Alexander Romero

Our data shows that a team with 49 wins has never missed the playoffs. What is the expected points difference for a team to make it to the postseason? Use the lecture solution file and more specifically the WingsReg model.

First thing first, my R notebook needs to read the data first!

# Read in the data
NBA = read.csv("NBA_train.csv")
str(NBA)

Point Differential

# Create a new column for point differential
NBA$PTS_DIFF = NBA$PTS - NBA$oppPTS
# Fit the WingsReg model: point differential predicted by wins
WingsReg = lm(PTS_DIFF ~ W, data = NBA)

# View summary (optional, for analysis)
summary(WingsReg)

Call:
lm(formula = PTS_DIFF ~ W, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-378.45  -61.36    3.78   60.92  281.18 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1185.6517    10.6403  -111.4   <2e-16 ***
W              28.9183     0.2478   116.7   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 91.19 on 833 degrees of freedom
Multiple R-squared:  0.9423,    Adjusted R-squared:  0.9423 
F-statistic: 1.361e+04 on 1 and 833 DF,  p-value: < 2.2e-16
# Create new data with 49 wins
new_team = data.frame(W = 49)

# Predict the point differential
predicted_diff = predict(WingsReg, newdata = new_team)
predicted_diff
       1 
231.3467 
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQpBbGV4YW5kZXIgUm9tZXJvIAoKT3VyIGRhdGEgc2hvd3MgdGhhdCBhIHRlYW0gd2l0aCA0OSB3aW5zIGhhcyBuZXZlciBtaXNzZWQgdGhlIHBsYXlvZmZzLiBXaGF0IGlzIHRoZSBleHBlY3RlZCBwb2ludHMgZGlmZmVyZW5jZSBmb3IgYSB0ZWFtIHRvIG1ha2UgaXQgdG8gdGhlIHBvc3RzZWFzb24/IFVzZSB0aGUgbGVjdHVyZSBzb2x1dGlvbiBmaWxlIGFuZCBtb3JlIHNwZWNpZmljYWxseSB0aGUgV2luZ3NSZWcgbW9kZWwuCgpGaXJzdCB0aGluZyBmaXJzdCwgbXkgUiBub3RlYm9vayBuZWVkcyB0byByZWFkIHRoZSBkYXRhIGZpcnN0IQpgYGB7cn0KIyBSZWFkIGluIHRoZSBkYXRhCk5CQSA9IHJlYWQuY3N2KCJOQkFfdHJhaW4uY3N2IikKc3RyKE5CQSkKYGBgCgpQb2ludCBEaWZmZXJlbnRpYWwKYGBge3J9CiMgQ3JlYXRlIGEgbmV3IGNvbHVtbiBmb3IgcG9pbnQgZGlmZmVyZW50aWFsCk5CQSRQVFNfRElGRiA9IE5CQSRQVFMgLSBOQkEkb3BwUFRTCmBgYAoKCmBgYHtyfQojIEZpdCB0aGUgV2luZ3NSZWcgbW9kZWw6IHBvaW50IGRpZmZlcmVudGlhbCBwcmVkaWN0ZWQgYnkgd2lucwpXaW5nc1JlZyA9IGxtKFBUU19ESUZGIH4gVywgZGF0YSA9IE5CQSkKCiMgVmlldyBzdW1tYXJ5IChvcHRpb25hbCwgZm9yIGFuYWx5c2lzKQpzdW1tYXJ5KFdpbmdzUmVnKQpgYGAKCmBgYHtyfQojIENyZWF0ZSBuZXcgZGF0YSB3aXRoIDQ5IHdpbnMKbmV3X3RlYW0gPSBkYXRhLmZyYW1lKFcgPSA0OSkKCiMgUHJlZGljdCB0aGUgcG9pbnQgZGlmZmVyZW50aWFsCnByZWRpY3RlZF9kaWZmID0gcHJlZGljdChXaW5nc1JlZywgbmV3ZGF0YSA9IG5ld190ZWFtKQpwcmVkaWN0ZWRfZGlmZgpgYGAKCg==