par(mfrow=c(3,1))
library(probs)
##
## Attaching package: 'probs'
## The following objects are masked from 'package:base':
##
## intersect, setdiff, union
set.seed(123)
populasi = rgeom(20, 0.1)
n1 = 2
contoh_geo1 = urnsamples(populasi, size = 2, replace = F, ordered = F)
mean_geo1 = matrix(apply(contoh_geo1, 1, mean))
n2 = 5
contoh_geo2 = urnsamples(populasi, size = 5, replace = F, ordered = F)
mean_geo2 = matrix(apply(contoh_geo2, 1, mean))
n3 = 10
contoh_geo3 = urnsamples(populasi, size = 10, replace = F, ordered = F)
mean_geo3 = matrix(apply(contoh_geo3, 1, mean))
hist(mean_geo1,main = paste("Hampiran Normal Terhadap Geometrik (n = 2)"),xlab = "xbar")
hist(mean_geo2,main = paste("Hampiran Normal Terhadap Geometrik (n = 5)"),xlab = "xbar")
hist(mean_geo3,main = paste("Hampiran Normal Terhadap Geometrik (n = 10)"),xlab = "xbar")
Tujuannya adalah untuk menunjukkan bagaimana distribusi rata-rata sampel \(\bar{x}\) dari distribusi geometrik mendekati distribusi normal ketika ukuran sampel \((n)\) meningkat.
par(mfrow=c(3,1))
library(probs)
set.seed(123)
populasi = rexp(20)
n1 = 2
contoh_exp1 = urnsamples(populasi, size = 2, replace = F, ordered = F)
mean_exp1 = matrix(apply(contoh_exp1, 1, mean))
n2 = 5
contoh_exp2 = urnsamples(populasi, size = 5, replace = F, ordered = F)
mean_exp2 = matrix(apply(contoh_exp2, 1, mean))
n3 = 10
contoh_exp3 = urnsamples(populasi, size = 10, replace = F, ordered = F)
mean_exp3 = matrix(apply(contoh_exp3, 1, mean))
hist(mean_exp1,main = paste("Hampiran Normal Terhadap Eksponensial (n = 2)"),xlab = "xbar")
hist(mean_exp2,main = paste("Hampiran Normal Terhadap Eksponensial (n = 5)"),xlab = "xbar")
hist(mean_exp3,main = paste("Hampiran Normal Terhadap Eksponensial (n = 10)"),xlab = "xbar")
Tujuannya adalah untuk menunjukkan bagaimana distribusi rata-rata sampel
\(\bar{x}\) dari distribusi geometrik
mendekati distribusi normal ketika ukuran sampel (\(n\))meningkat.
par(mfrow=c(3,1))
library(probs)
set.seed(123)
populasi = runif(20)
n1 = 2
contoh_unif1 = urnsamples(populasi, size = 2, replace = F, ordered = F)
mean_unif1 = matrix(apply(contoh_unif1, 1, mean))
n2 = 5
contoh_unif2 = urnsamples(populasi, size = 5, replace = F, ordered = F)
mean_unif2 = matrix(apply(contoh_unif2, 1, mean))
n3 = 10
contoh_unif3 = urnsamples(populasi, size = 10, replace = F, ordered = F)
mean_unif3 = matrix(apply(contoh_unif3, 1, mean))
hist(mean_unif1,main = paste("Hampiran Normal Terhadap Seragam (n = 2)"),xlab = "xbar")
hist(mean_unif2,main = paste("Hampiran Normal Terhadap Seragam (n = 5)"),xlab = "xbar")
hist(mean_unif3,main = paste("Hampiran Normal Terhadap Seragam (n = 10)"),xlab = "xbar")
Kesimpulan: Semakin besar ukuran contoh, maka sebaran rata-rata dari
contoh acak yang berasal dari sebaran geometrik, eksponensial, maupun
uniform akan mendekati sebaran normal. Hal ini ditunjukkan dari
histogram ang mana ketika n semakin besar akan cenderung membentuk kurva
normal.
par(mfrow=c(3,1))
library(probs)
set.seed(1299)
populasi = rnorm(20,5,sqrt(12)) # Membangkitkan bil. acak ~ Normal (miu = 5, sigma2 =12)
n1 = 3
contoh_norm1 = urnsamples(populasi, size = 3, replace = F, ordered = F)
mean_norm1 = matrix(apply(contoh_norm1, 1, mean))
mean_xbar1 = mean(mean_norm1)
var_xbar1 = var(mean_norm1)
n2 = 4
contoh_norm2 = urnsamples(populasi, size = 4, replace = F, ordered = F)
mean_norm2 = matrix(apply(contoh_norm2, 1, mean))
mean_xbar2 = mean(mean_norm2)
var_xbar2 = var(mean_norm2)
n3 = 15
contoh_norm3 = urnsamples(populasi, size = 15, replace = F, ordered = F)
mean_norm3 = matrix(apply(contoh_norm3, 1, mean))
mean_xbar3 = mean(mean_norm3)
var_xbar3 = var(mean_norm3)
hist(mean_norm1,main = paste("(n = 3)"),xlab = "xbar")
hist(mean_norm2,main = paste("(n = 4)"),xlab = "xbar")
hist(mean_norm3,main = paste("(n = 15)"),xlab = "xbar")
hasil = data.frame("."=c("mean","varian"),"Populasi"=c(5,12),"n=3"=c(mean_xbar1,var_xbar1),"n=4"=c(mean_xbar2,var_xbar2),"n=15"=c(mean_xbar3,var_xbar3))
hasil
## . Populasi n.3 n.4 n.15
## 1 mean 5 4.809415 4.809415 4.8094152
## 2 varian 12 4.547044 3.207524 0.2672558
Kesimpulan: - Berdasarkan output di atas, contoh acak yang diambil dari populasi dengan mean = μ dan ragam = σ2, maka semakin besar ukuran contoh, mean dari \(\bar{x}\) akan semakin mendekati \(μ\) dan ragamnya semakin mendekati \(σ2n\)
\(\bar{x}\) adalah penduga tak bias bagi \(μ\), jika E(\(\bar{x}\)) = \(μ\) \(s2\) adalah penduga tak bias bagi \(σ2\), jika E\((s2)\) = \(σ2\)
Maka dalam hal ini kita akan membuktikan apakah benar nilai harapan penduga parameter sama dengan nilai parameternya
#POPULASI TERHINGGA
#1. Sebaran Normal
library(probs)
set.seed(123)
n = 10
populasi1 = rnorm(20)
mean_pop1 = mean(populasi1)
sampel_normal1 = urnsamples(populasi1, size = 10, replace = F, ordered = F)
mean_normal1 = matrix(apply(sampel_normal1, 1, mean))
median_normal1 = matrix(apply(sampel_normal1, 1, median))
harapan_mean_norm1 = mean(mean_normal1)
harapan_median_norm1 = mean(median_normal1)
#2. Sebaran Eksponensial
library(probs)
set.seed(123)
n = 10
populasi2 = rexp(20)
mean_pop2 = mean(populasi2)
sampel_exp1 = urnsamples(populasi2, size = 10, replace = F, ordered = F)
mean_exp1 = matrix(apply(sampel_exp1, 1, mean))
median_exp1 = matrix(apply(sampel_exp1, 1, median))
harapan_mean_exp1 = mean(mean_exp1)
harapan_median_exp1 = mean(median_exp1)
#3. Uniform
library(probs)
set.seed(123)
n = 10
populasi3 = runif(20)
mean_pop3 = mean(populasi3)
sampel_unif1 = urnsamples(populasi3, size = 10, replace = F, ordered = F)
mean_unif1 = matrix(apply(sampel_unif1, 1, mean))
median_unif1 = matrix(apply(sampel_unif1, 1, median))
harapan_mean_unif1 = mean(mean_unif1)
harapan_median_unif1 = mean(median_unif1)
hasil = data.frame("Hasil"=c("mean_populasi","harapan_mean_contoh","harapan_median_contoh"),"Sebaran Normal"=c(mean_pop1,harapan_mean_norm1,harapan_median_norm1),"Sebaran Eksponensial"=c(mean_pop2,harapan_mean_exp1,harapan_median_exp1),"Sebaran Seragam"=c(mean_pop3,harapan_mean_unif1,harapan_median_unif1))
hasil
## Hasil Sebaran.Normal Sebaran.Eksponensial Sebaran.Seragam
## 1 mean_populasi 0.1416238 0.8111726 0.5508084
## 2 harapan_mean_contoh 0.1416238 0.8111726 0.5508084
## 3 harapan_median_contoh 0.1174878 0.4931612 0.5504018
Kesimpulan : - Berdasarkan output di atas, dengan populasi terhingga maupun tak hingga serta tiga sebaran yang berbeda, nilai harapan median contoh tetap berbeda dengan μ dan nilai harapan rataan contoh (\(\bar{x}\)) mendekati sama (pada populasi tak hingga) bahkan sama persis dengan nilai parameter rataan populasi \(μ\) (pada populasi terhingga) sehingga penduga tak bias bagi \(μ\) adalah (\(\bar{x}\)) - Pada populasi terhingga, percontohan bersifat unik artinya tidak ada percontohan yang berulang sehingga dapat dipastikan kombinasi contoh hanya muncul satu kali sehingga nilai parameter dan nilai harapan penduga parameter yang tak bias sama persis. - Pada populasi tak hingga, percontohan yang terambil secara acak merupakan sebagian dari keseluruhan kemungkinan percontohan yang ada sehingga nilai parameter dan nilai harapan penduga parameter yang tak bias tidak sama persis, namun sangat mendekati.
# POPULASI TERHINGGA
#Sebaran Normal
set.seed(888)
n = 10
populasi = rnorm(20)
sigma2 = var(populasi)*(20-1)/20 #fungsi var pada R adalah varian contoh (penyebut n-1) sehingga perlu dikali (n-1)/n
library(probs)
sampel = urnsamples(populasi, size = 10, replace = F, ordered = F)
## Pembagi (n-1)
s2.n1 = matrix(apply(sampel, 1, var))
E.s2.n1 = mean(s2.n1)
## Pembagi (n)
s2.n = s2.n1*(10-1)/10
E.s2.n = mean(s2.n)
#Sebaran Eksponensial
set.seed(888)
n = 10
populasi2 = rexp(20)
sigma2.exp = var(populasi2)*(20-1)/20
library(probs)
sampel_exp = urnsamples(populasi2, size = 10, replace = F, ordered = F)
## Pembagi (n-1)
s2.n1.exp = matrix(apply(sampel_exp, 1, var))
E.s2.n1.exp = mean(s2.n1.exp)
## Pembagi (n)
s2.n.exp = s2.n1.exp*(10-1)/10
E.s2.n.exp = mean(s2.n.exp)
hasil = data.frame( "." = c("ragam populasi","nilai harapan ragam contoh (n-1)","nilai harapan ragam contoh (n)"),
"Sebaran Normal" = c(sigma2, E.s2.n1, E.s2.n),"Sebaran Eksponensial" = c(sigma2.exp, E.s2.n1.exp, E.s2.n.exp))
hasil
## . Sebaran.Normal Sebaran.Eksponensial
## 1 ragam populasi 1.298573 1.750903
## 2 nilai harapan ragam contoh (n-1) 1.366919 1.843056
## 3 nilai harapan ragam contoh (n) 1.230227 1.658750
kesimpulan: - Berdasarkan output diatas, dengan skenario populasi terhingga dan dua sebaran yang berbeda, nilai harapan ragam contoh dengan penyebut \(n\) - 1 harusnya lebih mendekati nilai parameter daripada nilai harapan ragam contoh dengan penyebutan n. Hali ini menunjukkan bahwa penduga tak bias bagi ragam populasi (alfa pangkat 2) adalah \(s*2\) dengan penyebut adalah \(n\) - 1, meskipun masoh terdapat celah perbedaan (tidak 1005) tak terbias). - Pada populasi terhingga, percontohan bersifat unik artinya tidak ada percontohan yang berulang sehinggadapat dipastikan kombinasi contoh hanya muncul satu kali. Jika pada penduga mean nilai parameter danstatistik penduga tak bias sama persis, pada penduga ragam ini hal tersebut tidak berlaku karena perhitunganragam populasi perlu dikali dengan faktor koreksi sedangkan perhitungan ragam contoh (denganpenyebut ) tidak perlu mengalikan dengan faktor koreksi. - Pada populasi tak hingga, percontohan yang terambil secara acak merupakan sebagian dari keseluruhankemungkinan percontohan yang ada. Namun, dalam hal ini nilai parameter ragam dan nilai harapan pendugatak biasnya tidak sama persis, hanya mendekati.
#Selang kepercayaan
Apa arti dari SK 95%? - SK 95% bagi : Kita percaya 95% bahwa selang a sampai b memuat nilai parameter yang sebenarnya - SK 95%: Jika kita melakukan 100 kali percontohan acak dan setiap percontohan acakdibuat selang kepercayaannya, maka dari 100 SK yang terbentuk, ada 95 SK yang mencakup parametersedangkan sisanya sebanyak 5 SK tidak mencakup parameter.
n1 = 10
k = 100 #ulangan
alpha = 0.05
mu = 50
std = 10
set.seed(123)
sampel.norm1 = matrix(rnorm(n1*k,mu,std),k)
xbar.norm1 = apply(sampel.norm1,1,mean)
s.norm1 = apply(sampel.norm1,1,sd)
SE.norm1 = s.norm1/sqrt(n1)
z.norm1 = qnorm(1-alpha/2)
SK.norm1 = (xbar.norm1-z.norm1*SE.norm1 < mu & mu < xbar.norm1+z.norm1*SE.norm1)
x.norm1 = sum(SK.norm1)/k #proporsi banyaknya SK yang memuat mu
n2 = 30
k = 100 #ulangan
alpha = 0.05
mu = 50
std = 10
set.seed(123)
sampel.norm2 = matrix(rnorm(n2*k,mu,std),k)
xbar.norm2 = apply(sampel.norm2,1,mean)
s.norm2 = apply(sampel.norm2,1,sd)
SE.norm2 = s.norm2/sqrt(n2)
z.norm2 = qnorm(1-alpha/2)
SK.norm2 = (xbar.norm2-z.norm2*SE.norm2 < mu & mu < xbar.norm2+z.norm2*SE.norm2)
x.norm2 = sum(SK.norm2)/k #proporsi banyaknya SK yang memuat mu
n3 = 100
k = 100 #ulangan
alpha = 0.05
mu = 50
std = 10
set.seed(123)
sampel.norm3 = matrix(rnorm(n3*k,mu,std),k)
xbar.norm3 = apply(sampel.norm3,1,mean)
s.norm3 = apply(sampel.norm3,1,sd)
SE.norm3 = s.norm3/sqrt(n3)
z.norm3 = qnorm(1-alpha/2)
SK.norm3 = (xbar.norm3-z.norm3*SE.norm3 < mu & mu < xbar.norm3+z.norm3*SE.norm3)
x.norm3 = sum(SK.norm3)/k #proporsi banyaknya SK yang memuat mu
hasil = data.frame("n" =c(10,30,100),"Ketepatan SK Sebaran Normal"=c(x.norm1, x.norm2, x.norm3))
hasil
## n Ketepatan.SK.Sebaran.Normal
## 1 10 0.93
## 2 30 0.93
## 3 100 0.96
matplot(rbind (xbar.norm2-z.norm2*SE.norm2, xbar.norm2+z.norm2*SE.norm2), rbind(1:k,1:k), col=ifelse(SK.norm2,"blue","red"), type = "l", lty = 1,main='Selang Kepercayaan 95% (n=100)', xlab='SK', ylab='banyak ulangan')
abline(v=mu)
# Interval Kepercayaan
library(car)
## Loading required package: carData
data("Prestige")
# Menghitung rata-rata
m <- mean(Prestige$income)
m
## [1] 6797.902
# Menghitung standar error
p <- dim(Prestige)[1]
se <- sd(Prestige$income)/sqrt(p)
se
## [1] 420.4089
# Menghitung nilai kritis t
tval <- qt(0.975, df=p-1)
# Menghitung interval kepercayaan
cat(paste("KI: [", round(m-tval*se, 2),",",round(m+tval*se,2),"]"))
## KI: [ 5963.92 , 7631.88 ]
Artinya, dengan tingkat kepercayaan 95%, rata-rata pendapatan populasi berada dalam rentang 5963.92hingga 7631.88.