Distribusi uniform adalah distribusi di mana semua nilai dalam interval tertentu memiliki probabilitas yang sama.
# Simulasi 1000 variabel random dari distribusi uniform
set.seed(555) # Set seed untuk reproducibility
n <- 1000
uniform_data <- runif(n, min = 0, max = 1)
# Plot histogram
hist(uniform_data, breaks = 30, main = "Histogram Distribusi Uniform", xlab = "Nilai", col = "lightskyblue")
runif(n, min, max) digunakan untuk menghasilkan n variabel random dari distribusi uniform dengan rentang min hingga max. Histogram menunjukkan bahwa nilai-nilai tersebar merata antara 0 dan 1, sesuai dengan sifat distribusi uniform.
Distribusi binomial menggambarkan jumlah sukses dalam n percobaan independen dengan probabilitas sukses p.
# Simulasi 1000 variabel random dari distribusi binomial
n_trials <- 10 # Jumlah percobaan
p_success <- 0.5 # Probabilitas sukses
binomial_data <- rbinom(n, size = n_trials, prob = p_success)
# Plot histogram
hist(binomial_data, breaks = 30, main = "Histogram Distribusi Binomial", xlab = "Jumlah Sukses", col = "lightseagreen")
rbinom(n, size, prob) digunakan untuk menghasilkan n variabel random
dari distribusi binomial dengan size percobaan dan probabilitas sukses
prob. Histogram menunjukkan distribusi jumlah sukses, yang berbentuk
simetris karena p = 0.5.
Distribusi normal adalah distribusi kontinu yang berbentuk lonceng, dengan mean mu dan standar deviasi sigma.
# Simulasi 1000 variabel random dari distribusi normal
mu <- 0 # Mean
sigma <- 1 # Standar deviasi
normal_data <- rnorm(n, mean = mu, sd = sigma)
# Plot histogram
hist(normal_data, breaks = 30, main = "Histogram Distribusi Normal", xlab = "Nilai", col = "violet")
rnorm(n, mean, sd) digunakan untuk menghasilkan n variabel random dari
distribusi normal dengan mean mu dan standar deviasi sigma. Histogram
menunjukkan distribusi berbentuk lonceng, yang khas untuk distribusi
normal.
lambda <- 4 # Parameter lambda
poisson_data <- rpois(n, lambda)
hist(poisson_data, breaks = 30, main = "Histogram Distribusi Poisson", xlab = "Jumlah Kejadian", col = "lightgoldenrod")
Distribusi Poisson digunakan untuk memodelkan jumlah kejadian langka
dalam interval waktu atau ruang. Histogram menunjukkan distribusi yang
miring ke kanan, yang khas untuk distribusi Poisson dengan lambda
kecil.
rate <- 1 # Parameter rate
exp_data <- rexp(n, rate)
hist(exp_data, breaks = 30, main = "Histogram Distribusi Eksponensial", xlab = "Nilai", col = "plum1")