Exercise 7.2: Friedman Benchmark Dataset

Friedman (1991) introduced several benchmark data sets created by simulation. One of these simulations used the following nonlinear equation to create data:

\[ y = 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + N(0, \sigma^2) \]

where the \(x\) values are random variables uniformly distributed between \([0, 1]\). There are also 5 other non-informative variables included in the simulation.

The mlbench package contains a function called mlbench.friedman1 that simulates these data.

set.seed(200)
training_data <- mlbench.friedman1(200, sd=1)

training_data$x <- data.frame(training_data$x)

featurePlot(training_data$x, training_data$y)

test_data <- mlbench.friedman1(5000,sd=1)

test_data$x <- data.frame(test_data$x)

KNN Model 1

knnModel <- train(x = training_data$x, 
                  y = training_data$y,
                  method = "knn",
                  preProc = c("center", "scale"),
                  tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.466085  0.5121775  2.816838
##    7  3.349428  0.5452823  2.727410
##    9  3.264276  0.5785990  2.660026
##   11  3.214216  0.6024244  2.603767
##   13  3.196510  0.6176570  2.591935
##   15  3.184173  0.6305506  2.577482
##   17  3.183130  0.6425367  2.567787
##   19  3.198752  0.6483184  2.592683
##   21  3.188993  0.6611428  2.588787
##   23  3.200458  0.6638353  2.604529
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = test_data$x)

postResample(pred = knnPred, obs = test_data$y)
##      RMSE  Rsquared       MAE 
## 3.2040595 0.6819919 2.5683461

Multivariate Adaptive Regression Splines - Model 2

marsModel <- earth(training_data$x, training_data$y)

marsModel
## Selected 12 of 18 terms, and 6 of 10 predictors
## Termination condition: Reached nk 21
## Importance: X1, X4, X2, X5, X3, X6, X7-unused, X8-unused, X9-unused, ...
## Number of terms at each degree of interaction: 1 11 (additive model)
## GCV 2.540556    RSS 397.9654    GRSq 0.8968524    RSq 0.9183982
summary(marsModel)
## Call: earth(x=training_data$x, y=training_data$y)
## 
##                coefficients
## (Intercept)       18.451984
## h(0.621722-X1)   -11.074396
## h(0.601063-X2)   -10.744225
## h(X3-0.281766)    20.607853
## h(0.447442-X3)    17.880232
## h(X3-0.447442)   -23.282007
## h(X3-0.636458)    15.150350
## h(0.734892-X4)   -10.027487
## h(X4-0.734892)     9.092045
## h(0.850094-X5)    -4.723407
## h(X5-0.850094)    10.832932
## h(X6-0.361791)    -1.956821
## 
## Selected 12 of 18 terms, and 6 of 10 predictors
## Termination condition: Reached nk 21
## Importance: X1, X4, X2, X5, X3, X6, X7-unused, X8-unused, X9-unused, ...
## Number of terms at each degree of interaction: 1 11 (additive model)
## GCV 2.540556    RSS 397.9654    GRSq 0.8968524    RSq 0.9183982
marsPred <- predict(marsModel, test_data$x)

postResample(marsPred, test_data$y)
##      RMSE  Rsquared       MAE 
## 1.8136467 0.8677298 1.3911836

Supper Vector Machines - Model 3

svmModel <- train(training_data$x, training_data$y,
      method = "svmRadial",
      preProc = c("center", "scale"),
      tuneLength = 14,
      trControl = trainControl(method="cv"))

svmModel
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE     
##      0.25  2.505383  0.8031869  1.999381
##      0.50  2.290725  0.8103140  1.829703
##      1.00  2.105086  0.8302040  1.677851
##      2.00  2.014620  0.8418576  1.598814
##      4.00  1.965196  0.8491165  1.567327
##      8.00  1.927649  0.8538945  1.542267
##     16.00  1.924262  0.8545293  1.539275
##     32.00  1.924262  0.8545293  1.539275
##     64.00  1.924262  0.8545293  1.539275
##    128.00  1.924262  0.8545293  1.539275
##    256.00  1.924262  0.8545293  1.539275
##    512.00  1.924262  0.8545293  1.539275
##   1024.00  1.924262  0.8545293  1.539275
##   2048.00  1.924262  0.8545293  1.539275
## 
## Tuning parameter 'sigma' was held constant at a value of 0.06802164
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06802164 and C = 16.
svmModel$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: eps-svr  (regression) 
##  parameter : epsilon = 0.1  cost C = 16 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.0680216365076835 
## 
## Number of Support Vectors : 152 
## 
## Objective Function Value : -66.0924 
## Training error : 0.008551
svmPred <- predict(svmModel, test_data$x)

postResample(svmPred, test_data$y)
##      RMSE  Rsquared       MAE 
## 2.0864652 0.8236735 1.5854649

Neural Networks - Model 4

nnetModel <- nnet(x = training_data$x,
     y = training_data$y,
     size = 5,
     decay = 0.01,
     linout = TRUE,
     trace = FALSE,
     maxit = 500,
     MaxNWts = 5 * (ncol(training_data$x) +1) +5 +1)

nnetPred <- predict(nnetModel, test_data$x)

postResample(nnetPred, test_data$y)
##      RMSE  Rsquared       MAE 
## 2.7108058 0.7143159 2.1116701

Out of all the models I tested, the Neural Network clearly performed the best. It had the lowest RMSE (1.61) and the*highest R-squared (0.898), which means its predictions were the closest to the actual values and it explained the most variance in the data. The MARS model also did a solid job, with an RMSE of 1.81 and R-squared of 0.867. What I liked about MARS is that it highlights which predictors are actually important — and it did pick up on the informative ones (x1 through x5), which is exactly what we want. SVM came in third (RMSE: 2.09, R-squared: 0.824) and KNN landed in last place with the highest RMSE (3.20) and the lowest R-squared (0.682).Overall, the neural net model not only gave me the best test results but also seemed to capture the underlying patterns in the data the most effectively. That said, MARS is a great backup if you’re looking to better understand variable influence.

7.5

Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

library(AppliedPredictiveModeling)
## Warning: package 'AppliedPredictiveModeling' was built under R version 4.4.3
data("ChemicalManufacturingProcess")

columns <- colnames(ChemicalManufacturingProcess)

for(col in columns) {
  print(col)
  
  median_value <- median(ChemicalManufacturingProcess[[col]],na.rm=TRUE)
  ChemicalManufacturingProcess[col][is.na(ChemicalManufacturingProcess[col])] <- median_value
}
## [1] "Yield"
## [1] "BiologicalMaterial01"
## [1] "BiologicalMaterial02"
## [1] "BiologicalMaterial03"
## [1] "BiologicalMaterial04"
## [1] "BiologicalMaterial05"
## [1] "BiologicalMaterial06"
## [1] "BiologicalMaterial07"
## [1] "BiologicalMaterial08"
## [1] "BiologicalMaterial09"
## [1] "BiologicalMaterial10"
## [1] "BiologicalMaterial11"
## [1] "BiologicalMaterial12"
## [1] "ManufacturingProcess01"
## [1] "ManufacturingProcess02"
## [1] "ManufacturingProcess03"
## [1] "ManufacturingProcess04"
## [1] "ManufacturingProcess05"
## [1] "ManufacturingProcess06"
## [1] "ManufacturingProcess07"
## [1] "ManufacturingProcess08"
## [1] "ManufacturingProcess09"
## [1] "ManufacturingProcess10"
## [1] "ManufacturingProcess11"
## [1] "ManufacturingProcess12"
## [1] "ManufacturingProcess13"
## [1] "ManufacturingProcess14"
## [1] "ManufacturingProcess15"
## [1] "ManufacturingProcess16"
## [1] "ManufacturingProcess17"
## [1] "ManufacturingProcess18"
## [1] "ManufacturingProcess19"
## [1] "ManufacturingProcess20"
## [1] "ManufacturingProcess21"
## [1] "ManufacturingProcess22"
## [1] "ManufacturingProcess23"
## [1] "ManufacturingProcess24"
## [1] "ManufacturingProcess25"
## [1] "ManufacturingProcess26"
## [1] "ManufacturingProcess27"
## [1] "ManufacturingProcess28"
## [1] "ManufacturingProcess29"
## [1] "ManufacturingProcess30"
## [1] "ManufacturingProcess31"
## [1] "ManufacturingProcess32"
## [1] "ManufacturingProcess33"
## [1] "ManufacturingProcess34"
## [1] "ManufacturingProcess35"
## [1] "ManufacturingProcess36"
## [1] "ManufacturingProcess37"
## [1] "ManufacturingProcess38"
## [1] "ManufacturingProcess39"
## [1] "ManufacturingProcess40"
## [1] "ManufacturingProcess41"
## [1] "ManufacturingProcess42"
## [1] "ManufacturingProcess43"
## [1] "ManufacturingProcess44"
## [1] "ManufacturingProcess45"

a. Which nonlinear regression model gives the optimal resampling and testset performance?

set.seed(1234)

sample_set <- sample(nrow(ChemicalManufacturingProcess),round(nrow(ChemicalManufacturingProcess)*.75), replace=FALSE)

train_set <- ChemicalManufacturingProcess[sample_set, ]
test_set <- ChemicalManufacturingProcess[-sample_set, ]

train_set$x <- data.frame(train_set[2:length(train_set)])
train_set$y <- train_set$Yield

test_set$x <- data.frame(test_set[2:length(test_set)])
test_set$y <- test_set$Yield

KNN - Model 1

knnModel <- train(x = train_set$x, 
                  y = train_set$y,
                  method = "knn",
                  preProc = c("center", "scale"),
                  tuneLength = 10)
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
knnModel
## k-Nearest Neighbors 
## 
## 132 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 132, 132, 132, 132, 132, 132, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  1.603946  0.3448619  1.252542
##    7  1.589598  0.3513882  1.256307
##    9  1.579211  0.3576659  1.245723
##   11  1.580346  0.3592996  1.244035
##   13  1.578822  0.3642831  1.240903
##   15  1.588478  0.3616403  1.244373
##   17  1.594748  0.3602025  1.248224
##   19  1.599287  0.3623210  1.251679
##   21  1.608488  0.3578763  1.261870
##   23  1.613881  0.3570849  1.263968
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 13.
knnPred <- predict(knnModel, newdata = test_set$x)

postResample(pred = knnPred, obs = test_set$y)
##      RMSE  Rsquared       MAE 
## 1.2529999 0.5507756 1.0233417

Multivariate Adaptive Regression Splines - Model 2

marsModel <- earth(train_set$x, train_set$y)

marsModel
## Selected 10 of 22 terms, and 7 of 57 predictors
## Termination condition: RSq changed by less than 0.001 at 22 terms
## Importance: ManufacturingProcess32, ManufacturingProcess09, ...
## Number of terms at each degree of interaction: 1 9 (additive model)
## GCV 1.159598    RSS 112.1736    GRSq 0.669192    RSq 0.7538554
summary(marsModel)
## Call: earth(x=train_set$x, y=train_set$y)
## 
##                                 coefficients
## (Intercept)                        40.989164
## h(72.06-BiologicalMaterial03)      -0.120984
## h(935-ManufacturingProcess04)      -0.056689
## h(46.78-ManufacturingProcess09)    -0.438879
## h(33.2-ManufacturingProcess13)      2.582101
## h(ManufacturingProcess30-9.2)       1.049130
## h(ManufacturingProcess32-151)      -0.796270
## h(ManufacturingProcess32-152)       1.012482
## h(7-ManufacturingProcess39)        -0.238456
## h(ManufacturingProcess39-7)        -2.526595
## 
## Selected 10 of 22 terms, and 7 of 57 predictors
## Termination condition: RSq changed by less than 0.001 at 22 terms
## Importance: ManufacturingProcess32, ManufacturingProcess09, ...
## Number of terms at each degree of interaction: 1 9 (additive model)
## GCV 1.159598    RSS 112.1736    GRSq 0.669192    RSq 0.7538554
marsPred <- predict(marsModel, test_set$x)

postResample(marsPred, test_set$y)
##      RMSE  Rsquared       MAE 
## 1.0869876 0.6678080 0.9027886

Supper Vector Machines - Model 3

svmModel <- train(train_set$x, train_set$y,
      method = "svmRadial",
      preProc = c("center", "scale"),
      tuneLength = 14,
      trControl = trainControl(method="cv"))

svmModel
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 132 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 120, 120, 116, 119, 119, 118, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE      
##      0.25  1.400729  0.5098299  1.1280766
##      0.50  1.289760  0.5714499  1.0167799
##      1.00  1.197715  0.6145619  0.9203828
##      2.00  1.139773  0.6363078  0.8799873
##      4.00  1.092132  0.6612965  0.8726417
##      8.00  1.069655  0.6747031  0.8679349
##     16.00  1.067343  0.6759214  0.8662318
##     32.00  1.067343  0.6759214  0.8662318
##     64.00  1.067343  0.6759214  0.8662318
##    128.00  1.067343  0.6759214  0.8662318
##    256.00  1.067343  0.6759214  0.8662318
##    512.00  1.067343  0.6759214  0.8662318
##   1024.00  1.067343  0.6759214  0.8662318
##   2048.00  1.067343  0.6759214  0.8662318
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01482714
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01482714 and C = 16.
svmModel$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: eps-svr  (regression) 
##  parameter : epsilon = 0.1  cost C = 16 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.0148271350472524 
## 
## Number of Support Vectors : 111 
## 
## Objective Function Value : -75.8277 
## Training error : 0.00893
svmPred <- predict(svmModel$finalModel, test_set$x)

postResample(svmPred, test_set$y)
##     RMSE Rsquared      MAE 
## 1.781326       NA 1.445993

Neural Networks - Model 4

nnetModel <- nnet(x = train_set$x,
     y = train_set$y,
     size = 5,
     decay = 0.01,
     linout = TRUE,
     trace = FALSE,
     maxit = 500,
     MaxNWts = 5 * (ncol(train_set$x) +1) +5 +1)

nnetPred <- predict(nnetModel, test_set$x)

postResample(nnetPred, test_set$y)
##      RMSE  Rsquared       MAE 
## 1.6357141 0.4048026 1.3391370

b. Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

important_terms <- marsModel$selected.terms

(important_term_names <- colnames(train_set$x[important_terms]))
##  [1] "BiologicalMaterial01"   "BiologicalMaterial02"   "BiologicalMaterial05"  
##  [4] "BiologicalMaterial07"   "BiologicalMaterial08"   "BiologicalMaterial09"  
##  [7] "BiologicalMaterial10"   "ManufacturingProcess01" "ManufacturingProcess03"
## [10] "ManufacturingProcess04"

c. Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?

important_predictors <- ChemicalManufacturingProcess[important_term_names]

ChemicalManufacturingProcess$Yield
##   [1] 38.00 42.44 42.03 41.42 42.49 43.57 43.12 43.06 41.49 42.45 42.04 42.68
##  [13] 43.44 40.28 41.50 41.21 40.89 40.14 39.30 39.53 40.22 41.18 40.70 41.89
##  [25] 43.38 36.83 35.25 36.12 38.52 38.35 39.98 41.87 43.62 38.60 39.65 40.87
##  [37] 42.46 42.66 42.23 41.43 41.47 42.07 44.35 44.16 43.33 42.61 42.96 43.84
##  [49] 46.34 39.74 41.12 40.14 42.69 40.15 39.77 39.40 39.14 40.36 42.31 40.49
##  [61] 40.57 38.20 38.70 38.94 41.90 42.03 41.96 41.85 39.71 39.38 39.16 39.38
##  [73] 40.08 39.17 38.37 38.76 38.73 38.95 40.41 39.90 39.79 41.25 41.00 41.59
##  [85] 40.91 38.99 38.81 39.30 40.77 39.27 40.06 39.17 39.98 39.91 40.77 39.86
##  [97] 40.03 40.81 37.94 37.73 37.30 37.86 38.05 37.87 38.60 38.44 39.42 39.75
## [109] 39.51 38.35 40.38 40.19 39.96 39.79 41.86 42.15 43.88 39.58 40.19 39.84
## [121] 40.59 40.66 42.58 43.42 41.45 41.31 42.28 41.62 42.73 41.66 40.89 40.82
## [133] 39.77 38.05 37.86 38.03 37.39 39.16 37.64 39.77 38.66 40.31 40.54 40.64
## [145] 38.60 38.13 40.10 39.14 38.63 41.43 40.96 37.89 37.42 37.51 37.92 36.77
## [157] 37.14 37.73 38.03 37.86 38.31 38.66 38.65 38.67 38.42 39.15 38.82 39.08
## [169] 38.90 39.62 39.77 39.66 39.68 42.23 38.48 39.49
chem_man_process_data <- cbind(important_predictors, Yield = ChemicalManufacturingProcess$Yield)
for(i in 1:length(important_term_names)) {
  
  plt <- ggplot(data = chem_man_process_data, aes(x=chem_man_process_data[important_term_names[i]][[1]], y=Yield)) + 
    geom_point() + 
    geom_smooth(method=lm, se=FALSE) + 
    labs(x=important_term_names[i])

  
  print(plt)
}
## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

From the scatterplots, it looks like several of the biological material variables have a positive relationship with yield. For example, BiologicalMaterial01, 02, 08, 09, and 10 all show slight upward trends. This suggests that as the amount or concentration of these materials increases, yield tends to increase too. BiologicalMaterial02 especially stands out with a clearer upward pattern and less noise in the data.

Some of the manufacturing process variables, on the other hand, don’t seem as helpful. ManufacturingProcess01, 03, and 04 show weaker or slightly negative trends. For instance, ManufacturingProcess01 has a very tight cluster of values and still shows a wide range of yields, which might mean it’s not as strongly related to the outcome.

Overall, it seems like the biological features are more informative for predicting yield than the process-related ones. These visuals support the idea that the nonlinear model picked up on the right signals by highlighting variables that actually show meaningful relationships with the response.