Healthy Cities GIS Assignment

Author

Kenny Nguyen

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
library(sf)
setwd("~/Desktop/Data 110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
4  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
5  2017 CA        California Inglewood Census Tract    BRFSS      Health Outcom…
6  2017 CA        California Lakewood  City            BRFSS      Unhealthy Beh…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 CA        California Hawthorne Census Tract    Health … 0632548… Arthri…
2  2017 CA        California Hawthorne City            Unhealt… 632548   Curren…
3  2017 CA        California Hayward   City            Unhealt… 633000   Obesit…
4  2017 CA        California Indio     Census Tract    Health … 0636448… Arthri…
5  2017 CA        California Inglewood Census Tract    Health … 0636546… Diagno…
6  2017 CA        California Lakewood  City            Unhealt… 639892   Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with a cleaned dataset.

1. Once you run the above code and learn how to filter in this format, filter this dataset however you choose so that you have a subset with no more than 900 observations.

Filter chunk here

sad<- latlong_clean2 |>
  filter( Measure == "Mental health not good for >=14 days among adults aged >=18 Years" , StateDesc == "Louisiana") 

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

P1 <- ggplot(sad, aes(x = CityName, y = Data_Value)) +
  geom_col(fill= "#cfc4c0") +
  theme_bw() +
  labs(
    title = "Poor Mental Health for More Than or Equal to 14 Days in Louisiana",
    x = "City",
    y = "Percentage (%)",
    caption = "Source: CDC")

P1
Warning: Removed 8 rows containing missing values or values outside the scale range
(`geom_col()`).

3. Now create a map of your subsetted dataset.

First map chunk here

leaflet() |>
setView(lng = -91.5209, lat = 30.5191, zoom =6.25) |>
addProviderTiles("Esri.WorldStreetMap") |>
addCircles(
data = sad,
color = "#ad232e",
radius = sqrt(2^sad$Data_Value)*3)
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

popupsad <- paste0(
"<b>City: </b>", sad$CityName, "<br>",
"<b>Percentage: </b>", sad$Data_Value, "<br>",
"<b>Population : </b>", sad$PopulationCount, "<br>")
leaflet() |>
setView(lng = -91.5209, lat = 30.5191, zoom =6.25) |>
addProviderTiles("Esri.WorldStreetMap") |>
addCircles(
data = sad,
color = "#ad232e",
radius = sqrt(2^sad$Data_Value)*3,
popup = popupsad )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

My plot’s data comes from a questionnaire and statistics for the 500 biggest cities in the U.S provided by the CDC. From this dataset, I chose to focus on the mental health section, specifically looking at the percentage of adults ages 18 and older who reported experiencing poor mental health for 14 or more days. I decided to focus on Louisiana because, when you search “unhappiest state in the US,” Louisiana is the first results that appears.

For the visualization, I used the World Street Map option from the Leaflet package. The circles on the plot represent the percentage of people in each area who fall into the the bad mental health category. I chose a red color for the circles using Google’s color picker so they were able to stand out clearly against the map background. I also adjusted the radius of the circles to make the differences between areas more visually distinct.

To enhance the user experience, I added tooltips that display specific information such as the city name, population, and the percentage of people with poor mental health. One challenge I faced was getting the zoom level just right. I tried zoom levels 6.5 and 7, but they were too close, making it hard to view the data clearly. Eventually, I found that a zoom level of 6.25 was the sweet spot for displaying Louisiana effectively.