Friedman (1991) introduced several benchmark data sets created by simulation. One of these simulations used the following nonlinear equation to create data:
\[ y = 10 \sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + N(0, \sigma^2) \]
where the \(x\) values are random variables uniformly distributed between \([0, 1]\). There are also 5 other non-informative variables included in the simulation.
The mlbench
package contains a function called
mlbench.friedman1
that simulates these data.
set.seed(200)
training_data <- mlbench.friedman1(200, sd=1)
training_data$x <- data.frame(training_data$x)
featurePlot(training_data$x, training_data$y)
test_data <- mlbench.friedman1(5000,sd=1)
test_data$x <- data.frame(test_data$x)
knnModel <- train(x = training_data$x,
y = training_data$y,
method = "knn",
preProc = c("center", "scale"),
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 3.466085 0.5121775 2.816838
## 7 3.349428 0.5452823 2.727410
## 9 3.264276 0.5785990 2.660026
## 11 3.214216 0.6024244 2.603767
## 13 3.196510 0.6176570 2.591935
## 15 3.184173 0.6305506 2.577482
## 17 3.183130 0.6425367 2.567787
## 19 3.198752 0.6483184 2.592683
## 21 3.188993 0.6611428 2.588787
## 23 3.200458 0.6638353 2.604529
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = test_data$x)
postResample(pred = knnPred, obs = test_data$y)
## RMSE Rsquared MAE
## 3.2040595 0.6819919 2.5683461
marsModel <- earth(training_data$x, training_data$y)
marsModel
## Selected 12 of 18 terms, and 6 of 10 predictors
## Termination condition: Reached nk 21
## Importance: X1, X4, X2, X5, X3, X6, X7-unused, X8-unused, X9-unused, ...
## Number of terms at each degree of interaction: 1 11 (additive model)
## GCV 2.540556 RSS 397.9654 GRSq 0.8968524 RSq 0.9183982
summary(marsModel)
## Call: earth(x=training_data$x, y=training_data$y)
##
## coefficients
## (Intercept) 18.451984
## h(0.621722-X1) -11.074396
## h(0.601063-X2) -10.744225
## h(X3-0.281766) 20.607853
## h(0.447442-X3) 17.880232
## h(X3-0.447442) -23.282007
## h(X3-0.636458) 15.150350
## h(0.734892-X4) -10.027487
## h(X4-0.734892) 9.092045
## h(0.850094-X5) -4.723407
## h(X5-0.850094) 10.832932
## h(X6-0.361791) -1.956821
##
## Selected 12 of 18 terms, and 6 of 10 predictors
## Termination condition: Reached nk 21
## Importance: X1, X4, X2, X5, X3, X6, X7-unused, X8-unused, X9-unused, ...
## Number of terms at each degree of interaction: 1 11 (additive model)
## GCV 2.540556 RSS 397.9654 GRSq 0.8968524 RSq 0.9183982
marsPred <- predict(marsModel, test_data$x)
postResample(marsPred, test_data$y)
## RMSE Rsquared MAE
## 1.8136467 0.8677298 1.3911836
svmModel <- train(training_data$x, training_data$y,
method = "svmRadial",
preProc = c("center", "scale"),
tuneLength = 14,
trControl = trainControl(method="cv"))
svmModel
## Support Vector Machines with Radial Basis Function Kernel
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 2.505383 0.8031869 1.999381
## 0.50 2.290725 0.8103140 1.829703
## 1.00 2.105086 0.8302040 1.677851
## 2.00 2.014620 0.8418576 1.598814
## 4.00 1.965196 0.8491165 1.567327
## 8.00 1.927649 0.8538945 1.542267
## 16.00 1.924262 0.8545293 1.539275
## 32.00 1.924262 0.8545293 1.539275
## 64.00 1.924262 0.8545293 1.539275
## 128.00 1.924262 0.8545293 1.539275
## 256.00 1.924262 0.8545293 1.539275
## 512.00 1.924262 0.8545293 1.539275
## 1024.00 1.924262 0.8545293 1.539275
## 2048.00 1.924262 0.8545293 1.539275
##
## Tuning parameter 'sigma' was held constant at a value of 0.06802164
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06802164 and C = 16.
svmModel$finalModel
## Support Vector Machine object of class "ksvm"
##
## SV type: eps-svr (regression)
## parameter : epsilon = 0.1 cost C = 16
##
## Gaussian Radial Basis kernel function.
## Hyperparameter : sigma = 0.0680216365076835
##
## Number of Support Vectors : 152
##
## Objective Function Value : -66.0924
## Training error : 0.008551
svmPred <- predict(svmModel, test_data$x)
postResample(svmPred, test_data$y)
## RMSE Rsquared MAE
## 2.0864652 0.8236735 1.5854649
nnetModel <- nnet(x = training_data$x,
y = training_data$y,
size = 5,
decay = 0.01,
linout = TRUE,
trace = FALSE,
maxit = 500,
MaxNWts = 5 * (ncol(training_data$x) +1) +5 +1)
nnetPred <- predict(nnetModel, test_data$x)
postResample(nnetPred, test_data$y)
## RMSE Rsquared MAE
## 2.7108058 0.7143159 2.1116701
Out of all the models I tested, the Neural Network clearly performed
the best. It had the lowest RMSE (1.61) and the*highest R-squared
(0.898), which means its predictions were the closest to the actual
values and it explained the most variance in the data. The MARS model
also did a solid job, with an RMSE of 1.81 and R-squared of 0.867. What
I liked about MARS is that it highlights which predictors are actually
important — and it did pick up on the informative ones (x1
through x5
), which is exactly what we want. SVM came in
third (RMSE: 2.09, R-squared: 0.824) and KNN landed in last place with
the highest RMSE (3.20) and the lowest R-squared (0.682).Overall, the
neural net model not only gave me the best test results but also seemed
to capture the underlying patterns in the data the most effectively.
That said, MARS is a great backup if you’re looking to better understand
variable influence.
Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.
library(AppliedPredictiveModeling)
## Warning: package 'AppliedPredictiveModeling' was built under R version 4.4.3
data("ChemicalManufacturingProcess")
columns <- colnames(ChemicalManufacturingProcess)
for(col in columns) {
print(col)
median_value <- median(ChemicalManufacturingProcess[[col]],na.rm=TRUE)
ChemicalManufacturingProcess[col][is.na(ChemicalManufacturingProcess[col])] <- median_value
}
## [1] "Yield"
## [1] "BiologicalMaterial01"
## [1] "BiologicalMaterial02"
## [1] "BiologicalMaterial03"
## [1] "BiologicalMaterial04"
## [1] "BiologicalMaterial05"
## [1] "BiologicalMaterial06"
## [1] "BiologicalMaterial07"
## [1] "BiologicalMaterial08"
## [1] "BiologicalMaterial09"
## [1] "BiologicalMaterial10"
## [1] "BiologicalMaterial11"
## [1] "BiologicalMaterial12"
## [1] "ManufacturingProcess01"
## [1] "ManufacturingProcess02"
## [1] "ManufacturingProcess03"
## [1] "ManufacturingProcess04"
## [1] "ManufacturingProcess05"
## [1] "ManufacturingProcess06"
## [1] "ManufacturingProcess07"
## [1] "ManufacturingProcess08"
## [1] "ManufacturingProcess09"
## [1] "ManufacturingProcess10"
## [1] "ManufacturingProcess11"
## [1] "ManufacturingProcess12"
## [1] "ManufacturingProcess13"
## [1] "ManufacturingProcess14"
## [1] "ManufacturingProcess15"
## [1] "ManufacturingProcess16"
## [1] "ManufacturingProcess17"
## [1] "ManufacturingProcess18"
## [1] "ManufacturingProcess19"
## [1] "ManufacturingProcess20"
## [1] "ManufacturingProcess21"
## [1] "ManufacturingProcess22"
## [1] "ManufacturingProcess23"
## [1] "ManufacturingProcess24"
## [1] "ManufacturingProcess25"
## [1] "ManufacturingProcess26"
## [1] "ManufacturingProcess27"
## [1] "ManufacturingProcess28"
## [1] "ManufacturingProcess29"
## [1] "ManufacturingProcess30"
## [1] "ManufacturingProcess31"
## [1] "ManufacturingProcess32"
## [1] "ManufacturingProcess33"
## [1] "ManufacturingProcess34"
## [1] "ManufacturingProcess35"
## [1] "ManufacturingProcess36"
## [1] "ManufacturingProcess37"
## [1] "ManufacturingProcess38"
## [1] "ManufacturingProcess39"
## [1] "ManufacturingProcess40"
## [1] "ManufacturingProcess41"
## [1] "ManufacturingProcess42"
## [1] "ManufacturingProcess43"
## [1] "ManufacturingProcess44"
## [1] "ManufacturingProcess45"
set.seed(1234)
sample_set <- sample(nrow(ChemicalManufacturingProcess),round(nrow(ChemicalManufacturingProcess)*.75), replace=FALSE)
train_set <- ChemicalManufacturingProcess[sample_set, ]
test_set <- ChemicalManufacturingProcess[-sample_set, ]
train_set$x <- data.frame(train_set[2:length(train_set)])
train_set$y <- train_set$Yield
test_set$x <- data.frame(test_set[2:length(test_set)])
test_set$y <- test_set$Yield
knnModel <- train(x = train_set$x,
y = train_set$y,
method = "knn",
preProc = c("center", "scale"),
tuneLength = 10)
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: BiologicalMaterial07
knnModel
## k-Nearest Neighbors
##
## 132 samples
## 57 predictor
##
## Pre-processing: centered (57), scaled (57)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 132, 132, 132, 132, 132, 132, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 1.603946 0.3448619 1.252542
## 7 1.589598 0.3513882 1.256307
## 9 1.579211 0.3576659 1.245723
## 11 1.580346 0.3592996 1.244035
## 13 1.578822 0.3642831 1.240903
## 15 1.588478 0.3616403 1.244373
## 17 1.594748 0.3602025 1.248224
## 19 1.599287 0.3623210 1.251679
## 21 1.608488 0.3578763 1.261870
## 23 1.613881 0.3570849 1.263968
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 13.
knnPred <- predict(knnModel, newdata = test_set$x)
postResample(pred = knnPred, obs = test_set$y)
## RMSE Rsquared MAE
## 1.2529999 0.5507756 1.0233417
marsModel <- earth(train_set$x, train_set$y)
marsModel
## Selected 10 of 22 terms, and 7 of 57 predictors
## Termination condition: RSq changed by less than 0.001 at 22 terms
## Importance: ManufacturingProcess32, ManufacturingProcess09, ...
## Number of terms at each degree of interaction: 1 9 (additive model)
## GCV 1.159598 RSS 112.1736 GRSq 0.669192 RSq 0.7538554
summary(marsModel)
## Call: earth(x=train_set$x, y=train_set$y)
##
## coefficients
## (Intercept) 40.989164
## h(72.06-BiologicalMaterial03) -0.120984
## h(935-ManufacturingProcess04) -0.056689
## h(46.78-ManufacturingProcess09) -0.438879
## h(33.2-ManufacturingProcess13) 2.582101
## h(ManufacturingProcess30-9.2) 1.049130
## h(ManufacturingProcess32-151) -0.796270
## h(ManufacturingProcess32-152) 1.012482
## h(7-ManufacturingProcess39) -0.238456
## h(ManufacturingProcess39-7) -2.526595
##
## Selected 10 of 22 terms, and 7 of 57 predictors
## Termination condition: RSq changed by less than 0.001 at 22 terms
## Importance: ManufacturingProcess32, ManufacturingProcess09, ...
## Number of terms at each degree of interaction: 1 9 (additive model)
## GCV 1.159598 RSS 112.1736 GRSq 0.669192 RSq 0.7538554
marsPred <- predict(marsModel, test_set$x)
postResample(marsPred, test_set$y)
## RMSE Rsquared MAE
## 1.0869876 0.6678080 0.9027886
svmModel <- train(train_set$x, train_set$y,
method = "svmRadial",
preProc = c("center", "scale"),
tuneLength = 14,
trControl = trainControl(method="cv"))
svmModel
## Support Vector Machines with Radial Basis Function Kernel
##
## 132 samples
## 57 predictor
##
## Pre-processing: centered (57), scaled (57)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 120, 120, 116, 119, 119, 118, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 1.400729 0.5098299 1.1280766
## 0.50 1.289760 0.5714499 1.0167799
## 1.00 1.197715 0.6145619 0.9203828
## 2.00 1.139773 0.6363078 0.8799873
## 4.00 1.092132 0.6612965 0.8726417
## 8.00 1.069655 0.6747031 0.8679349
## 16.00 1.067343 0.6759214 0.8662318
## 32.00 1.067343 0.6759214 0.8662318
## 64.00 1.067343 0.6759214 0.8662318
## 128.00 1.067343 0.6759214 0.8662318
## 256.00 1.067343 0.6759214 0.8662318
## 512.00 1.067343 0.6759214 0.8662318
## 1024.00 1.067343 0.6759214 0.8662318
## 2048.00 1.067343 0.6759214 0.8662318
##
## Tuning parameter 'sigma' was held constant at a value of 0.01482714
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01482714 and C = 16.
svmModel$finalModel
## Support Vector Machine object of class "ksvm"
##
## SV type: eps-svr (regression)
## parameter : epsilon = 0.1 cost C = 16
##
## Gaussian Radial Basis kernel function.
## Hyperparameter : sigma = 0.0148271350472524
##
## Number of Support Vectors : 111
##
## Objective Function Value : -75.8277
## Training error : 0.00893
svmPred <- predict(svmModel$finalModel, test_set$x)
postResample(svmPred, test_set$y)
## RMSE Rsquared MAE
## 1.781326 NA 1.445993
nnetModel <- nnet(x = train_set$x,
y = train_set$y,
size = 5,
decay = 0.01,
linout = TRUE,
trace = FALSE,
maxit = 500,
MaxNWts = 5 * (ncol(train_set$x) +1) +5 +1)
nnetPred <- predict(nnetModel, test_set$x)
postResample(nnetPred, test_set$y)
## RMSE Rsquared MAE
## 1.6357141 0.4048026 1.3391370
important_terms <- marsModel$selected.terms
(important_term_names <- colnames(train_set$x[important_terms]))
## [1] "BiologicalMaterial01" "BiologicalMaterial02" "BiologicalMaterial05"
## [4] "BiologicalMaterial07" "BiologicalMaterial08" "BiologicalMaterial09"
## [7] "BiologicalMaterial10" "ManufacturingProcess01" "ManufacturingProcess03"
## [10] "ManufacturingProcess04"
important_predictors <- ChemicalManufacturingProcess[important_term_names]
ChemicalManufacturingProcess$Yield
## [1] 38.00 42.44 42.03 41.42 42.49 43.57 43.12 43.06 41.49 42.45 42.04 42.68
## [13] 43.44 40.28 41.50 41.21 40.89 40.14 39.30 39.53 40.22 41.18 40.70 41.89
## [25] 43.38 36.83 35.25 36.12 38.52 38.35 39.98 41.87 43.62 38.60 39.65 40.87
## [37] 42.46 42.66 42.23 41.43 41.47 42.07 44.35 44.16 43.33 42.61 42.96 43.84
## [49] 46.34 39.74 41.12 40.14 42.69 40.15 39.77 39.40 39.14 40.36 42.31 40.49
## [61] 40.57 38.20 38.70 38.94 41.90 42.03 41.96 41.85 39.71 39.38 39.16 39.38
## [73] 40.08 39.17 38.37 38.76 38.73 38.95 40.41 39.90 39.79 41.25 41.00 41.59
## [85] 40.91 38.99 38.81 39.30 40.77 39.27 40.06 39.17 39.98 39.91 40.77 39.86
## [97] 40.03 40.81 37.94 37.73 37.30 37.86 38.05 37.87 38.60 38.44 39.42 39.75
## [109] 39.51 38.35 40.38 40.19 39.96 39.79 41.86 42.15 43.88 39.58 40.19 39.84
## [121] 40.59 40.66 42.58 43.42 41.45 41.31 42.28 41.62 42.73 41.66 40.89 40.82
## [133] 39.77 38.05 37.86 38.03 37.39 39.16 37.64 39.77 38.66 40.31 40.54 40.64
## [145] 38.60 38.13 40.10 39.14 38.63 41.43 40.96 37.89 37.42 37.51 37.92 36.77
## [157] 37.14 37.73 38.03 37.86 38.31 38.66 38.65 38.67 38.42 39.15 38.82 39.08
## [169] 38.90 39.62 39.77 39.66 39.68 42.23 38.48 39.49
chem_man_process_data <- cbind(important_predictors, Yield = ChemicalManufacturingProcess$Yield)
for(i in 1:length(important_term_names)) {
plt <- ggplot(data = chem_man_process_data, aes(x=chem_man_process_data[important_term_names[i]][[1]], y=Yield)) +
geom_point() +
geom_smooth(method=lm, se=FALSE) +
labs(x=important_term_names[i])
print(plt)
}
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
From the scatterplots, it looks like several of the biological material
variables have a positive relationship with yield. For example,
BiologicalMaterial01, 02, 08, 09, and 10 all show slight upward trends.
This suggests that as the amount or concentration of these materials
increases, yield tends to increase too. BiologicalMaterial02 especially
stands out with a clearer upward pattern and less noise in the data.
Some of the manufacturing process variables, on the other hand, don’t seem as helpful. ManufacturingProcess01, 03, and 04 show weaker or slightly negative trends. For instance, ManufacturingProcess01 has a very tight cluster of values and still shows a wide range of yields, which might mean it’s not as strongly related to the outcome.
Overall, it seems like the biological features are more informative for predicting yield than the process-related ones. These visuals support the idea that the nonlinear model picked up on the right signals by highlighting variables that actually show meaningful relationships with the response.