Healthy Cities GIS Assignment

Author

Chibogwu Onyeabo

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
library(ggplot2)

cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United States, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Category == "Prevention") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName   GeographicLevel DataSource Category  
  <dbl> <chr>     <chr>      <chr>      <chr>           <chr>      <chr>     
1  2017 AL        Alabama    Montgomery City            BRFSS      Prevention
2  2017 CA        California Concord    City            BRFSS      Prevention
3  2017 CA        California Concord    City            BRFSS      Prevention
4  2017 CA        California Fontana    City            BRFSS      Prevention
5  2017 CA        California Richmond   Census Tract    BRFSS      Prevention
6  2017 FL        Florida    Davie      Census Tract    BRFSS      Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
2  2017 CA        California Concord   City            Prevent… 616000   Visits…
3  2017 CA        California Concord   City            Prevent… 616000   Choles…
4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
md <- prevention |>
  filter(StateAbbr=="MD")
head(md)
# A tibble: 6 × 18
   Year StateAbbr StateDesc CityName  GeographicLevel Category  UniqueID Measure
  <dbl> <chr>     <chr>     <chr>     <chr>           <chr>     <chr>    <chr>  
1  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Chole…
2  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
3  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
4  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
5  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
6  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
names(md)
 [1] "Year"                "StateAbbr"           "StateDesc"          
 [4] "CityName"            "GeographicLevel"     "Category"           
 [7] "UniqueID"            "Measure"             "Data_Value_Type"    
[10] "Data_Value"          "PopulationCount"     "lat"                
[13] "long"                "CategoryID"          "MeasureId"          
[16] "CityFIPS"            "TractFIPS"           "Short_Question_Text"
md
# A tibble: 804 × 18
    Year StateAbbr StateDesc CityName  GeographicLevel Category UniqueID Measure
   <dbl> <chr>     <chr>     <chr>     <chr>           <chr>    <chr>    <chr>  
 1  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Chole…
 2  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Visit…
 3  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Visit…
 4  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Curre…
 5  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Curre…
 6  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Visit…
 7  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Curre…
 8  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Takin…
 9  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Curre…
10  2017 MD        Maryland  Baltimore Census Tract    Prevent… 2404000… "Chole…
# ℹ 794 more rows
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
unique(md$CityName)
[1] "Baltimore"

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with a cleaned dataset.

1. Once you run the above code, filter this dataset one more time for any particular subset with no more than 900 observations.

Filter chunk here

waco <- 
latlong |>
  filter(CityName == "Waco" & Year == 2017 & GeographicLevel != "City") |> #focusing on census tracts in Waco, Texas
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote, -UniqueID) #getting rid of unnessary columns

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here; (North = + lat, South = - lat, East = + lng, West = - lng)

waco |>
  ggplot(aes(x = Category, y = Short_Question_Text)) +
  geom_point(size = 5, color = "red", shape = "x") +
  theme_bw() |>
  labs(title = "Waco, TX - 2017 Health Data",
       y = "Measure")

3. Now create a map of your subsetted dataset.

First map chunk here

leaflet() |>
    setView(lng = -97.1290, lat = 31.5576, zoom = 11) |>
    addProviderTiles("Stadia.AlidadeSmooth") |>
    addCircles(data = waco)
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mouse-click tooltip

tooltip <- 
  paste0(
    "<b>Measure: </b>", waco$Short_Question_Text, "<br>",
    "<b>Category: </b>", waco$Category, "<br>",
    "<b>Population: </b>", waco$PopulationCount, "<br>"
    )

leaflet() |>
    setView(lng = -97.1290, lat = 31.5576, zoom = 11) |>
    addProviderTiles("Stadia.AlidadeSmooth") |>
    addCircles(data = waco,
               radius = (waco$PopulationCount / 10), #varying sizes based on pop.
               color = "tan",
               fillOpacity = 0.05,
               popup = tooltip
               )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

In a paragraph, describe the plots you created and what they show.

From this dataset of the 500 largest cities, I chose to create my visualizations based on Waco, Texas. First, I created a point graph demonstrating each recorded measure of chronic disease vs. its category. In this, I noticed most measurements included health outcomes such as diseases and health condition, which means this was the most common factor in determining the city’s healthiness. Next, I mapped the city of Waco with each census tract plotted along with information on the area’s measure, category, and population; with the points varying in size based on the population count.