Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.
Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.
Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio [@mendenhall_introduccion_2006].
Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.[@walpole_probabilidad_2012]
Esta distribución discreta, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,
La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o
El número medio de reparaciones necesarias en 10 kms. de una autopista o,
El número promedio de fugas de agua en tubería en un lapso 3 meses.
El número de focos promedio que fallan en una cantidad de lote de 1000 focos.
El número medio de fugas en 100 kms.de tubería, entre otros [@anderson_estadistica_2008].
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \] en donde:
\(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).
\(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\) lambda.
\(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1,. 2, . . . )\)
\(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).
Propiedades de un evento Poisson:
La probabilidad de ocurrencia es la misma para cualquiera de dos intervalos de la misma longitud.
La ocurrencia o no ocurrencia en cualquier intervalo es independiente de la ocurrencia o no ocurrencia en cualquier otro intervalo.
El factor de proporcionalidad para la probabilidad de un hecho en un intervalo infinitésimo. Se le suele designar como parámetro de intensidad y corresponde con el número medio de hechos que cabe esperar que se produzcan en un intervalo unitario (media de la distribución);
El valor de la media también coincide con la varianza de la distribución.
Se trata de un modelo discreto y que el campo de variación de la variable será el conjunto de los número naturales, incluido el cero: \(x \in \text{{0, 1, 2, 3, 4 ......... ......}}\)
\[ F(x) = \sum_{0}^{n}f.x_i \]
Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:
Es decir, tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales.
El los siguiente ejercicios se hace uso de funciones de distribución para Poisson en R, al igual que otras de las distribuciones de probabilidad, R trae consigo funciones de paquete base que ya permiten calcular la probabilidad, la densidad y la generación de números aleatorios, entre otras.
De igual modo se tienen funciones previamente codificadas que generan los mismos resultados en la dirección: https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/2023/funciones/funciones%20para%20disribuciones%20de%20probabilidad.R
library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
library(cowplot) #Imágenes en el mismo renglón
library(plotly)
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica
options(scipen=999) # Notación normal
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/2023/funciones/funciones%20para%20disribuciones%20de%20probabilidad.R")
##
## Attaching package: 'gtools'
## The following object is masked from 'package:mosaic':
##
## logit
Se describen ejercicios en donde se encuentra la función de distribución
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.[@anderson_estadistica_2008]
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.
Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:
Inicializando variables y valores, estos valores son los parámetros que requiere la función de Poisson. \(x\) como variable aleatoria, \(\mu\) (miu) o \(\lambda\) (lambda) es el valor medio de la distribución y \(n\) como un valor final de los valores de la variable discreta \(x\), desde \(0\) hasta \(n\);.
Este último valor de \(n\) puede modificarse y observar los valores de densidad (probabilidad) de la variable discreta van reduciendo poco a poco.
media <- 10 # Media o lambda en la función de densidad
x <- 5 # Valores de la variable disreta
n = 25 # Estimado final de la variable aleatoria x , pero puede variar
Utilizando la función creada conforme a la fórmula
prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.0378"
Utilizando la función dpois()
prob2 <- round(dpois(x = x, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
Para este caso al igual que las entregas de Caso de binomial e hipergeométrica, también se hace uso de la función previamente f.poisson.all(…) construída para este fín y que se encuentra en el script previamente cargado con la función source().
Esta función f.poisson.all(…), devuelve entre otras cosas, la tabla de distribución, el valor esperado, la varianza, la desviación estándar así como las visualizaciones gráficas de la densidad, histograma y acumulado de la variable discreta Poisson.
Se crea una tabla de distribución codificada manualmente
tabla1 <- data.frame(x=0:25, f.x = round(dpois(x = 0:25, lambda = media),8), F.x = round(ppois(q=0:25, lambda = media), 8))
tabla1
## x f.x F.x
## 1 0 0.00004540 0.00004540
## 2 1 0.00045400 0.00049940
## 3 2 0.00227000 0.00276940
## 4 3 0.00756665 0.01033605
## 5 4 0.01891664 0.02925269
## 6 5 0.03783327 0.06708596
## 7 6 0.06305546 0.13014142
## 8 7 0.09007923 0.22022065
## 9 8 0.11259903 0.33281968
## 10 9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
## 22 21 0.00088861 0.99930035
## 23 22 0.00040391 0.99970426
## 24 23 0.00017561 0.99987988
## 25 24 0.00007317 0.99995305
## 26 25 0.00002927 0.99998232
Se hace la misma tabla de distribución usando la variable resultado que provienen de haber ejecutado la función previamente.
Ejecutando la función f.poisson.all(…)
resultado <- f.poisson.all(media = media)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
tabla <- resultado$tabla
tabla
## x f.x F.x
## 1 0 0.00004540 0.00004540
## 2 1 0.00045400 0.00049940
## 3 2 0.00227000 0.00276940
## 4 3 0.00756665 0.01033605
## 5 4 0.01891664 0.02925269
## 6 5 0.03783327 0.06708596
## 7 6 0.06305546 0.13014142
## 8 7 0.09007923 0.22022065
## 9 8 0.11259903 0.33281968
## 10 9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
El resultado de ambas tablas debe ser similar.
Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.
plot_grid(resultado$g.dens, resultado$g_all$dens)
Histograma y acumulado
plot_grid(resultado$g_barra, resultado$g_all$acum)
Usando plotly para visualizaciones dinámicas
resultado$g.hist.plotly
resultado$g.acum.plotly
\[f(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]
i <- 10
tabla$F.x[i + 1]
## [1] 0.5830397
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$F.x[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.58303975"
ppois() determina la probabilidad acumulada de una distribución Poisson.
prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583"
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Regla de tres:
\[ 10 = 15\] \[ ? = 3\]
Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.
\[ \mu = 2 \]
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]
Entonces ….
media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"
Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)
La varianza es igual a \(10\)
La raiz cuadrada de \(\sqrt{10}\)
sqrt(media)
## [1] 1.414214
este ejercicio, se aplica la distribución de Poisson para modelar las llegadas de automóviles a un cajero automático durante un intervalo de 15 minutos. Con una tasa promedio de 10 automóviles por cada 15 minutos, se calculó la probabilidad de que lleguen exactamente 5 automóviles en dicho lapso, usando la función de probabilidad de Poisson.
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí [@walpole_probabilidad_2012].
¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días
habrá un accidente en un día?
Se multiplica la cantidad la de días por su probabilidad para encontrar
la media. Esta media será el parámetro para la distribución
Poisson.
n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2
La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)
resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
## x f.x F.x
## 1 0 0.13533528 0.1353353
## 2 1 0.27067057 0.4060059
## 3 2 0.27067057 0.6766764
## 4 3 0.18044704 0.8571235
## 5 4 0.09022352 0.9473470
Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.
plot_grid(resultado$g.dens, resultado$g_all$dens)
Histograma/Barra y acumulado
plot_grid(resultado$g_barra, resultado$g_all$acum)
Usando plotly para visualizaciones dinámicas
resultado$g.hist.plotly
resultado$g.acum.plotly
\(f(x=1)\)
Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:
i <- 1
prob <- tabla$f.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es: 0.27067057"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es: 0.2707"
i <- 3
prob <- round(tabla$F.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es: 0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es: 0.8571"
las instalaciones industriales, se utilizó la distribución de Poisson para estimar la probabilidad de que ocurran accidentes en un periodo de 400 días, sabiendo que la probabilidad diaria de un accidente es de 0.005. Al multiplicar los días por esa probabilidad, se obtuvo una media de 2 accidentes esperados. Con este valor, se construyó la tabla de distribución de Poisson y se calcularon probabilidades puntuales y acumuladas.
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\) [@walpole_probabilidad_2012].
Inicializando valores
media <- 5
resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
## x f.x F.x
## 1 0 0.00673795 0.00673795
## 2 1 0.03368973 0.04042768
## 3 2 0.08422434 0.12465202
## 4 3 0.14037390 0.26502592
## 5 4 0.17546737 0.44049329
## 6 5 0.17546737 0.61596065
## 7 6 0.14622281 0.76218346
## 8 7 0.10444486 0.86662833
## 9 8 0.06527804 0.93190637
## 10 9 0.03626558 0.96817194
## 11 10 0.01813279 0.98630473
Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.
plot_grid(resultado$g.dens, resultado$g_all$dens)
Histograma/barra y lineal acumulado
plot_grid(resultado$g_barra, resultado$g_all$acum)
Usando plotly para visualizaciones dinámicas
resultado$g.hist.plotly
resultado$g.acum.plotly
\[f(X \leq 3)\]
\[f(X=0) + f(X=1) + f(X=2) + f(X=3)\]
i <- 3
prob <- tabla$F.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5 %"
\[ 1 - F(X \leq 1) \] \[ 1 - (f(X=0) + f(x=1))\]
i <- 1
prob <- 1 - tabla$F.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
\[f(X \leq 3)\]
\[f(X=0) + f(X=1) + f(X=2) + f(X=3)\]
i <- 3
prob <- tabla$F.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5 %"
\[ 1 - F(X \leq 1) \] \[ 1 - (f(X=0) + f(x=1))\]
i <- 1
prob <- 1 - tabla$F.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
En este caso, se analiza el riesgo de fallas en el sistema de frenos de un modelo de automóvil, usando una distribución de Poisson con media 5. Se encontró que la probabilidad de que a lo más 3 autos por año sufran una catástrofe es de aproximadamente 26.5%, mientras que la probabilidad de que más de 1 automóvil al año tenga este problema es muy alta, de casi 95%. Esto indica que el riesgo es significativo y debe tomarse con seriedad.
Suponga que, en promedio, \(1 \text {
persona en }1000\)
comete un error numérico al preparar su declaración de
impuestos. Si se seleccionan \(10,000\) formas al azar y se examinan,
encuentre la probabilidad de que \(6, 7 \text
{ u } 8\) de las formas contengan un error.[@walpole2007]. Ejercicio 5.65, Pág.
165.
\[ f(x=6:8) = f(x=6) + f(x=7) + f(x=8) \]
prob <- 1 / 1000
media <- prob * 10000
resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
## x f.x F.x
## 1 0 0.00004540 0.00004540
## 2 1 0.00045400 0.00049940
## 3 2 0.00227000 0.00276940
## 4 3 0.00756665 0.01033605
## 5 4 0.01891664 0.02925269
## 6 5 0.03783327 0.06708596
## 7 6 0.06305546 0.13014142
## 8 7 0.09007923 0.22022065
## 9 8 0.11259903 0.33281968
## 10 9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
\[ f(x \text { de 6 a }8) = f(x=6) + f(x=7) + f(x=8) \]
Se suman las probabilidades
Usando dpois()
paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es: 26.5734 %"
Con ppois(), restando el valor acumulado de \(F(x=8)\) - el valor cumulado en \(F(x=5)\)
prob <- ppois(q = 8, lambda = media) - ppois(q = 5, lambda = media)
prob
## [1] 0.2657337
Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.
plot_grid(resultado$g.dens, resultado$g_all$dens)
Histograma/barra y lineal acumulado
plot_grid(resultado$g_barra, resultado$g_all$acum)
Usando plotly para visualizaciones dinámicas
resultado$g.hist.plotly
resultado$g.acum.plotly
En este caso se analiza cuántas declaraciones podrían tener errores numéricos al ser revisadas al azar. Con un promedio de 10 errores esperados en 10,000 formularios, la probabilidad de encontrar entre 6 y 8 errores es aproximadamente del 26%. Esto indica que aunque los errores son poco comunes individualmente, al revisar grandes cantidades de formularios, encontrar varios errores es bastante probable.
la distribución de Poisson es una herramienta fundamental en la estadística, especialmente útil para modelar fenómenos que involucran la ocurrencia de eventos en intervalos de tiempo o espacio. La probabilidad de que ocurran eventos en una distribución de Poisson depende de un parámetro medio, λ, que es el número promedio de eventos esperados.