title: “Module 11: Code Along 10” subtitle: “R For Data Science: Chapter 15” author: “Ethan Schena” date: “2025-04-07” output: html_document —
Unordered Factor Levels
# Transform Data: Calculate average TV Hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(avg_tvhours = mean(tvhours, na.rm = TRUE))
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
Ordered Factor Levels
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
Moving A Single Level To The Front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Dont know"))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
## Warning: 1 unknown level in `f`: Dont know
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
#Rename Levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse Multiple Levels Into One
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" =c("Black", "Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump Small Levels Into Other Levels
gss_cat %>%
count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>%
mutate(race_lump = fct_lump(race)) %>%
distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From Strings
"2025-04-14" %>% ymd()
## [1] "2025-04-14"
# From Numbers
20250414 %>% ymd()
## [1] "2025-04-14"
"2024-04-14 4-41-30" %>% ymd_hms()
## [1] "2024-04-14 04:41:30 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# From Date to Date-Time
today() %>% as_datetime()
## [1] "2025-04-14 UTC"
# From Date-Time to Date
now() %>% as_date()
## [1] "2025-04-14"
date_time <- ymd_hms("2024-04-14 18-18-18")
date_time
## [1] "2024-04-14 18:18:18 UTC"
year(date_time)
## [1] 2024
month(date_time)
## [1] 4
yday(date_time)
## [1] 105
mday(date_time)
## [1] 14
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Sunday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor_date for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-10-22 16:57:00 2013-10-01 00:00:00
## 2 2013-01-03 14:41:00 2013-01-01 00:00:00
## 3 2013-12-07 14:09:00 2013-12-01 00:00:00
## 4 2013-05-09 18:55:00 2013-05-01 00:00:00
## 5 2013-11-13 12:20:00 2013-11-01 00:00:00
## 6 2013-03-31 13:56:00 2013-03-01 00:00:00
## 7 2013-06-19 19:23:00 2013-06-01 00:00:00
## 8 2013-04-13 15:28:00 2013-04-01 00:00:00
## 9 2013-02-15 06:02:00 2013-02-01 00:00:00
## 10 2013-12-17 13:40:00 2013-12-01 00:00:00
# ceiling_date for rounding down
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-11-26 07:59:00 2013-12-01 00:00:00
## 2 2013-08-22 09:07:00 2013-09-01 00:00:00
## 3 2013-12-24 07:17:00 2014-01-01 00:00:00
## 4 2013-04-20 15:40:00 2013-05-01 00:00:00
## 5 2013-02-13 16:13:00 2013-03-01 00:00:00
## 6 2013-04-23 10:23:00 2013-05-01 00:00:00
## 7 2013-01-07 08:30:00 2013-02-01 00:00:00
## 8 2013-03-10 15:52:00 2013-04-01 00:00:00
## 9 2013-02-27 15:30:00 2013-03-01 00:00:00
## 10 2013-08-24 08:09:00 2013-09-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-01-18 10:05:00 2013-01-01 10:05:00
## 2 2013-03-26 20:34:00 2013-01-01 20:34:00
## 3 2013-08-30 08:59:00 2013-01-01 08:59:00
## 4 2013-09-11 14:55:00 2013-01-01 14:55:00
## 5 2013-08-07 11:14:00 2013-01-01 11:14:00
## 6 2013-12-19 20:08:00 2013-01-01 20:08:00
## 7 2013-08-28 18:06:00 2013-01-01 18:06:00
## 8 2013-01-19 19:28:00 2013-01-01 19:28:00
## 9 2013-09-05 13:06:00 2013-01-01 13:06:00
## 10 2013-05-28 06:35:00 2013-01-01 06:35:00