.0512157 -135.7283167 
##          631          632          633          634          635          636 
##  208.5947156 -198.2473902 -147.6362401 -282.5390059  -55.4726214    3.0618526 
##          637          638          639          640          641          642 
## -118.7764165  -15.9756605    1.5396468    2.2068206  -78.5559489   20.5194552 
##          643          644          645          646          647          648 
## -376.9064555 -367.5790965   78.4730898   88.0528050 -178.9859105  283.6342652 
##          649          650          651          652          653          654 
##   18.0639226    1.4275017  -22.1910648  334.1581029  -44.6704981 -166.2133428 
##          655          656          657          658          659          660 
## -112.8182784  175.7515262   60.9355144 -331.2815975 -175.1322112   34.9727118 
##          661          662          663          664          665          666 
##  430.8913232 -260.7815266  -99.5985786 -306.5331420 -144.2463445  -71.9561309 
##          667          668          669          670          671          672 
##   40.4095734   -9.9170555    9.7141807   72.8730721  -61.2840291  -51.9936086 
##          673          674          675          676          677          678 
## -452.8596863  -81.9437393   69.2906290  254.7395766  -22.9459505  215.8931262 
##          679          680          681          682          683          684 
##  -16.9537293 -107.9068394  202.3017464  287.5765859  180.7757394 -305.5932029 
##          685          686          687          688          689          690 
##   56.2240459    4.5320328  -44.0648823 -278.0391307  -13.3280981 -112.7276708 
##          691          692          693          694          695          696 
##  422.1750569 -131.0023955   51.4971549  -86.9745423   28.8396258 -107.9302127 
##          697          698          699          700          701          702 
##  -55.3683153  -16.7225380   60.3453436    3.3520616  140.9429255  -17.9219329 
##          703          704          705          706          707          708 
## -296.8381962  136.2394242  106.7244264  168.2861008   26.7860625  339.8954937 
##          709          710          711          712          713          714 
##  187.8922770 -202.6392008  148.7995083  268.8921528    0.6597544 -119.2916116 
##          715          716          717          718          719          720 
##  -23.0549542  -28.1758366  206.7679556 -138.5838793 -210.7824121  -29.6626073 
##          721          722          723          724          725          726 
##  210.3268820 -212.8798945   88.1962039  129.1032851   11.9530477 -166.3796048 
##          727          728          729          730          731          732 
## -372.3297260   67.5130804    1.7122210 -179.0745146  -28.4404659  151.2765881 
##          733          734          735          736          737          738 
## -425.3360446  344.3671825  -47.2592021  136.9801455   63.4427397  203.2044716 
##          739          740          741          742          743          744 
##   27.7908779  251.4279736   84.5817590 -155.6577645  150.3787715  138.7921016 
##          745          746          747          748          749          750 
##  198.4699948  101.8590582  345.8144412   35.1336113  169.1641149  354.9998851 
##          751          752          753          754          755          756 
##  251.7571721   47.8412497   77.9677328   66.2799291  216.7990909  155.1577399 
##          757          758          759          760          761          762 
## -131.2437994  230.2449071  218.7156645  116.0349148  -78.5937100  -23.1321308 
##          763          764          765          766          767          768 
##   99.7713990  280.2227149   40.8527845   19.4188914   72.9388151  120.7266716 
##          769          770          771          772          773          774 
##  439.1035137  456.0100354   47.3239201  186.1096824   31.7505381  -54.0912550 
##          775          776          777          778          779          780 
##   73.0035369  234.4761589   27.9146721  -21.6493313  -75.0167664  148.4251726 
##          781          782          783          784          785          786 
##  106.3308316   76.0196340   37.3592068   56.5562663  -41.8917486 -200.7598142 
##          787          788          789          790          791          792 
##  -55.5159544  109.1518868  321.3239680  219.8866600  -73.6034103    3.1961900 
##          793          794          795          796          797          798 
## -171.1408177  190.8979178  101.1845265  253.1734885  263.7840087  199.5924560 
##          799          800          801          802          803          804 
##  463.8379676  219.1540922   52.3032317  140.7498122  195.8267787  -55.3103142 
##          805          806          807          808          809          810 
##  153.8564182   61.1275837   92.8158603 -108.8302808   73.3423661 -360.6001538 
##          811          812          813          814          815          816 
##  134.1518035   73.3435884  141.0017271  272.8259956  -33.1611977   19.7818711 
##          817          818          819          820          821          822 
## -149.9998706  190.0065593  261.3992751  308.7602526 -135.4172110  108.2677094 
##          823          824          825          826          827          828 
## -171.3410196  102.4439076  156.0829202  210.0521687  109.4908936  -20.5354175 
##          829          830          831          832          833          834 
##   59.2845716  175.9235274   30.6531825  262.6728011   70.0671862  -17.5789419 
##          835 
##   -8.3393046
PointsReg2 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + STL + BLK, data=NBA)
summary(PointsReg2)
## 
## Call:
## lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + STL + 
##     BLK, data = NBA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -526.79 -121.09    6.37  120.74  565.94 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.077e+03  1.931e+02 -10.755   <2e-16 ***
## X2PA         1.044e+00  2.951e-02  35.366   <2e-16 ***
## X3PA         1.263e+00  3.703e-02  34.099   <2e-16 ***
## FTA          1.125e+00  3.308e-02  34.023   <2e-16 ***
## AST          8.861e-01  4.393e-02  20.173   <2e-16 ***
## ORB         -9.581e-01  7.758e-02 -12.350   <2e-16 ***
## DRB          3.892e-02  6.154e-02   0.632   0.5273    
## STL         -2.068e-01  8.984e-02  -2.301   0.0216 *  
## BLK         -5.863e-02  8.749e-02  -0.670   0.5029    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 185.4 on 826 degrees of freedom
## Multiple R-squared:  0.8991, Adjusted R-squared:  0.8982 
## F-statistic: 920.4 on 8 and 826 DF,  p-value: < 2.2e-16
PointsReg3 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + STL + BLK, data=NBA)
summary(PointsReg3)
## 
## Call:
## lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + STL + BLK, 
##     data = NBA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -523.79 -121.64    6.07  120.81  573.64 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.015e+03  1.670e+02 -12.068  < 2e-16 ***
## X2PA         1.048e+00  2.852e-02  36.753  < 2e-16 ***
## X3PA         1.271e+00  3.475e-02  36.568  < 2e-16 ***
## FTA          1.128e+00  3.270e-02  34.506  < 2e-16 ***
## AST          8.909e-01  4.326e-02  20.597  < 2e-16 ***
## ORB         -9.702e-01  7.519e-02 -12.903  < 2e-16 ***
## STL         -2.276e-01  8.356e-02  -2.724  0.00659 ** 
## BLK         -3.882e-02  8.165e-02  -0.475  0.63462    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 185.4 on 827 degrees of freedom
## Multiple R-squared:  0.8991, Adjusted R-squared:  0.8982 
## F-statistic:  1053 on 7 and 827 DF,  p-value: < 2.2e-16
PointsReg4 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + STL, data=NBA)
summary(PointsReg4)
## 
## Call:
## lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + STL, data = NBA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -523.33 -122.02    6.93  120.68  568.26 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.033e+03  1.629e+02 -12.475  < 2e-16 ***
## X2PA         1.050e+00  2.829e-02  37.117  < 2e-16 ***
## X3PA         1.273e+00  3.441e-02  37.001  < 2e-16 ***
## FTA          1.127e+00  3.260e-02  34.581  < 2e-16 ***
## AST          8.884e-01  4.292e-02  20.701  < 2e-16 ***
## ORB         -9.743e-01  7.465e-02 -13.051  < 2e-16 ***
## STL         -2.268e-01  8.350e-02  -2.717  0.00673 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 185.3 on 828 degrees of freedom
## Multiple R-squared:  0.8991, Adjusted R-squared:  0.8983 
## F-statistic:  1229 on 6 and 828 DF,  p-value: < 2.2e-16
# Compute SSE and RMSE for new model
SSE_4 = sum(PointsReg4$residuals^2)
RMSE_4 = sqrt(SSE_4/nrow(NBA))
SSE_4
## [1] 28421465
RMSE_4
## [1] 184.493
# Read in test set
NBA_test = read.csv("NBA_test.csv")
# Make predicitions on test set
PointsPredictions = predict(PointsReg4, newdata=NBA_test)
# Compute out-of-sample R^2
SSE = sum((PointsPredictions - NBA_test$PTS)^2)
SSE
## [1] 1079739
SST = sum((mean(NBA$PTS) - NBA_test$PTS)^2)
SST
## [1] 5765192
R2 = 1 - SSE/SST
R2
## [1] 0.8127142

Activity 12 A) 835 observations of 20 variables B) Yes, because a team winning 38 game made it to the playoffs 8 times and did not make it 7 times. C) 49 to 72 wins can guarantee for any team a presence in the playoffs based on historical data. D) There is a positive relationship between the points difference and the number of wins. As the points difference increases, the number of wins increases. (See Scatterplot below). E) The predictor variable points difference is significant at a 5% significance level because p-value according to the regression model below is at p-value: < 2.2e-16, which is significantly lower than 5%. F) According to to model run below where Block is one of the features. It appears Block is not significant at 5% significance level. G) The maximum number of points in a season is 10371. H) RMSE(Root mean squared error) in the PointsReg model tells us how spread the data is. It measures the average difference between the predicted and actual values. The value is not that large, which means it is satisfying. I) Our predicitions work well on the dataset. The new R2 and RSME are respectively 0.8127142 and 1079739.

# Compute the RMSE
RMSE = sqrt(SSE/nrow(NBA_test))
RMSE
## [1] 196.3723
# ***Activity 12***
# H) RMSE(Root mean squared error) in the PointsReg model tells us how spread the data is. It measures the #average difference between the predicted and actual values. The value is not that large, which means it is #satisfying.
# ***Activity 13***
# WinsReg = lm(W ~ PTSdiff, data=NBA)
# 49=41+0.0326*(x)
# The expected points difference is 245.3988 for a team to make it to the postseason.
x_1=(49-41)/0.0326
x_1
## [1] 245.3988

Activity 14

Threepts_made<-c(4, 5, 3, 6, 7)
Threepts_attmpt<-c(9, 10, 8, 11, 12)
Three_pts_pct = Threepts_made/Threepts_attmpt
Three_pts_pct
## [1] 0.4444444 0.5000000 0.3750000 0.5454545 0.5833333
# average for each game
mean(Three_pts_pct)
## [1] 0.4896465

The average three-point shooting percentage for the five games is 0.4896465.