SIMULASI WEEK 3

Simulasi Sederhana: Variabel Random Uniform

Distribusi uniform adalah distribusi di mana semua nilai dalam interval tertentu memiliki probabilitas yang sama.

# Simulasi 1000 variabel random dari distribusi uniform
set.seed(555)  # Set seed untuk reproducibility
n <- 1000
uniform_data <- runif(n, min = 0, max = 1)

# Plot histogram
hist(uniform_data, breaks = 30, main = "Histogram Distribusi Uniform", xlab = "Nilai", col = "lightskyblue")

runif(n, min, max) digunakan untuk menghasilkan n variabel random dari distribusi uniform dengan rentang min hingga max. Histogram menunjukkan bahwa nilai-nilai tersebar merata antara 0 dan 1, sesuai dengan sifat distribusi uniform.

Simulasi Distribusi Diskrit: Distribusi Binomial

Distribusi binomial menggambarkan jumlah sukses dalam n percobaan independen dengan probabilitas sukses p.

# Simulasi 1000 variabel random dari distribusi binomial
n_trials <- 10  # Jumlah percobaan
p_success <- 0.5  # Probabilitas sukses
binomial_data <- rbinom(n, size = n_trials, prob = p_success)

# Plot histogram
hist(binomial_data, breaks = 30, main = "Histogram Distribusi Binomial", xlab = "Jumlah Sukses", col = "lightseagreen")

rbinom(n, size, prob) digunakan untuk menghasilkan n variabel random dari distribusi binomial dengan size percobaan dan probabilitas sukses prob. Histogram menunjukkan distribusi jumlah sukses, yang berbentuk simetris karena p = 0.5.

Simulasi Distribusi Kontinu: Distribusi Normal

Distribusi normal adalah distribusi kontinu yang berbentuk lonceng, dengan mean mu dan standar deviasi sigma.

# Simulasi 1000 variabel random dari distribusi normal
mu <- 0  # Mean
sigma <- 1  # Standar deviasi
normal_data <- rnorm(n, mean = mu, sd = sigma)

# Plot histogram
hist(normal_data, breaks = 30, main = "Histogram Distribusi Normal", xlab = "Nilai", col = "violet")

rnorm(n, mean, sd) digunakan untuk menghasilkan n variabel random dari distribusi normal dengan mean mu dan standar deviasi sigma. Histogram menunjukkan distribusi berbentuk lonceng, yang khas untuk distribusi normal.

Distribusi Poisson (Diskrit)

lambda <- 4  # Parameter lambda
poisson_data <- rpois(n, lambda)
hist(poisson_data, breaks = 30, main = "Histogram Distribusi Poisson", xlab = "Jumlah Kejadian", col = "lightgoldenrod")

Distribusi Poisson digunakan untuk memodelkan jumlah kejadian langka dalam interval waktu atau ruang. Histogram menunjukkan distribusi yang miring ke kanan, yang khas untuk distribusi Poisson dengan lambda kecil.

Distribusi Eksponensial (Kontinu)

rate <- 1  # Parameter rate
exp_data <- rexp(n, rate)
hist(exp_data, breaks = 30, main = "Histogram Distribusi Eksponensial", xlab = "Nilai", col = "plum1")