getwd()
[1] "/cloud/project"
NBA = read.csv("NBA_train.csv")
str(NBA)
'data.frame':   835 obs. of  20 variables:
 $ SeasonEnd: int  1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 ...
 $ Team     : chr  "Atlanta Hawks" "Boston Celtics" "Chicago Bulls" "Cleveland Cavaliers" ...
 $ Playoffs : int  1 1 0 0 0 0 0 1 0 1 ...
 $ W        : int  50 61 30 37 30 16 24 41 37 47 ...
 $ PTS      : int  8573 9303 8813 9360 8878 8933 8493 9084 9119 8860 ...
 $ oppPTS   : int  8334 8664 9035 9332 9240 9609 8853 9070 9176 8603 ...
 $ FG       : int  3261 3617 3362 3811 3462 3643 3527 3599 3639 3582 ...
 $ FGA      : int  7027 7387 6943 8041 7470 7596 7318 7496 7689 7489 ...
 $ X2P      : int  3248 3455 3292 3775 3379 3586 3500 3495 3551 3557 ...
 $ X2PA     : int  6952 6965 6668 7854 7215 7377 7197 7117 7375 7375 ...
 $ X3P      : int  13 162 70 36 83 57 27 104 88 25 ...
 $ X3PA     : int  75 422 275 187 255 219 121 379 314 114 ...
 $ FT       : int  2038 1907 2019 1702 1871 1590 1412 1782 1753 1671 ...
 $ FTA      : int  2645 2449 2592 2205 2539 2149 1914 2326 2333 2250 ...
 $ ORB      : int  1369 1227 1115 1307 1311 1226 1155 1394 1398 1187 ...
 $ DRB      : int  2406 2457 2465 2381 2524 2415 2437 2217 2326 2429 ...
 $ AST      : int  1913 2198 2152 2108 2079 1950 2028 2149 2148 2123 ...
 $ STL      : int  782 809 704 764 746 783 779 782 900 863 ...
 $ BLK      : int  539 308 392 342 404 562 339 373 530 356 ...
 $ TOV      : int  1495 1539 1684 1370 1533 1742 1492 1565 1517 1439 ...
#View(NBA)
# How many wins to make the playoffs?
table(NBA$W, NBA$Playoffs)
    
      0  1
  11  2  0
  12  2  0
  13  2  0
  14  2  0
  15 10  0
  16  2  0
  17 11  0
  18  5  0
  19 10  0
  20 10  0
  21 12  0
  22 11  0
  23 11  0
  24 18  0
  25 11  0
  26 17  0
  27 10  0
  28 18  0
  29 12  0
  30 19  1
  31 15  1
  32 12  0
  33 17  0
  34 16  0
  35 13  3
  36 17  4
  37 15  4
  38  8  7
  39 10 10
  40  9 13
  41 11 26
  42  8 29
  43  2 18
  44  2 27
  45  3 22
  46  1 15
  47  0 28
  48  1 14
  49  0 17
  50  0 32
  51  0 12
  52  0 20
  53  0 17
  54  0 18
  55  0 24
  56  0 16
  57  0 23
  58  0 13
  59  0 14
  60  0  8
  61  0 10
  62  0 13
  63  0  7
  64  0  3
  65  0  3
  66  0  2
  67  0  4
  69  0  1
  72  0  1
# Compute Points Difference
NBA$PTSdiff = NBA$PTS - NBA$oppPTS
# Check for linear relationship
plot(NBA$PTSdiff, NBA$W)

# Linear regression model for wins
WinsReg = lm(W ~ PTSdiff, data=NBA)
summary(WinsReg)

Call:
lm(formula = W ~ PTSdiff, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.7393 -2.1018 -0.0672  2.0265 10.6026 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 4.100e+01  1.059e-01   387.0   <2e-16 ***
PTSdiff     3.259e-02  2.793e-04   116.7   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.061 on 833 degrees of freedom
Multiple R-squared:  0.9423,    Adjusted R-squared:  0.9423 
F-statistic: 1.361e+04 on 1 and 833 DF,  p-value: < 2.2e-16
# Linear regression model for points scored
PointsReg = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV + STL + BLK, data=NBA)
summary(PointsReg)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV + 
    STL + BLK, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-527.40 -119.83    7.83  120.67  564.71 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.051e+03  2.035e+02 -10.078   <2e-16 ***
X2PA         1.043e+00  2.957e-02  35.274   <2e-16 ***
X3PA         1.259e+00  3.843e-02  32.747   <2e-16 ***
FTA          1.128e+00  3.373e-02  33.440   <2e-16 ***
AST          8.858e-01  4.396e-02  20.150   <2e-16 ***
ORB         -9.554e-01  7.792e-02 -12.261   <2e-16 ***
DRB          3.883e-02  6.157e-02   0.631   0.5285    
TOV         -2.475e-02  6.118e-02  -0.405   0.6859    
STL         -1.992e-01  9.181e-02  -2.169   0.0303 *  
BLK         -5.576e-02  8.782e-02  -0.635   0.5256    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.5 on 825 degrees of freedom
Multiple R-squared:  0.8992,    Adjusted R-squared:  0.8981 
F-statistic: 817.3 on 9 and 825 DF,  p-value: < 2.2e-16
# Sum of Squared Errors
PointsReg$residuals
           1            2            3            4            5            6            7            8            9           10           11           12           13           14 
  38.5722713  142.8720040  -92.8957180   -8.3913473 -258.4705615  171.4608325  150.4081623  169.3811429   40.7756197  -75.3256614  444.9088743   94.3864704 -205.6809050  113.5969040 
          15           16           17           18           19           20           21           22           23           24           25           26           27           28 
  64.1993998  -76.5711999  249.4888007   28.0363236  329.4487991   96.3248342  349.2067913 -284.3765225  196.1611379  198.2493104  445.4100295   93.8946072 -316.2962802 -166.1909668 
          29           30           31           32           33           34           35           36           37           38           39           40           41           42 
  -5.8446359  211.2301997  155.7426615  -23.9248929  -77.9070033  218.9449693  164.1368602 -177.6479438   66.9205988  162.7892553   23.5961895   93.9839603  185.7015113  -50.2507837 
          43           44           45           46           47           48           49           50           51           52           53           54           55           56 
 -90.1181969  139.6866673 -231.1772776  111.2200135  185.9069491  210.6753018  -47.9420913 -257.8213675  225.7399197   70.4925628  432.6468031  187.4169561  -34.3947653  112.9305359 
          57           58           59           60           61           62           63           64           65           66           67           68           69           70 
 334.4717296  222.4169937   17.6755711  165.4512882  207.9970351   56.8277093  214.6051983  -23.0235142  341.7509536  -48.3807695  304.9203623  -36.7878762  -31.0357805   61.8847883 
          71           72           73           74           75           76           77           78           79           80           81           82           83           84 
-153.0322403  121.7423324  -61.1581185  -47.9906548 -120.3599484  245.7621368 -264.3876116  161.1110819   87.3192423  426.2098591   -4.7790973  126.8613801  -97.5009340  329.9773912 
          85           86           87           88           89           90           91           92           93           94           95           96           97           98 
 -16.2338716    7.8513505  191.9280982   87.0090318 -142.5397602 -216.2264974 -199.6293933   71.0810742  257.3751407 -227.1203824  -61.4866232   71.3329444 -233.2637272  -34.7860771 
          99          100          101          102          103          104          105          106          107          108          109          110          111          112 
  84.9503466  108.6553543  -84.8168235  -90.0423121  341.2144522   52.8507112   47.8978397  181.0574099  160.7203318  237.0174702  314.9609845   51.9650831  300.2035074 -148.0931149 
         113          114          115          116          117          118          119          120          121          122          123          124          125          126 
 -13.3592416 -161.6184704   82.1172789  277.6080699  233.4334153 -225.7299932   69.0259972   37.3407430   18.2709681  121.8125335  217.9464858  -74.8210467   36.2611001  356.2366230 
         127          128          129          130          131          132          133          134          135          136          137          138          139          140 
 439.4127892  111.0266627   72.1377278   -6.1141295  331.6249450 -158.3642350   94.9048994  151.3242943 -284.7768411 -184.0287416 -103.9972773   54.1758237  139.3176593  125.3796164 
         141          142          143          144          145          146          147          148          149          150          151          152          153          154 
 -71.4407602   83.4742245 -131.6383234  -33.5752771   98.9460909  -59.8760139 -116.6711077 -110.4055752  290.8888709   38.5758792   -6.8265554 -284.8106013  149.5419209 -185.9270381 
         155          156          157          158          159          160          161          162          163          164          165          166          167          168 
 -13.5712897  -90.2301662   21.0080300   14.5295957 -346.4091267  -54.7198161   87.6823846  203.7903006  -30.7131853 -153.9699795  194.6791232 -357.4466727  133.8696823  -21.6271760 
         169          170          171          172          173          174          175          176          177          178          179          180          181          182 
-220.4987354 -153.7269937 -383.7168614  212.2104185 -100.3118791  -30.5085767  -57.7910608  205.9463003 -124.1358862  -61.2169391  -93.9538879 -135.6180284   69.1245169 -435.5355494 
         183          184          185          186          187          188          189          190          191          192          193          194          195          196 
 -47.8153585  115.1051439  222.5411686  104.6516380    7.8335700  178.0759383 -185.3383423  122.0537263  -29.4729351   27.1344203  189.2078833 -429.5919872   57.2397301 -170.2701567 
         197          198          199          200          201          202          203          204          205          206          207          208          209          210 
 -14.0836520   21.0147294   49.6548689 -127.4633821  -87.4084020  -77.6940715 -155.2913076    8.4930328 -232.7210528   35.3384277  151.1394532  119.4563308 -416.3088878  134.8599211 
         211          212          213          214          215          216          217          218          219          220          221          222          223          224 
  33.3825347   48.4541197 -269.8021487  214.9045443   88.1318416  -24.0318730  188.2281015 -249.1537666  157.9872056 -146.6803006   72.9077663   31.1747176  337.2185582   69.7227713 
         225          226          227          228          229          230          231          232          233          234          235          236          237          238 
  -2.7440511  -55.2845827  -84.6255409 -151.4858821  234.7432200 -165.3909069 -172.9288404  386.6402387   34.4884530 -368.0387956  304.8349400 -173.0591889  168.9365987 -327.6509605 
         239          240          241          242          243          244          245          246          247          248          249          250          251          252 
  95.0370278  -75.5698743  -74.9702316  290.0371682  -21.8628806   72.5362398 -144.3565453  -44.7765529 -155.4752429 -114.0232742   82.8841506 -306.5759686  256.9630856   75.4312937 
         253          254          255          256          257          258          259          260          261          262          263          264          265          266 
-108.9852622 -160.6985087   -1.0708625  389.4834173   48.4039145 -173.2376267  102.4859575  564.7127452 -135.6781765  435.5847710 -238.8763852   93.4120332 -346.4790813   84.2266238 
         267          268          269          270          271          272          273          274          275          276          277          278          279          280 
 124.2627684  157.9013909   90.9742388 -319.7738668  111.6330940 -136.0189613  179.6895020 -139.8481361  -60.2214721   21.1448936 -102.4930752   87.4261255   -2.2833983  -33.1839059 
         281          282          283          284          285          286          287          288          289          290          291          292          293          294 
-313.4181662   -9.7903234  365.0041757 -170.9089658 -203.2682115  -59.0783300  344.4592952 -177.2934555  278.4424923   31.1539516  -19.4217087  146.9309508   49.6437593  323.4485389 
         295          296          297          298          299          300          301          302          303          304          305          306          307          308 
  47.1034178    3.9718411 -111.0589062  -40.0036081  187.1994351  134.5701059 -130.3795390  227.3624370   16.4481298  -91.2556101  215.9887998   70.7747666   50.5357552  -86.7616664 
         309          310          311          312          313          314          315          316          317          318          319          320          321          322 
  66.3006293  348.5847817   69.7928527 -144.9174008   48.2485248  262.5189212  -11.0182067  276.2567984   40.2609782 -235.0009787   91.8230888  -36.7029055   66.1862316  127.1446887 
         323          324          325          326          327          328          329          330          331          332          333          334          335          336 
  34.6306466  -89.1508242  -38.0350890   74.6959695  -24.6713632 -139.6322463  120.5781319 -256.3194253   35.3325803 -238.1863124  204.2701943 -231.4333870 -242.0178081   27.3589769 
         337          338          339          340          341          342          343          344          345          346          347          348          349          350 
 442.7697537  -90.3428846 -252.6536092   31.2460678  -24.0030042 -113.6697991   74.2030422  -63.3601223   13.1314540  -58.4065092   16.5093336  -26.4233092  -49.9197611  102.5295504 
         351          352          353          354          355          356          357          358          359          360          361          362          363          364 
-276.0762358 -171.2605451  235.4118705 -295.3696087 -259.1915277 -209.8493128  -60.3803252   40.8738668 -162.3559100   -3.1584146 -252.6683460 -359.6072976  219.8480950  107.9177034 
         365          366          367          368          369          370          371          372          373          374          375          376          377          378 
-228.4285961   77.5838841   77.6092501  176.9728823   21.0277939  225.7947949   90.6177409  -95.0387148  243.8004275   63.7765295 -135.7112041  127.9942080  208.5134149 -226.2507886 
         379          380          381          382          383          384          385          386          387          388          389          390          391          392 
 -27.4427262  215.5791874   70.0554598 -220.3324085 -252.5213694 -117.0224660   36.9146043  188.5932206  -12.6241171   24.1401960   39.4113815  130.8261623  194.8028770  140.1603242 
         393          394          395          396          397          398          399          400          401          402          403          404          405          406 
 100.4917058  367.8120506  -77.1138759  190.1907177  430.4505906  243.1092461 -220.7690501 -135.3500281  182.9169784   58.1314347  -10.3705665  134.0505987  333.4363828  110.9704334 
         407          408          409          410          411          412          413          414          415          416          417          418          419          420 
  37.1431301  188.8559358  -88.4445131 -165.3268990  148.8624801   -4.7914163 -114.6045335  -90.1562962  -65.1353805    9.9207366  -20.2393315  147.7163583  153.4474395   95.5889698 
         421          422          423          424          425          426          427          428          429          430          431          432          433          434 
-329.6439893  323.3019593  345.3838501 -148.5288812  166.9648145  277.3541861  162.6383840  -78.9033000 -176.7932426  365.3962572  132.7242544   85.6582953  -19.3417988   95.4767236 
         435          436          437          438          439          440          441          442          443          444          445          446          447          448 
-102.8199452  111.8183778  299.2808339 -124.0889739  -37.3805041  118.5055640   38.2173450 -122.8141423  -84.3447659  154.5643586   42.6355711   54.7178397  102.9846564   32.6861086 
         449          450          451          452          453          454          455          456          457          458          459          460          461          462 
 112.7943954 -163.3563028  150.7521084  217.5877806  -96.7133626   13.7243484  -33.1690450 -112.2550008  -15.7083565 -224.4198990   18.2593593 -393.0403979   49.2945267   52.0947949 
         463          464          465          466          467          468          469          470          471          472          473          474          475          476 
  43.2496203 -149.1223107   75.6856970  170.8878792 -257.6364448   51.6854016   11.8121415 -176.9048352 -149.5317630  -64.1990241  -71.3105611 -317.9190063  -65.8451642   97.8497015 
         477          478          479          480          481          482          483          484          485          486          487          488          489          490 
-103.1692986    3.0848318 -104.6823532 -234.7534874   50.5295490  -75.4835788 -526.1468848 -393.9784124 -360.8366411  116.7193515 -321.3756304  -28.1090479 -508.3250405  -39.9958738 
         491          492          493          494          495          496          497          498          499          500          501          502          503          504 
  67.9854387  -97.4641720 -268.8364479  -26.0249946  188.1881640 -127.9366821  -86.3440758  133.8144538   29.4480488 -292.9821609 -124.9408024  101.3655240 -186.5181083  -63.5389375 
         505          506          507          508          509          510          511          512          513          514          515          516          517          518 
-212.2015589 -323.1476886 -125.6610320   56.9083106  -39.0559074   -1.9339391 -319.9727619 -433.1243358 -431.1346590  -95.8909016  120.6089792 -409.7409083 -352.9341830 -527.3988939 
         519          520          521          522          523          524          525          526          527          528          529          530          531          532 
 110.6694955 -193.5043557  -92.6385367 -143.5858243 -189.7838251  172.1977457  -80.8020663 -342.9141699  124.8700974 -226.9524006  -73.5173798 -388.4868649   82.9536394  -96.7444961 
         533          534          535          536          537          538          539          540          541          542          543          544          545          546 
-114.0835553   60.0566113 -332.3804023 -175.5276633 -338.7116370 -148.1422366  -45.2258816 -270.5159099 -159.8389177 -420.4637398 -133.0466450  183.8988039 -267.0297916   -5.2562902 
         547          548          549          550          551          552          553          554          555          556          557          558          559          560 
-228.0471046  -11.6818058 -255.6786897   -7.7244412 -115.5357863 -298.4118693 -122.2961876   90.2924072  111.3930340 -245.4519945 -164.6445508  -29.3651223  -41.9781581   33.4260937 
         561          562          563          564          565          566          567          568          569          570          571          572          573          574 
  15.1663563  -29.4557965   44.0659204  247.9836928  -57.4318280 -238.6989443   -8.7249850   30.9454288 -343.6175905 -207.4418486 -306.4223254  157.4538406 -502.4785715 -126.1415717 
         575          576          577          578          579          580          581          582          583          584          585          586          587          588 
  48.8616098  143.9835801 -344.7694076 -116.5012114 -142.7898454 -127.9612584 -226.7659179   67.1679765  -94.0443422 -326.2414346  -84.6517620    4.5942017  -89.9757406  -97.0958454 
         589          590          591          592          593          594          595          596          597          598          599          600          601          602 
 -34.6927947   40.9701699  -88.3066869  126.5679875 -128.7529512 -166.6757304 -208.2444446 -105.4053449  -69.9961388 -104.0297252 -475.1678378 -290.6421238  195.4801727 -116.0865727 
         603          604          605          606          607          608          609          610          611          612          613          614          615          616 
-136.0505114 -118.3811054  125.8235124 -145.2484421 -144.5655628 -435.6270621 -230.6201428 -112.7403208 -243.8883351   13.9124625 -392.1393056 -233.5727670   88.6125994 -203.7574893 
         617          618          619          620          621          622          623          624          625          626          627          628          629          630 
-207.3393547   36.7326516   71.7237279 -110.6124268 -151.5524839   95.2365977 -227.3589026  -98.5962165 -210.8715081  -53.6787512   33.2644764 -380.2334407 -217.0512157 -135.7283167 
         631          632          633          634          635          636          637          638          639          640          641          642          643          644 
 208.5947156 -198.2473902 -147.6362401 -282.5390059  -55.4726214    3.0618526 -118.7764165  -15.9756605    1.5396468    2.2068206  -78.5559489   20.5194552 -376.9064555 -367.5790965 
         645          646          647          648          649          650          651          652          653          654          655          656          657          658 
  78.4730898   88.0528050 -178.9859105  283.6342652   18.0639226    1.4275017  -22.1910648  334.1581029  -44.6704981 -166.2133428 -112.8182784  175.7515262   60.9355144 -331.2815975 
         659          660          661          662          663          664          665          666          667          668          669          670          671          672 
-175.1322112   34.9727118  430.8913232 -260.7815266  -99.5985786 -306.5331420 -144.2463445  -71.9561309   40.4095734   -9.9170555    9.7141807   72.8730721  -61.2840291  -51.9936086 
         673          674          675          676          677          678          679          680          681          682          683          684          685          686 
-452.8596863  -81.9437393   69.2906290  254.7395766  -22.9459505  215.8931262  -16.9537293 -107.9068394  202.3017464  287.5765859  180.7757394 -305.5932029   56.2240459    4.5320328 
         687          688          689          690          691          692          693          694          695          696          697          698          699          700 
 -44.0648823 -278.0391307  -13.3280981 -112.7276708  422.1750569 -131.0023955   51.4971549  -86.9745423   28.8396258 -107.9302127  -55.3683153  -16.7225380   60.3453436    3.3520616 
         701          702          703          704          705          706          707          708          709          710          711          712          713          714 
 140.9429255  -17.9219329 -296.8381962  136.2394242  106.7244264  168.2861008   26.7860625  339.8954937  187.8922770 -202.6392008  148.7995083  268.8921528    0.6597544 -119.2916116 
         715          716          717          718          719          720          721          722          723          724          725          726          727          728 
 -23.0549542  -28.1758366  206.7679556 -138.5838793 -210.7824121  -29.6626073  210.3268820 -212.8798945   88.1962039  129.1032851   11.9530477 -166.3796048 -372.3297260   67.5130804 
         729          730          731          732          733          734          735          736          737          738          739          740          741          742 
   1.7122210 -179.0745146  -28.4404659  151.2765881 -425.3360446  344.3671825  -47.2592021  136.9801455   63.4427397  203.2044716   27.7908779  251.4279736   84.5817590 -155.6577645 
         743          744          745          746          747          748          749          750          751          752          753          754          755          756 
 150.3787715  138.7921016  198.4699948  101.8590582  345.8144412   35.1336113  169.1641149  354.9998851  251.7571721   47.8412497   77.9677328   66.2799291  216.7990909  155.1577399 
         757          758          759          760          761          762          763          764          765          766          767          768          769          770 
-131.2437994  230.2449071  218.7156645  116.0349148  -78.5937100  -23.1321308   99.7713990  280.2227149   40.8527845   19.4188914   72.9388151  120.7266716  439.1035137  456.0100354 
         771          772          773          774          775          776          777          778          779          780          781          782          783          784 
  47.3239201  186.1096824   31.7505381  -54.0912550   73.0035369  234.4761589   27.9146721  -21.6493313  -75.0167664  148.4251726  106.3308316   76.0196340   37.3592068   56.5562663 
         785          786          787          788          789          790          791          792          793          794          795          796          797          798 
 -41.8917486 -200.7598142  -55.5159544  109.1518868  321.3239680  219.8866600  -73.6034103    3.1961900 -171.1408177  190.8979178  101.1845265  253.1734885  263.7840087  199.5924560 
         799          800          801          802          803          804          805          806          807          808          809          810          811          812 
 463.8379676  219.1540922   52.3032317  140.7498122  195.8267787  -55.3103142  153.8564182   61.1275837   92.8158603 -108.8302808   73.3423661 -360.6001538  134.1518035   73.3435884 
         813          814          815          816          817          818          819          820          821          822          823          824          825          826 
 141.0017271  272.8259956  -33.1611977   19.7818711 -149.9998706  190.0065593  261.3992751  308.7602526 -135.4172110  108.2677094 -171.3410196  102.4439076  156.0829202  210.0521687 
         827          828          829          830          831          832          833          834          835 
 109.4908936  -20.5354175   59.2845716  175.9235274   30.6531825  262.6728011   70.0671862  -17.5789419   -8.3393046 
summary(NBA$PTS)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   6901    7934    8312    8370    8784   10371 
SSE = sum(PointsReg$residuals^2)
SSE
[1] 28394314
# Root mean squared error
RMSE = sqrt(SSE/nrow(NBA))
RMSE
[1] 184.4049
PointsReg2 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + STL + BLK, data=NBA)
summary(PointsReg2)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + STL + 
    BLK, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-526.79 -121.09    6.37  120.74  565.94 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.077e+03  1.931e+02 -10.755   <2e-16 ***
X2PA         1.044e+00  2.951e-02  35.366   <2e-16 ***
X3PA         1.263e+00  3.703e-02  34.099   <2e-16 ***
FTA          1.125e+00  3.308e-02  34.023   <2e-16 ***
AST          8.861e-01  4.393e-02  20.173   <2e-16 ***
ORB         -9.581e-01  7.758e-02 -12.350   <2e-16 ***
DRB          3.892e-02  6.154e-02   0.632   0.5273    
STL         -2.068e-01  8.984e-02  -2.301   0.0216 *  
BLK         -5.863e-02  8.749e-02  -0.670   0.5029    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.4 on 826 degrees of freedom
Multiple R-squared:  0.8991,    Adjusted R-squared:  0.8982 
F-statistic: 920.4 on 8 and 826 DF,  p-value: < 2.2e-16
PointsReg3 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + STL + BLK, data=NBA)
summary(PointsReg3)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + STL + BLK, 
    data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-523.79 -121.64    6.07  120.81  573.64 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.015e+03  1.670e+02 -12.068  < 2e-16 ***
X2PA         1.048e+00  2.852e-02  36.753  < 2e-16 ***
X3PA         1.271e+00  3.475e-02  36.568  < 2e-16 ***
FTA          1.128e+00  3.270e-02  34.506  < 2e-16 ***
AST          8.909e-01  4.326e-02  20.597  < 2e-16 ***
ORB         -9.702e-01  7.519e-02 -12.903  < 2e-16 ***
STL         -2.276e-01  8.356e-02  -2.724  0.00659 ** 
BLK         -3.882e-02  8.165e-02  -0.475  0.63462    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.4 on 827 degrees of freedom
Multiple R-squared:  0.8991,    Adjusted R-squared:  0.8982 
F-statistic:  1053 on 7 and 827 DF,  p-value: < 2.2e-16
PointsReg4 = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + STL, data=NBA)
summary(PointsReg4)

Call:
lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + STL, data = NBA)

Residuals:
    Min      1Q  Median      3Q     Max 
-523.33 -122.02    6.93  120.68  568.26 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.033e+03  1.629e+02 -12.475  < 2e-16 ***
X2PA         1.050e+00  2.829e-02  37.117  < 2e-16 ***
X3PA         1.273e+00  3.441e-02  37.001  < 2e-16 ***
FTA          1.127e+00  3.260e-02  34.581  < 2e-16 ***
AST          8.884e-01  4.292e-02  20.701  < 2e-16 ***
ORB         -9.743e-01  7.465e-02 -13.051  < 2e-16 ***
STL         -2.268e-01  8.350e-02  -2.717  0.00673 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 185.3 on 828 degrees of freedom
Multiple R-squared:  0.8991,    Adjusted R-squared:  0.8983 
F-statistic:  1229 on 6 and 828 DF,  p-value: < 2.2e-16
# Compute SSE and RMSE for new model
SSE_4 = sum(PointsReg4$residuals^2)
RMSE_4 = sqrt(SSE_4/nrow(NBA))
SSE_4
[1] 28421465
RMSE_4
[1] 184.493
# Read in test set
NBA_test = read.csv("NBA_test.csv")
# Make predictions on test set
PointsPredictions = predict(PointsReg4, newdata=NBA_test)
# Compute out-of-sample R^2
SSE = sum((PointsPredictions - NBA_test$PTS)^2)
SST = sum((mean(NBA$PTS) - NBA_test$PTS)^2)
R2 = 1 - SSE/SST
R2
[1] 0.8127142
# Compute the RMSE
RMSE = sqrt(SSE/nrow(NBA_test))
RMSE 
[1] 196.3723

Activity 13

#WinsReg = lm(W ~ PTSdiff, data=NBA)
#49=41+0.0326*(x)
x_1=(49-41)/0.0326
x_1
[1] 245.3988
#he expected points difference for a team to make it to the postseason is 245.4

Activity 14

threept_made<-c(4, 5, 3, 6, 7)
threepts_attempt<-c(9, 10, 8, 11, 12)
Threepts_pct=threept_made/threepts_attempt
Threepts_pct
[1] 0.4444444 0.5000000 0.3750000 0.5454545 0.5833333
 # The average for 3 point games are 0.4 , 0.5,  0.4 , 0.54 , and 0.6
mean(Threepts_pct)
[1] 0.4896465
# The Average is 0.5
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCmBgYHtyfQpnZXR3ZCgpCgpgYGAKCgoKCmBgYHtyfQpOQkEgPSByZWFkLmNzdigiTkJBX3RyYWluLmNzdiIpCnN0cihOQkEpCmBgYAoKCgoKYGBge3J9CiNWaWV3KE5CQSkKCmBgYAoKYGBge3J9CiMgSG93IG1hbnkgd2lucyB0byBtYWtlIHRoZSBwbGF5b2Zmcz8KdGFibGUoTkJBJFcsIE5CQSRQbGF5b2ZmcykKYGBgCgoKCgpgYGB7cn0KIyBDb21wdXRlIFBvaW50cyBEaWZmZXJlbmNlCk5CQSRQVFNkaWZmID0gTkJBJFBUUyAtIE5CQSRvcHBQVFMKYGBgCgoKCgoKCgoKYGBge3J9CiMgQ2hlY2sgZm9yIGxpbmVhciByZWxhdGlvbnNoaXAKcGxvdChOQkEkUFRTZGlmZiwgTkJBJFcpCmBgYAoKCgoKCgoKCgoKCgpgYGB7cn0KIyBMaW5lYXIgcmVncmVzc2lvbiBtb2RlbCBmb3Igd2lucwpXaW5zUmVnID0gbG0oVyB+IFBUU2RpZmYsIGRhdGE9TkJBKQpzdW1tYXJ5KFdpbnNSZWcpCmBgYAoKCgoKCgpgYGB7cn0KIyBMaW5lYXIgcmVncmVzc2lvbiBtb2RlbCBmb3IgcG9pbnRzIHNjb3JlZApQb2ludHNSZWcgPSBsbShQVFMgfiBYMlBBICsgWDNQQSArIEZUQSArIEFTVCArIE9SQiArIERSQiArIFRPViArIFNUTCArIEJMSywgZGF0YT1OQkEpCnN1bW1hcnkoUG9pbnRzUmVnKQpgYGAKCmBgYHtyfQojIFN1bSBvZiBTcXVhcmVkIEVycm9ycwpQb2ludHNSZWckcmVzaWR1YWxzCmBgYAoKCgoKCgoKCgoKCgoKYGBge3J9CnN1bW1hcnkoTkJBJFBUUykKYGBgCgoKCgoKYGBge3J9ClNTRSA9IHN1bShQb2ludHNSZWckcmVzaWR1YWxzXjIpClNTRQpgYGAKCgoKCgoKYGBge3J9CiMgUm9vdCBtZWFuIHNxdWFyZWQgZXJyb3IKUk1TRSA9IHNxcnQoU1NFL25yb3coTkJBKSkKUk1TRQpgYGAKCgoKCgoKCgoKCgoKCgpgYGB7cn0KUG9pbnRzUmVnMiA9IGxtKFBUUyB+IFgyUEEgKyBYM1BBICsgRlRBICsgQVNUICsgT1JCICsgRFJCICsgU1RMICsgQkxLLCBkYXRhPU5CQSkKc3VtbWFyeShQb2ludHNSZWcyKQpgYGAKCgoKCgpgYGB7cn0KUG9pbnRzUmVnMyA9IGxtKFBUUyB+IFgyUEEgKyBYM1BBICsgRlRBICsgQVNUICsgT1JCICsgU1RMICsgQkxLLCBkYXRhPU5CQSkKc3VtbWFyeShQb2ludHNSZWczKQpgYGAKCgoKCgoKCgoKCgoKCmBgYHtyfQpQb2ludHNSZWc0ID0gbG0oUFRTIH4gWDJQQSArIFgzUEEgKyBGVEEgKyBBU1QgKyBPUkIgKyBTVEwsIGRhdGE9TkJBKQpzdW1tYXJ5KFBvaW50c1JlZzQpCmBgYAoKCgoKCgpgYGB7cn0KIyBDb21wdXRlIFNTRSBhbmQgUk1TRSBmb3IgbmV3IG1vZGVsClNTRV80ID0gc3VtKFBvaW50c1JlZzQkcmVzaWR1YWxzXjIpClJNU0VfNCA9IHNxcnQoU1NFXzQvbnJvdyhOQkEpKQpTU0VfNApgYGAKCgoKCgoKCgoKCgoKCmBgYHtyfQpSTVNFXzQKYGBgCgoKCgoKCgoKYGBge3J9CiMgUmVhZCBpbiB0ZXN0IHNldApOQkFfdGVzdCA9IHJlYWQuY3N2KCJOQkFfdGVzdC5jc3YiKQpgYGAKCgoKCgoKCgpgYGB7cn0KIyBNYWtlIHByZWRpY3Rpb25zIG9uIHRlc3Qgc2V0ClBvaW50c1ByZWRpY3Rpb25zID0gcHJlZGljdChQb2ludHNSZWc0LCBuZXdkYXRhPU5CQV90ZXN0KQpgYGAKCgoKCgoKCgoKYGBge3J9CiMgQ29tcHV0ZSBvdXQtb2Ytc2FtcGxlIFJeMgpTU0UgPSBzdW0oKFBvaW50c1ByZWRpY3Rpb25zIC0gTkJBX3Rlc3QkUFRTKV4yKQpTU1QgPSBzdW0oKG1lYW4oTkJBJFBUUykgLSBOQkFfdGVzdCRQVFMpXjIpClIyID0gMSAtIFNTRS9TU1QKUjIKYGBgCgoKCgoKCgoKYGBge3J9CiMgQ29tcHV0ZSB0aGUgUk1TRQpSTVNFID0gc3FydChTU0UvbnJvdyhOQkFfdGVzdCkpClJNU0UgCmBgYAoKCgoKCgoKCioqQWN0aXZpdHkgMTMgKioKCmBgYHtyfQojV2luc1JlZyA9IGxtKFcgfiBQVFNkaWZmLCBkYXRhPU5CQSkKIzQ5PTQxKzAuMDMyNiooeCkKeF8xPSg0OS00MSkvMC4wMzI2CnhfMQpgYGAKCmBgYHtyfQojaGUgZXhwZWN0ZWQgcG9pbnRzIGRpZmZlcmVuY2UgZm9yIGEgdGVhbSB0byBtYWtlIGl0IHRvIHRoZSBwb3N0c2Vhc29uIGlzIDI0NS40CmBgYAoKCgoKKipBY3Rpdml0eSAxNCoqCgpgYGB7cn0KdGhyZWVwdF9tYWRlPC1jKDQsIDUsIDMsIDYsIDcpCnRocmVlcHRzX2F0dGVtcHQ8LWMoOSwgMTAsIDgsIDExLCAxMikKYGBgCgoKCgoKCmBgYHtyfQpUaHJlZXB0c19wY3Q9dGhyZWVwdF9tYWRlL3RocmVlcHRzX2F0dGVtcHQKVGhyZWVwdHNfcGN0CmBgYAoKYGBge3J9CiAjIFRoZSBhdmVyYWdlIGZvciAzIHBvaW50IGdhbWVzIGFyZSAwLjQgLCAwLjUsICAwLjQgLCAwLjU0ICwgYW5kIDAuNgpgYGAKCgoKYGBge3J9Cm1lYW4oVGhyZWVwdHNfcGN0KQpgYGAKCgpgYGB7cn0KIyBUaGUgQXZlcmFnZSBpcyAwLjUKYGBgCgoKCgoKCgoKCgoK