Below is the R code used to simulate data and fit a linear regression model:
set.seed(123)
n <- 100
x <- rnorm(n, mean = 5, sd = 2)
y <- 3 + 1.5 * x + rnorm(n, mean = 0, sd = 1)
data <- data.frame(x = x, y = y)
model <- lm(y ~ x, data = data)
summary(model)
##
## Call:
## lm(formula = y ~ x, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9073 -0.6835 -0.0875 0.5806 3.2904
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.02838 0.29338 10.32 <2e-16 ***
## x 1.47376 0.05344 27.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9707 on 98 degrees of freedom
## Multiple R-squared: 0.8859, Adjusted R-squared: 0.8847
## F-statistic: 760.6 on 1 and 98 DF, p-value: < 2.2e-16