statistic <- c(68,85,74,88,63,78,90,80,58,63)

math <- c(85,91,74,100,82,84,78,100,51,70)

plot(statistic,math,
     pch = 17,
     col= "pink",
     main ="班上的統計與數學成績",
     xlab ="統計",
     ylab ="數學")

# library
library(ggplot2)

# Iris dataset is natively provided by R

data3<- data.frame(statistic,math)
 
# use options!
ggplot(data3, aes(x=statistic, y=math)) + 
    geom_point(
        color="blue",
        fill="#69b3a2",
        shape=21,
        alpha=0.5,
        size=6,
        stroke = 2
        )

hist(statistic,
     col= "skyblue",
     main ="班上的統計成績",
     xlab ="成績",
     ylab ="次數")

# Load ggplot2
library(ggplot2)

# Create data
data <- data.frame(
  name=c("娛樂休閒","知識閱讀","體育競技","科學創新","公益活動") ,  
  value=c(185,82,36,28,25)
  )

# Barplot
ggplot(data, aes(x=name, y=value)) + 
  geom_bar(stat = "identity", width=0.2) 

# Create data for the graph.
x <- c(185,82,36,28,25)
labels <- c("娛樂休閒", "知識閱讀", "體育競技", "科學創新","公益活動")


# Plot the chart with title and rainbow color pallet.
pie(x, labels, main = "大學生最喜歡參加的社團的次數 - 餅狀圖", col = heat.colors(length(x)))

# Library
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.4     ✔ tibble    3.2.1
## ✔ purrr     1.0.4     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Create data
data <- data.frame(
  x= c("娛樂休閒", "知識閱讀", "體育競技", "科學創新","公益活動"),
  y=c(185,82,36,28,25)
)
 
# plot
ggplot(data, aes(x=x, y=y)) +
  geom_segment( aes(x=x, xend=x, y=0, yend=y)) +
  geom_point( size=5, color="orange", fill=alpha("yellow", 0.3), alpha=0.7, shape=21, stroke=2)