In Partial Fulfillment of the Course Applied Regression and Time Series Analysis for Financial Research
FINARTS K31

Submitted by Group 1:
ASIS, ALYSSA MARI E.
KAGAOAN, SOFIA MARIE Q.
SABADO, JAMES ETHAN R.

Submitted to:
Mr. Dioscoro P. Baylon Jr. 

1 Company Background

1.1 SM Investments Corporation (SM)

SM Investments Corporation (SMIC) is one of the leading conglomerates in the Philippines, recognized for its diversified operations and significant contributions to the country’s economic growth. Founded by Henry Sy Sr., SMIC has evolved from a small shoe store in Manila to a major holding company with interests spanning various industries. Its core businesses include retail, banking, and property development, which are central to its sustained growth and influence in the Philippine economy (SM Investments Corporation, n.d.).

In the retail sector, SMIC operates one of the largest and most extensive networks of department stores, supermarkets, and specialty stores in the country through SM Retail, Inc. The company is known for its SM Supermalls, a chain of large shopping malls that serve as commercial, entertainment, and lifestyle hubs across the Philippines. As of recent years, SM Retail includes notable brands such as SM Store, SM Supermarket, and specialty brands like Watsons and Ace Hardware (SM Investments Corporation, n.d.).

In addition to retail, SMIC has a strong presence in the financial sector through its equity in BDO Unibank, the largest bank in the Philippines in terms of total assets, and China Banking Corporation. These institutions provide a broad range of financial services, including consumer and corporate banking, insurance, and investment services (BDO Unibank, 2022).

Furthermore, SMIC is a key player in real estate through SM Prime Holdings, one of Southeast Asia’s largest integrated property developers. SM Prime is involved in residential development, commercial properties, hotels, and convention centers. It has also been expanding its sustainability and green initiatives, integrating environmentally friendly practices into its developments (SM Prime Holdings, 2022).

Overall, SM Investments Corporation stands as a pillar of the Philippine business landscape, not only for its commercial success but also for its commitment to innovation, inclusive growth, and sustainable development.

Relevance of the time series analysis Forecasting stock prices and returns is a critical function that supports the strategic and financial decisions of various stakeholders including investors, corporate management, and financial regulators. These projections offer a forward-looking view of a company’s performance, market trends, and economic indicators, which help reduce uncertainty and support better planning. By anticipating potential fluctuations in the stock market, stakeholders can implement more proactive and informed strategies that align with both short-term goals and long-term sustainability.

For Investors Investors, both institutional and individual, depend heavily on financial forecasting to assess potential returns and risks associated with their investment portfolios. Accurate stock price predictions assist them in determining the optimal time to buy, hold, or sell shares. This reduces the likelihood of losses caused by market volatility and helps achieve better risk-adjusted returns. Technical analysis, which involves examining charts, price trends, and trading volumes, is commonly used to detect patterns and make short-term predictions. On the other hand, fundamental analysis considers a company’s financial health, competitive position, management effectiveness, and macroeconomic conditions to evaluate whether a stock is undervalued or overvalued (Boyles, 2022). These tools, when combined, enable investors to make evidence-based decisions that reflect both the historical context and future outlook of a stock.

For Management For company executives and financial planners, forecasting plays a vital role in corporate governance and long-term planning. It enables the leadership team to set realistic targets, assess internal capabilities, and adapt strategies based on anticipated changes in the financial landscape. For example, if forecasts suggest a decline in the company’s stock price due to industry trends or internal inefficiencies, management can respond by enhancing cost efficiency, diversifying revenue streams, or increasing investor engagement. Furthermore, forecasts help in capital budgeting, determining dividend policies, and evaluating mergers or expansion opportunities (Saini, 2021). These insights empower managers to act decisively and maintain competitiveness while also satisfying shareholder expectations.

For Regulators Financial regulators and policymakers rely on stock market forecasting as a tool to oversee market stability and economic health. Forecasts can signal upcoming downturns or speculative bubbles, prompting preventive interventions to avoid broader economic disruptions. For instance, a consistent misalignment between market expectations and real economic output may indicate irrational investor behavior or underlying structural issues. By analyzing forecast models and trends, regulators can introduce policy measures such as adjusting interest rates, tightening disclosure requirements, or imposing trade restrictions to mitigate systemic risks and ensure fair trading environments (Krylov, 2018). These practices help maintain investor confidence and safeguard the integrity of financial markets.

With that, forecasting stock prices and returns is not merely a technical exercise, it is a powerful tool that equips stakeholders with the knowledge needed to navigate the complexities of modern financial systems. Investors use it to enhance portfolio performance, management relies on it to align operations with market dynamics, and regulators depend on it to protect financial stability. Together, these practices promote transparency, reduce information asymmetry, and foster confidence in the financial ecosystem. Ultimately, accurate forecasting supports efficient capital allocation, sustainable business growth, and overall economic development.

1.2 Overview

This case study will apply several methods of time series analysis to predict the stock prices of SM Investments Corporation, namely: (1) Simple Moving Average, (2) Exponential Moving Average, (3) Simple Exponential Smoothing, (4) Holt Method, (5) Holt-Winters Method, (6) Kalman Filter, (7) Regression (OLS), and (8) ARIMA. Afterwards, diagnostics will be ran to assess each model’s performance. The diagnostics include the RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), and R-squared.

2 Predicting Stock Prices

2.1 Simple Moving Average (SMA)

Figure 1.1. Simple Moving Average (SMA) Method

Figure 1.2. Simple Moving Average (SMA) Method (Diagnostics)

## SMA Evaluation Metrics:
## RMSE: 25.0938
## MAE: 17.8933
## R-squared: 0.8925

In analyzing the Simple Moving Average method, we can see that the Root Mean Squared Error (RMSE) of 25.0938 indicates the model’s predictions deviate from actual values by about 25 units on average, with larger errors having a more significant impact due to the squaring involved. Meanwhile, the Mean Absolute Error (MAE) of 17.8933 displays a more direct and straightforward measure, showing an average deviation of nearly 18 units. The high R-squared value of 0.8925 suggests that the model explains about 89.25% of the variability in the data, meaning that it is a strong fit.

The stock price chart from 2020 to 2024 plots the actual stock price in blue against a 10-day simple moving average (SMA) represented in red. The SMA effectively smooths the price data, providing a clearer view of overall trends by averaging out daily fluctuations. Visually, the red line follows the general direction of the blue line but with noticeably less volatility, which reflects the averaging effect. Noticeable deviations between the two lines indicate times wherein the actual price moves sharply away from its recent average. The SMA appears to generally capture major trends, such as the rise in early 2021 and the subsequent decline through 2022, while filtering out some of the shorter-term noise.

Overall, the model shows good performance but could benefit from addressing these outliers to improve its accuracy.

2.2 Exponential Moving Average (EMA)

Figure 2.1. Exponential Moving Average (EMA) Method

Figure 2.1 displays the movements of the stock prices in periods 2020 to 2024, with a 10-day exponential moving average overlaid. Throughout the observed period, the stock price experienced significant volatility, which is evident in the alternating upward and downward trend that can be seen. The green line represents the 10-day exponential moving average, which serves to smooth out the price fluctuations and provide a clearer indication of the overall trend. Overall, it aligns heavily with the findings in the evaluation metrics.

Figure 2.2. Exponential Moving Average (EMA) Method (Diagnostics)

## EMA Evaluation Metrics:
## RMSE: 21.1418
## MAE: 15.0074
## R-squared: 0.9237

The Exponential Moving Average (EMA) model shows a solid forecasting performance based on the given evaluation metrics. The Root Mean Squared Error (RMSE) is 21.14, which indicates that, on average, the forecasted values deviate from the actual stock prices by about 21 units. This metric focuses more weight to larger errors, so it suggests that while most predictions are close, a few of them may be shown to be farther off. The Mean Absolute Error (MAE) is 15.01, meaning that the typical error between the forecast and the actual values is around 15 units. This is a relatively more balanced measure that treats all errors equally. Lastly, the R-squared value is 0.9237, which implies that the EMA model explains approximately 92% of the variance in the actual stock prices.

Overall, these results suggest that the EMA model captures the trend well and provides reasonably accurate forecasts.

2.3 Simple Exponential Smoothing (SES)

Figure 3.1. Simple Exponential Smoothing (SES) Method

Figure 3.1 displays the stock price’s movement over time, with a forecast for the subsequent 30 days generated using simple exponential smoothing. The historical data (represented by the black line) depicts considerable volatility, evident in the rapid increases and decreases in price. Near the beginning of the sequence, the price experiences a sharp decline before recovering and fluctuating within a range between approximately 800 and 1100. As time progresses towards the present, the price generally trends downward. The blue line indicates the forecast for the next 30 days, showing an initial increase followed by a decrease and then stabilization. The grey area around the forecast represents the confidence interval, which widens as the forecast extends further into the future, which may reflect increased uncertainty.

Figure 3.2. Simple Exponential Smoothing (SES) Method (Diagnostics)

## SES Evaluation Metrics:
## RMSE: 47.0655
## MAE: 34.7557
## R-squared: -1.1963

The Simple Exponential Smoothing (SES) model appears to perform poorly based on its evaluation metrics. The Root Mean Squared Error (RMSE) is 47.07, which indicates that, on average, the forecasted values deviate from the actual stock prices by about 47 units. This high value suggests the model struggles to closely and accurately track the actual price movements. The Mean Absolute Error (MAE) is 34.76, which shows that the typical forecast error is around 35 units—more than double the error of the EMA model. Furthermore, the R-squared value is -1.1963, which signals that the SES model performs significantly worse than simply predicting the mean of the actual values. A negative R-squared value reflects an overall poor fit and suggests that the model fails to capture the underlying pattern of the data. To conclude, the evaluation of the metrics indicate that the SES model is not well-suited for forecasting this particular stock’s behavior.

2.4 Holt Method

Figure 4.1. Holt Method

The graph shows a Holt-Winters forecast for a stock price over approximately 200 time periods, with a focus on a 30-day forecast that considers weekly seasonality. The historical stock price data, represented by the black line, shows considerable volatility with upward and downward trends. The forecast itself, indicated by the blue line within the grey shaded area, predicts a slight increase in stock price over the next 30 days, but the shaded area suggests a high degree of uncertainty in this prediction.

Figure 4.2. Holt Method (Diagnostics)

## Holt Method Evaluation Metrics:
## RMSE: 50.6396
## MAE: 38.2514
## R-squared: -1.5426

The Holt’s Linear Trend model shows weak forecasting performance based on both the numerical metrics and the corresponding graph. The RMSE of 50.64 and MAE of 38.25 indicate a high average error in the model’s predictions, suggesting that it struggles to accurately follow the actual stock price movements. More notably, the R-squared value of -1.5426 implies that the model performs worse than a naive approach of simply predicting the mean, and it fails to account for the variability in the data. The graph supports these findings. The historical stock price, shown in black, exhibits high volatility and irregular patterns. In contrast, the 30-day forecast, shown in blue, appears unstable and inconsistent with recent trends. The forecast initially increases, then sharply declines, with a wide confidence interval (shaded in grey) indicating substantial uncertainty. Overall, while the model attempts to capture trend components, it does not effectively handle the volatility and complexity present in the stock price data, limiting its usefulness for forecasting in this case.

2.5 Holt-Winters Method

Figure 5.1. Holt-Winters Method

The graph shows how the Holt-Winters method (using an additive model with weekly seasonality) was applied to forecast the stock prices of SM Investments Corporation. In the plot, we can see the actual stock prices as the black line, while the blue section on the right side represents the forecasted values. The shaded area around the forecast indicates the confidence interval, which basically shows the level of uncertainty in the prediction—the wider the band, the less confident the model is as it predicts further into the future.

Figure 5.2. Holt-Winters Method (Diagnostics)

## Holt-Winters Evaluation Metrics:
## RMSE: 40.2161
## MAE: 27.1371
## R-squared: -0.6036

Looking at the evaluation metrics, we see that the RMSE (Root Mean Square Error) is 40.22 and the MAE (Mean Absolute Error) is 27.14. These values tell us how far off the model’s predictions are from the actual prices. RMSE gives more weight to bigger errors, while MAE gives the average size of all the errors. The numbers are not super high, but they are not very low either, especially considering how unpredictable stock prices like SM’s can be.

The biggest concern here is the R-squared value, which is -0.6036. R-squared normally tells us how well a model explains the variation in the data, and we usually want it close to 1. A negative R-squared, though, means the model is actually doing worse than if we had just guessed the average price for every point. So in this case, the Holt-Winters method didn’t really capture the pattern in SM Investments Corporation’s stock prices very well.

With that, while Holt-Winters is often helpful for forecasting data with trends and seasonality, it does not seem to be the best fit for this particular dataset. Stock prices tend to be noisy and volatile, so a more flexible or advanced model might give more accurate predictions.

2.6 Kalman Filter

Figure 6.1. Kalman Filter Method (Smoothed Close Prices)

The graph shows the results of applying the Kalman Filter to smooth the closing stock prices of SM Investments Corporation over time. The Kalman Filter is a popular algorithm used in time series analysis and control systems because of its ability to estimate values from noisy data. In this case, the purple line represents the smoothed version of the closing prices, which helps reduce short-term fluctuations and highlights the overall trend more clearly. This kind of smoothing is especially useful for financial data like stock prices, which tend to be volatile and noisy.

The evaluation metrics shown below the graph are based on the last 30 days of data. The Root Mean Square Error (RMSE) is 14.777, and the Mean Absolute Error (MAE) is 9.8251. These values are significantly lower compared to the results from the Holt-Winters model, which suggests that the Kalman Filter provided a more accurate estimate of the true price trend during this period. RMSE gives us a sense of how far off the model’s predictions are on average, especially emphasizing larger errors, while MAE gives a straightforward average of how much the predictions differ from actual prices.

Most importantly, the R-squared value is 0.7835, which is quite strong. This metric shows how well the model explains the variability of the actual data, and a value closer to 1 is ideal. In this case, an R-squared of around 0.78 means that the Kalman Filter was able to capture the underlying trend of the stock price quite effectively, especially compared to the Holt-Winters method, which had a negative R-squared.

Therefore, the Kalman Filter appears to be a much better fit for modeling the recent price movements of SM Investments Corporation. Its ability to handle noise and continuously update predictions based on new data makes it a valuable tool for smoothing and tracking financial time series like stock prices.

Figure 6.2. Kalman Filter Method (Diagnostics)

## Kalman Filter Evaluation Metrics (Last 30 Days):
## RMSE: 14.777
## MAE: 9.8251
## R-squared: 0.7835

This graph specifically presents the Kalman Filter’s performance over the most recent 30-day window. The gray line shows the actual observed stock prices of SM Investments Corporation during that period, while the purple line represents the smoothed predictions or estimates generated by the Kalman Filter.

From the visual pattern, we can observe that the Kalman Filter effectively captures the underlying trend of the stock movement during this time. In the first half of the graph (around mid-November to early December), both lines show moderate fluctuations, and the filter manages to follow the price movements quite closely, albeit with a slightly lagged response in rapid changes. This is a normal behavior for smoothing models, which trade off a bit of responsiveness to reduce noise.

In the second half (early to mid-December), the stock undergoes a sharp upward surge followed by a slight dip toward the end of the month. The Kalman Filter tracks this sharp movement with noticeable accuracy, although it slightly underestimates the peaks and smooths over smaller short-term oscillations.

The performance metrics provided at the top—RMSE: 14.78, MAE: 9.83, and R²: 0.7835—quantitatively confirm the filter’s effectiveness: (1) The RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) values are relatively low, suggesting modest deviations between the actual prices and the filtered estimates. (2)The R-squared value of 0.7835 reflects a strong goodness of fit, meaning the filter successfully explains around 78% of the variance in the stock price during this short-term period.

Therefore, the graph gives a zoomed-in, short-term view of how well the Kalman Filter models the most recent stock price activity. It complements the earlier long-term chart, which shows how the filter smooths out closing prices over years. Together, both visuals confirm that the Kalman Filter is a reliable method for tracking stock trends in both long-term trend detection and short-term forecasting accuracy.

2.7 Regression

Figure 7.1. Regression Method (Linear Regression on Close Prices)

The graph above illustrates the application of linear regression to model the closing stock prices of SM Investments Corporation over time. In this visualization, the blue line represents the actual historical closing prices, while the orange line corresponds to the linear regression trendline fitted to the data. The x-axis is indexed over time (not labeled by date but by data point index), and the y-axis represents the stock’s closing price.

From the graph, it is evident that the linear regression line has a slightly downward slope, indicating a general decline in the closing price of the stock over the full dataset. However, the actual price data fluctuates significantly above and below the regression line, which suggests a high level of volatility and non-linearity in the stock’s movement, something that linear regression does not capture well due to its simplicity and assumption of a constant linear relationship.

Figure 7.2. Regression Method (Diagnostics)

## Linear Regression Evaluation Metrics:
## RMSE: 70.03
## MAE: 57.9599
## R-squared: 0.1827

The accompanying evaluation metrics further support this observation. The Root Mean Square Error (RMSE) is 70.03, and the Mean Absolute Error (MAE) is 57.96, both of which are relatively high. These values indicate that the predictions made by the linear regression model deviate considerably from the actual values. RMSE, in particular, penalizes larger errors more heavily, and such a high value implies that the model performs poorly in estimating more extreme price movements. MAE offers a more direct interpretation of the average prediction error, which again is quite substantial here.

Most telling is the R-squared (R²) value of 0.1827, which signifies that the linear regression model explains only about 18% of the variance in the actual closing prices. This is a rather weak performance and highlights that a simple linear model is insufficient for modeling such a complex, dynamic financial time series. Financial data like stock prices typically exhibit nonlinear patterns, trends, and abrupt shifts due to market sentiment, macroeconomic events, and investor behavior—all of which cannot be captured by a straight-line model.

2.8 ARIMA

Figure 8.1. ARIMA Method

The graph presents the ARIMA (AutoRegressive Integrated Moving Average) model’s forecast of the closing stock prices for SM Investments Corporation. This time series model attempts to capture patterns in the data such as trends, cycles, and seasonality in order to make predictions. The chart shows historical stock price data (black line), followed by a forecast (blue line) extending into the future. The shaded blue area around the forecast represents the confidence interval, indicating the uncertainty of the prediction—the wider it gets, the less certain the model is.

Figure 8.2. ARIMA Method (Diagnostics)

## RMSE:  39.07064
## MAE:  36.26935
## R-squared:  -0.5135253

The ARIMA model’s evaluation metrics indicate moderate predictive accuracy, with an RMSE of 39.07 and an MAE of 36.27. These values are significantly lower than those of the linear regression model, suggesting that the ARIMA model fits the data more accurately and handles time-based fluctuations better. Specifically, the MAE indicates that, on average, the ARIMA model’s predicted closing price deviates by about 36 points from the actual value, which is a marked improvement over the linear regression model’s MAE of nearly 58.

However, the R-squared value of -0.5135 is unusually low and negative. In typical regression models, R-squared values range from 0 to 1, where higher values indicate a better fit. A negative R-squared means the model performs worse than simply predicting the mean of the data, which suggests that while the ARIMA model captures short-term trends reasonably well (as reflected in the lower RMSE and MAE), it may not effectively model the overall structure or variability of the dataset. This could indicate overfitting or that the model doesn’t align well with the broader time span of the stock price data.

Overall, the ARIMA model performs better than linear regression in minimizing average and squared errors, suggesting it adapts more effectively to stock price fluctuations. However, the negative R-squared value reveals significant limitations, such as an inability to explain the full variability of the data or a lack of generalizability. This mixed result highlights that while ARIMA can be a powerful tool for forecasting time series data, it requires careful parameter tuning and may still fall short when applied to highly volatile or non-stationary financial series without proper preprocessing.

2.9 Comparison of Model Results

Table 1. Comparison of Model Results

##                 Model    RMSE     MAE R_squared
## 1                 SMA 25.0938 17.8933    0.8925
## 2                 EMA 21.1418 15.0074    0.9237
## 3                 SES 47.0655 34.7557   -1.1963
## 4         Holt Method 50.6396 38.2514   -1.5426
## 5 Holt-Winters Method 40.2161 27.1371   -0.6036
## 6       Kalman Filter 14.7770  9.8251    0.7835
## 7          Regression 70.0300 57.9599    0.1827
## 8               ARIMA 39.0706 36.2694   -0.5135

3 Bonus - Log Returns

Extracting SM Daily Log Returns

# Extract Closing Prices
SM_closing <- Cl(data)

# Compute Log Returns
SM_log_returns <- diff(log(SM_closing))

# Remove NA Values (First row will be NA)
SM_log_returns <- na.omit(SM_log_returns)

SM_log_returns[is.na(SM_log_returns)] <- 0

View(SM_log_returns)

3.1 Simple Moving Average (SMA)

Figure 9.1. Simple Moving Average Method with LOG RETURNS

This graph illustrates the performance of a 10-day Simple Moving Average (SMA) plotted against the actual closing prices of a stock over a span of four years, from 2020 to 2024. The blue line represents the daily closing prices, which are highly volatile, while the red line shows the smoother 10-day moving average. This moving average helps filter out short-term fluctuations and provides a clearer view of the stock’s general direction. Through visual observation, it’s evident that the SMA follows the overall trend of the stock quite well, lagging slightly behind the actual price due to its nature as an average of past data. This method is particularly helpful for identifying short-term trends and assessing the general movement of the stock without being distracted by daily noise.

Figure 9.2. Simple Moving Average Method with LOG RETURNS (Diagnostics)

## SMA Evaluation Metrics:
## RMSE: 0.0205
## MAE: 0.0149
## R-squared: 0.0884

This graph shows the same 10-day SMA overlayed on the actual stock prices, but this time it includes performance metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and R² (coefficient of determination). These values give a numerical assessment of how well the SMA models or approximates the actual data. With an RMSE of 0.02 and MAE of 0.01, the errors between the predicted and actual values are relatively small, indicating that the SMA closely follows the stock’s daily movements. However, the R² value of 0.0884 is quite low, suggesting that the moving average does not explain much of the variance in the data. In other words, while the SMA stays close to the actual values in terms of magnitude, it does not capture all the dynamic patterns in the price movement. This highlights the limitation of simple moving averages: they are useful for smoothing and trend-following, but not for prediction or explaining complex market behavior.

Overall, while the SMA does not account for complex patterns such as seasonality or structural breaks, it provides a valuable visual tool for observing short-term trends. The evaluation metrics support that the SMA offers a reasonably accurate and stable estimate of the underlying movement in the log returns, making it useful for trend-following strategies and initial exploratory analysis in financial forecasting.

3.2 Exponential Moving Average (EMA)

Figure 10.1. Exponential Moving Average with LOG RETURNS

The graph illustrates the 10-day Exponential Moving Average (EMA) applied to the log returns of SM Investments Corporation’s stock from 2020 to 2024. The blue line represents the actual log return values, while the green line indicates the EMA. Compared to the Simple Moving Average (SMA), the EMA gives more weight to recent data points, making it more sensitive to recent price movements and more effective in capturing short-term trends.

Figure 10.2. Exponential Moving Average with LOG RETURNS (Diagnostics)

## EMA Evaluation Metrics:
## RMSE: 0.0219
## MAE: 0.0159
## R-squared: -0.0409

The EMA closely follows the actual log returns, particularly during periods of sharp fluctuation, which highlights its responsiveness. However, this also makes it more prone to reacting to short-term noise, as seen in the minor jagged movements of the green line throughout the graph. In terms of performance, both the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are 0.02, indicating a relatively low average error between the EMA and actual values. Despite this, the R-squared value is -0.0409, suggesting that the EMA performs worse than simply predicting the mean, which reflects its limited explanatory power when applied to log returns.

Overall, the EMA remains a useful tool for tracking short-term trends in financial data. While it does not perform well as a predictive model, its ability to highlight recent trend changes in a volatile market like that of SM Investments Corporation makes it a valuable method for smoothing time series data.

3.3 Simple Exponential Smoothing (SES)

Figure 11.1. Simple Exponential Smoothing with LOG RETURNS

The plot displays the Simple Exponential Smoothing (SES) forecast applied to the log returns of SM Investments Corporation’s stock data. The black line represents the actual log returns, while the blue line toward the right side shows the fitted forecast values, with a surrounding grey band indicating the forecast’s confidence interval.

The chart reveals noticeable volatility in the earlier part of the time series, which gradually stabilizes over time—a common trait in financial data influenced by market shocks or firm-specific events. Since SES is most appropriate for data without clear trends or seasonality, its main role here is to smooth the series and generate short-term forecasts rather than capture significant directional changes.

Toward the end of the series, the forecast line flattens, reflecting the SES model’s emphasis on recent observations and its assumption that future values will resemble the recent past. The widening grey band around the forecast illustrates growing uncertainty as the forecast extends further, which aligns with the model’s limitations in long-term predictions.

With that, SES proves useful for smoothing the noisy log return data and providing a quick estimate of short-term movements. However, its lack of trend or seasonal components limits its suitability for more complex or longer-term forecasting tasks in financial contexts.

Figure 11.2. Simple Exponential Smoothing with LOG RETURNS

## [1] 0.01629634
## SES Evaluation Metrics:
## RMSE: 0.0163
## MAE: 0.0106
## R-squared: 0

The chart presents a 30-day Simple Exponential Smoothing (SES) forecast applied to the log returns of SM Investments Corporation’s stock price. The black line represents the historical log return data, while the blue line on the right side shows the forecasted values generated by the SES model. Surrounding the forecast is a shaded grey area that reflects the confidence interval, indicating the range within which future values are expected to fall and highlighting the model’s uncertainty.

The SES forecast produces a flat, nearly constant line—an expected outcome, given that SES assumes no trend or seasonality. It relies heavily on recent data, assigning more weight to the latest values to predict future movements. This approach results in a steady forecast that assumes future prices will resemble recent past behavior. The widening of the confidence interval as the forecast extends further suggests increasing uncertainty, which is typical in time series forecasting models.

The model’s evaluation metrics provide more insight into its performance: RMSE is 0.02, MAE is 0.01, and R² is 0. These low RMSE and MAE values indicate minimal average error, suggesting that the forecast is relatively close to the actual data. However, the R² value of 0 reveals that the model does not explain any variance in the actual log returns. This supports the visual observation that the SES forecast does not capture any directional movement or fluctuation, only projecting a stable continuation of recent behavior.

With that, while SES is effective for smoothing out noise in volatile financial data and offering a basic short-term forecast, it lacks the ability to model more complex patterns like trends or cycles. This limits its predictive power in dynamic market conditions, but its simplicity makes it a practical starting point for time series analysis before applying more advanced forecasting techniques.

3.4 Holt Method

Figure 12.1. Holt Method with LOG RETURNS

The graph presents the forecasted stock prices of SM Investments Corporation using Holt’s Linear Trend Method, applied to log-transformed returns. Unlike Simple Exponential Smoothing, Holt’s method incorporates both level and trend, making it more appropriate for time series data with noticeable upward or downward movements. In this context, the model attempts to identify and project a linear trend based on recent patterns.

The black line shows the actual log-return-transformed stock prices, while the blue line at the right end represents the forecasted values. The surrounding grey, fan-shaped area indicates the confidence interval, illustrating the range of possible future outcomes with increasing uncertainty over time. The forecast shows a slight downward slope, consistent with the recent trend of gradual decline in the log returns. This suggests that the model effectively identified the ongoing negative trend and extended it into the forecast horizon.

Despite the trend adjustment, the confidence interval widens as the forecast progresses, reflecting the volatility typical of financial data—even after log transformation. The graph still displays sharp fluctuations, which likely contribute to the broad confidence bounds. However, compared to SES, Holt’s method offers a more realistic forecast by accounting for trend direction.

Overall, Holt’s Linear Trend Method provides a reasonable and trend-aware forecast of the stock’s log returns. While it does not model seasonality or nonlinear behaviors, it serves as a stronger alternative to SES for trending data and offers a clearer view of expected short-term price direction in volatile market conditions.

Figure 12.2. Holt Method with LOG RETURNS (Diagnostics)

## Holt Method Evaluation Metrics:
## RMSE: 0.0165
## MAE: 0.0109
## R-squared: -0.022

Figure 13.1. Holt-Winters Method with LOG RETURNS ## Holt-Winters Method

The graph displays a Holt-Winters additive model with weekly seasonality applied to the log returns of SM Investments Corporation’s stock. The y-axis reflects logarithmic returns rather than raw prices, which is standard in financial analysis to stabilize variance and improve statistical reliability. The x-axis represents time in trading days, and the blue segment at the right side of the plot shows the model’s forecast, enclosed by a grey confidence interval.

This model is intended for time series data with both trend and seasonality. In this case, weekly seasonality was assumed, aligning with the typical five-day trading week. The historical data, represented by the black line, shows significant volatility, with frequent sharp jumps up and down. These fluctuations illustrate the erratic nature of daily stock returns.

Despite incorporating seasonal and trend components, the forecast line remains relatively flat and hovers around zero, indicating a neutral expectation of future returns. There are slight oscillations in the forecast, suggesting the model detected weak seasonal patterns, though these are not visually dominant. The confidence interval, while accommodating some variability, is relatively narrow, which may signal the model’s low certainty yet stable outlook under the given assumptions.

The limited movement in the forecast and the narrow range of the confidence band may indicate either a lack of clear seasonality in the data or that the noise in daily returns overshadows any recurring patterns. This is common in financial time series, where market behavior is often driven by unpredictable external factors rather than consistent cycles. With that, the Holt-Winters additive model offers a structured approach to analyzing short-term movements, but in this case, it produces a modest and largely neutral forecast. While the method is statistically sound, its practical utility is constrained by the unpredictable and noisy nature of log return data in stock markets.

Figure 13.2. Holt Method with LOG RETURNS (Diagnostics)

## Holt-Winters Evaluation Metrics:
## RMSE: 0.0163
## MAE: 0.011
## R-squared: 0.0047

The 30-day Holt-Winters additive model forecast for SM Investments Corporation’s stock log returns shows the actual historical log returns (black line) and the 30-day forecast (blue line), with a prediction interval (grey shaded). The model assumes weekly seasonality, which is common in financial data due to trading behavior. However, the historical returns appear highly volatile and irregular, with sharp spikes and drops, suggesting weak or inconsistent seasonality. This volatility limits the model’s ability to capture meaningful patterns, reflected in the low R² value of 0.0047, indicating almost no explanatory power in terms of variance.

Despite this, the model maintains modest error rates, with an RMSE of 0.02 and MAE of 0.01, which suggests that the short-term point forecasts are reasonably close to the observed values. However, these small errors are more a reflection of the small magnitude of the returns rather than the model’s strength. The forecast projects a mean-reverting behavior, where returns hover around zero. Although the model attempts to integrate weekly seasonality, the erratic nature of the data limits its accuracy. These results reinforce that predicting log returns is inherently challenging, especially when market movements are influenced by unpredictable external factors.

3.5 Kalman Filter

Figure 14.1. Kalman Filter with LOG RETURNS

The thick line shows the Kalman Filter’s adaptive interpretation of price movements, clearly dampening extreme volatility (like 2020’s COVID swings) while tracking major directional shifts. We see it adjusting its responsiveness - tighter smoothing during calm periods (2023) versus wider bands during turbulent phases. The model particularly struggles during black swan events where the smoothed line lags behind actual spikes, reminding us that even sophisticated filters can’t perfectly predict market chaos. Traders value this view to distinguish meaningful trends from daily noise, though the Y-axis scale (where 0.03 ≈ 3% daily move) confirms we’re still dealing with significant volatility. The widening gaps during crises highlight where human judgment must supplement algorithmic outputs.

Figure 14.2. Kalman Filter with LOG RETURNS (Diagnostics)

## Kalman Filter Evaluation Metrics (Last 30 Days):
## RMSE: 0.0164
## MAE: 0.0109
## R-squared: -0.017

The model achieves low error metrics (RMSE: 0.02, MAE: 0.01) but has a negative R² (-0.017), indicating it fails to explain the variance better than a simple mean model. The forecast (likely the smooth line) appears to track the general trend of the volatile price data (jagged line), though the widening confidence interval suggests increasing uncertainty in predictions over time. The Kalman Filter adapts to new data efficiently but struggles with the inherent noise in financial time series.

LMdata <- data[-1 , ]
LMdata$Logret <- SM_log_returns

3.6 Regression

Figure 15.1. Regression with LOG RETURNS

Figure 15.2. Regression with LOG RETURNS (Diagnostics)

## Linear Regression Evaluation Metrics:
## RMSE: 918.8477
## MAE: 915.5817
## R-squared: 0

3.7 ARIMA

Figure 15.1. ARIMA with LOG RETURNS

This graph shows the results of an ARIMA forecast applied to a time series of log returns. The black line represents historical log returns, which are characterized by high volatility, rapid fluctuations, and a mean-reverting tendency around zero. The blue line represents the out-of-sample forecast, while the shaded grey region indicates the confidence interval.

The forecast remains near zero, reflecting the stationary nature of the data and the ARIMA model’s assumption that future returns will behave similarly to past returns. The tight confidence intervals suggest limited deviation from the mean, though this may underestimate risk due to the large spikes and noise earlier in the series.

The model captures the broad structure of the data, but its predictive value should be interpreted cautiously. While ARIMA models are effective for modeling stationary time series, their ability to forecast financial returns is constrained by the random, non-linear nature of such data.

Figure 15.2. ARIMA with LOG RETURNS (Diagnostics)

## RMSE:  0.01640586
## MAE:  0.01088867
## R-squared:  -0.01038861

The ARIMA model shows low error values (RMSE: 0.0164, MAE: 0.0109), which is reasonable given the small scale of log returns. However, the R-squared value of -0.0104 suggests the model performs worse than a simple mean predictor, indicating that it does not explain meaningful variation in the data. This highlights the challenge of capturing patterns in volatile and noisy financial return series.

4 Stock Price Forecasting Conclusions

Table 2. Comparison of Model Results for Log-Returns

##                 Model     RMSE      MAE R_squared
## 1                 SMA   0.0205   0.0149    0.0884
## 2                 EMA   0.0219   0.0159   -0.0409
## 3                 SES   0.0163   0.0106    0.0000
## 4         Holt Method   0.0165   0.0109   -0.0220
## 5 Holt-Winters Method   0.0163   0.0110    0.0047
## 6       Kalman Filter   0.0164   0.0109   -0.0170
## 7          Regression 918.8477 915.5817    0.0000
## 8               ARIMA   0.0164   0.1099   -0.0104

The Simple Exponential Smoothing (SES) and Holt-Winters methods deliver the best overall results, with the lowest RMSE and MAE (SES: RMSE = 0.0163, MAE = 0.0106; Holt-Winters: RMSE = 0.0163, MAE = 0.0110). SES, despite a near-zero R-squared, is the most accurate due to its minimal error.

In contrast, the Simple Moving Average (SMA) and Exponential Moving Average (EMA) models show higher RMSE and MAE values, with EMA having a negative R-squared (-0.0409), indicating poor performance. The Regression model performs poorly, with extremely high error metrics (RMSE = 918.85, MAE = 915.58) and an R-squared of 0, highlighting its unsuitability for forecasting log returns.

The ARIMA, Holt, and Kalman Filter models are similar in performance to SES and Holt-Winters, but their low or negative R-squared values suggest limited explanatory power. In conclusion, SES stands out as the most reliable model, offering consistent and accurate forecasts, while Holt-Winters is a close second.

4.1 Analysis and Discussion

The comparative analysis reveals distinct patterns in how each model handles trends and noise in SM Investments Corporation’s stock data. SMA and EMA effectively smooth short-term volatility, with EMA (R²: 0.92) outperforming SMA (R²: 0.89) due to its responsiveness to recent data, though both lag during abrupt market shifts. SES excels in minimizing errors (lowest RMSE/MAE) but fails to explain variance (R²: 0), producing flat forecasts ideal for stable trends but inadequate for volatile markets. Holt’s method captures linear trends better than SES, yet its negative R² (-1.54) highlights oversimplification of complex price dynamics. The Holt-Winters model, while incorporating seasonality, struggles with financial data’s erratic nature (R²: -0.60), reflecting the challenge of modeling non-recurring shocks.

The Kalman Filter stands out for adaptive smoothing (R²: 0.78), dynamically adjusting to new data while reducing noise, though it lags during extreme events like the 2020 crash. Conversely, Regression and ARIMA models appear to underperform, with Regression’s linear assumptions (R²: 0.18) and ARIMA’s negative R² (-0.51) which shows their mismatch with nonlinear, volatile returns.

5 Appendices

Load Necessary Libraries

library(readxl)
library(tidyverse)
library(forecast)
library(TTR)
library(zoo)
library(dlm)
library(Metrics)
library(KFAS)
library(forecast)  
library(quantmod)
library(tseries)
library(timeSeries)
library(xts)
library(ggplot2)
library(urca)
library(plotly)
library(ggfortify)

Load Data and convert date

# Load Data
data <- read.csv("SM-historical-prices.csv")

# Convert date
data$Date <- as.Date(data$Date, format = "%m/%d/%y")

# Sort by date just in case
data <- data[order(data$Date), ]

Generate Simple Moving Average + Evaluation Metrics

data$SMA_10 <- SMA(data$Close, n = 10)

# Remove rows with NA values from SMA
eval_data <- data %>% filter(!is.na(SMA_10))

# Calculate evaluation metrics
rmse_val <- rmse(eval_data$Close, eval_data$SMA_10)
mae_val <- mae(eval_data$Close, eval_data$SMA_10)
r_squared <- 1 - sum((eval_data$Close - eval_data$SMA_10)^2) / 
                 sum((eval_data$Close - mean(eval_data$Close))^2)

# Print the results
cat("SMA Evaluation Metrics:\n")
## SMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 25.0938
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 17.8933
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.8925
# Plot the SMA vs actual
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "blue") +
  geom_line(aes(y = SMA_10), color = "red") +
  labs(title = "Simple Moving Average (10-day)",
       subtitle = paste("RMSE:", round(rmse_val, 2), 
                        "MAE:", round(mae_val, 2), 
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).

Generate Exponential Moving Average (EMA) + Evaluation Metrics

# Calculate 10-day Exponential Moving Average
data$EMA_10 <- EMA(data$Close, n = 10)

# Remove rows with NA values
eval_data <- data %>% filter(!is.na(EMA_10))

# Compute evaluation metrics
rmse_val <- rmse(eval_data$Close, eval_data$EMA_10)
mae_val <- mae(eval_data$Close, eval_data$EMA_10)
r_squared <- 1 - sum((eval_data$Close - eval_data$EMA_10)^2) /
                 sum((eval_data$Close - mean(eval_data$Close))^2)

# Print results
cat("EMA Evaluation Metrics:\n")
## EMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 21.1418
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 15.0074
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.9237
# Plot the EMA vs actual
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "blue") +
  geom_line(aes(y = EMA_10), color = "green") +
  labs(title = "Exponential Moving Average (10-day)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).

Generate Simple Exponential Smoothing (SES) + Evaluation Metrics

# Set forecast horizon (e.g., last 30 days as test set)
h <- 30
n <- nrow(data)

# Training and test sets
train <- ts(data$Close[1:(n - h)])
test <- data$Close[(n - h + 1):n]

# Fit SES model and forecast
ses_model <- ses(train, h = h)
forecast_vals <- as.numeric(ses_model$mean)

# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)

# Print results
cat("SES Evaluation Metrics:\n")
## SES Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 47.0655
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 34.7557
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -1.1963
# Convert test set into a time series (match start time and frequency)
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))

# Plot forecast and actual values
autoplot(ses_model) +
  autolayer(test_ts, series = "Actual", color = "blue") +
  labs(title = "Simple Exponential Smoothing Forecast (30 days)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Generate Holt Method + Evaluation Metrics

# Forecast horizon (30 days)
h <- 30
n <- nrow(data)

# Split data
train <- ts(data$Close[1:(n - h)])
test <- data$Close[(n - h + 1):n]

# Fit Holt model
holt_model <- holt(train, h = h)

# Extract forecasted values
forecast_vals <- as.numeric(holt_model$mean)

# Calculate evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)

# Print metrics
cat("Holt Method Evaluation Metrics:\n")
## Holt Method Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 50.6396
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 38.2514
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -1.5426
# Convert test set to ts object for plotting
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))

# Plot forecast vs actual
autoplot(holt_model) +
  autolayer(test_ts, series = "Actual", color = "blue") +
  labs(title = "Holt's Linear Trend Forecast (30 Days)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Generate Holt Winters + Evaluation Metrics

# Set weekly frequency (assuming daily data, 5 trading days/week)
data_ts <- ts(data$Close, frequency = 5)

# Forecast horizon
h <- 30
n <- length(data_ts)

# Split into training and test sets
train <- window(data_ts, end = c(floor((n - h) / 5), (n - h) %% 5 + 1))
test <- window(data_ts, start = c(floor((n - h) / 5) + 1, ((n - h) %% 5 + 1)))

# Fit Holt-Winters model (additive seasonality)
hw_model <- hw(train, seasonal = "additive", h = h)

# Extract forecasts
forecast_vals <- as.numeric(hw_model$mean)

# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)

# Print metrics
cat("Holt-Winters Evaluation Metrics:\n")
## Holt-Winters Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 40.2161
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 27.1371
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.6036
# Plot
autoplot(hw_model) +
  autolayer(test, series = "Actual", color = "blue") +
  labs(title = "Holt-Winters Forecast (30 Days, Weekly Seasonality)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Generate Kalman Filter Smoothed Close Prices

# Define a state space model with local level (random walk) trend
model_kf <- SSModel(data$Close ~ SSMtrend(degree = 1, Q = NA), H = NA)

# Estimate the model parameters
fit_kf <- fitSSM(model_kf, inits = c(0.1, 0.1))

# Get the smoothed values
kf_smoothed <- KFS(fit_kf$model)

# Add the Kalman smoothed estimates to the data
data$Kalman <- kf_smoothed$a[1:nrow(data), 1]

# Plot
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "gray") +
  geom_line(aes(y = Kalman), color = "purple") +
  labs(title = "Kalman Filter Smoothed Close Prices")

Generate Kalman Filter + Evaluation Metrics

# Forecast horizon
h <- 30
n <- nrow(data)

# Define test set (last 30 days of actual vs smoothed values)
actual <- data$Close[(n - h + 1):n]
predicted <- data$Kalman[(n - h + 1):n]

# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- 1 - sum((actual - predicted)^2) / sum((actual - mean(actual))^2)

# Print metrics
cat("Kalman Filter Evaluation Metrics (Last 30 Days):\n")
## Kalman Filter Evaluation Metrics (Last 30 Days):
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 14.777
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 9.8251
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.7835
# Plot actual vs smoothed for just the last 30 days
library(ggplot2)
kalman_eval_df <- data.frame(
  Date = data$Date[(n - h + 1):n],
  Actual = actual,
  Smoothed = predicted
)

ggplot(kalman_eval_df, aes(x = Date)) +
  geom_line(aes(y = Actual), color = "gray", linewidth = 1.1) +
  geom_line(aes(y = Smoothed), color = "purple", linewidth = 1.1) +
  labs(title = "Kalman Filter Evaluation (Last 30 Days)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Generate Linear Regression of Close Prices

data$Index <- 1:nrow(data)
lm_model <- lm(Close ~ Index, data = data)
data$Pred_LM <- predict(lm_model)

ggplot(data, aes(x = Index, y = Close)) +
  geom_line(color = "blue") +
  geom_line(aes(y = Pred_LM), color = "orange") +
  labs(title = "Linear Regression on Close Prices")

Generate Linear Regression Evaluation Metrics

# Actual and predicted values
actual <- data$Close
predicted <- data$Pred_LM

# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- summary(lm_model)$r.squared

# Print results
cat("Linear Regression Evaluation Metrics:\n")
## Linear Regression Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 70.03
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 57.9599
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.1827

Generate ARIMA Forecast

auto_fit <- auto.arima(data$Close)
forecast_arima <- forecast(auto_fit, h = 30)
autoplot(forecast_arima) + labs(title = "ARIMA Forecast")

Generate ARIMA diagnostics

# Fit the ARIMA model
auto_fit <- auto.arima(data$Close)

# Generate forecasts for the next 30 periods
forecast_arima <- forecast(auto_fit, h = 30)

# Assuming you have a test set (actual values for comparison)
# Replace 'actual_test_values' with the actual values for the test period
actual_test_values <- data$Close[(length(data$Close)-29):length(data$Close)]

# Get the predicted values from the forecast
predicted_values <- forecast_arima$mean

# RMSE (Root Mean Squared Error)
rmse <- sqrt(mean((predicted_values - actual_test_values)^2))

# MAE (Mean Absolute Error)
mae <- mean(abs(predicted_values - actual_test_values))

# R-squared (Coefficient of Determination)
sst <- sum((actual_test_values - mean(actual_test_values))^2)  # Total Sum of Squares
sse <- sum((predicted_values - actual_test_values)^2)  # Sum of Squares due to Error
rsq <- 1 - (sse / sst)

# Print the evaluation metrics
cat("RMSE: ", rmse, "\n")
## RMSE:  39.07064
cat("MAE: ", mae, "\n")
## MAE:  36.26935
cat("R-squared: ", rsq, "\n")
## R-squared:  -0.5135253

Generate Table for the Results of each model

library(knitr)

results <- data.frame(
  Model = c("SMA", "EMA", "SES", "Holt Method", "Holt-Winters Method", "Kalman Filter", "Regression", "ARIMA"),
  RMSE = c(25.0938, 21.1418, 47.0655, 50.6396, 40.2161, 14.7770, 70.0300, 39.0706),
  MAE = c(17.8933, 15.0074, 34.7557, 38.2514, 27.1371, 9.8251, 57.9599, 36.2694),
  R_squared = c(0.8925, 0.9237, -1.1963, -1.5426, -0.6036, 0.7835, 0.1827, -0.5135)
)

[BONUS APPENDICES]

Extract SM Daily Log Returns

# Extract Closing Prices
SM_closing <- Cl(data)

# Compute Log Returns
SM_log_returns <- diff(log(SM_closing))

# Remove NA Values (First row will be NA)
SM_log_returns <- na.omit(SM_log_returns)

SM_log_returns[is.na(SM_log_returns)] <- 0

View(SM_log_returns)

Generate Simple Moving Average

SM_SMA <- SMA(SM_log_returns, n = 10)
SM_SMA <- na.omit(SM_SMA)
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "blue") +
  geom_line(aes(y = SMA_10), color = "red") +
  labs(title = "Simple Moving Average (10-day)")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).

Generate Simple Moving Average + Evaluation Metrics

# Remove rows with NA values from SMA
eval_data <- data %>% filter(!is.na(SMA_10))

# Calculate evaluation metrics
rmse_val <- rmse(SM_log_returns, SM_SMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
mae_val <- mae(SM_log_returns, SM_SMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
r_squared <- 1 - sum((SM_log_returns - SM_SMA)^2) / 
                 sum((SM_log_returns - mean(SM_SMA))^2)
## Warning in SM_log_returns - SM_SMA: longer object length is not a multiple of
## shorter object length
# Print the results
cat("SMA Evaluation Metrics:\n")
## SMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0205
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0149
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.0884
# Plot the SMA vs actual
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "blue") +
  geom_line(aes(y = SMA_10), color = "red") +
  labs(title = "Simple Moving Average (10-day)",
       subtitle = paste("RMSE:", round(rmse_val, 2), 
                        "MAE:", round(mae_val, 2), 
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).

Generate Exponential Moving Average Diagnostics + Evaluation Metrics

# Calculate 10-day Exponential Moving Average
SM_EMA <- EMA(SM_log_returns, n = 10)
SM_EMA <- na.omit(SM_EMA)

# Compute evaluation metrics
rmse_val <- rmse(SM_log_returns, SM_EMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
mae_val <- mae(SM_log_returns, SM_EMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
r_squared <- 1 - sum((SM_log_returns - SM_EMA)^2) /
                 sum((SM_log_returns - mean(SM_EMA))^2)
## Warning in SM_log_returns - SM_EMA: longer object length is not a multiple of
## shorter object length
# Print results
cat("EMA Evaluation Metrics:\n")
## EMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0219
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0159
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.0409
# Plot the EMA vs actual
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "blue") +
  geom_line(aes(y = EMA_10), color = "green") +
  labs(title = "Exponential Moving Average (10-day)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).

Generate Simple Exponential Smoothing Forecast

SM_SES <- ses(ts(SM_log_returns), h = 30)
SM_SES <- na.omit(SM_SES)
autoplot(SM_SES) + labs(title = "Simple Exponential Smoothing Forecast")

**Generate Simple Exponential Smoothing (SES) + Evaluation Metrics)

# Set forecast horizon (e.g., last 30 days as test set)
h <- 30
n <- nrow(data)

# Training and test sets
train <- ts(SM_log_returns[1:(n - h)])
train <- na.omit(train)
train[is.na(train)] <- 0

test <- SM_log_returns[(n - h + 1):n]
train <- na.omit(test)
test[is.na(test)] <- 0

# Fit SES model and forecast
SM_SES <- ses(train, h = h)
forecast_vals <- as.numeric(SM_SES$mean)
forecast_vals <- na.omit(forecast_vals)

# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
rmse_val
## [1] 0.01629634
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)

# Print results
cat("SES Evaluation Metrics:\n")
## SES Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0163
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0106
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0
# Convert test set into a time series (match start time and frequency)
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))

# Plot forecast and actual values
autoplot(ses_model) +
  autolayer(test_ts, series = "Actual", color = "blue") +
  labs(title = "Simple Exponential Smoothing Forecast (30 days)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Generate Holt’s Linear Trend Forecast + Evaluation Metrics

h <- 30
n <- nrow(data)

train <- ts(SM_log_returns[1:(n - h)])
train <- na.omit(train)
train[is.na(train)] <- 0

test <- SM_log_returns[(n - h + 1):n]
train <- na.omit(test)
test[is.na(test)] <- 0

holt_model <- holt(train, h = h)

forecast_vals <- as.numeric(holt_model$mean)

rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)

cat("Holt Method Evaluation Metrics:\n")
## Holt Method Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0165
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0109
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.022
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))

autoplot(holt_model) +
  autolayer(test_ts, series = "Actual", color = "blue") +
  labs(title = "Holt's Linear Trend Forecast (30 Days)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Generate Holt Linear Trend Forecast

SM_holt <- holt(ts(data$Close), h = 30)
autoplot(holt_model) + labs(title = "Holt's Linear Trend Forecast")

Generate Holt-Winters Forecast

# Convert the closing prices into a time series with weekly seasonality (5 trading days per week)
ts_close <- ts(SM_log_returns, frequency = 5)

# Apply Holt-Winters method with additive seasonality
hw_model <- hw(ts_close, seasonal = "additive", h = 30)

# Plot the forecast
autoplot(hw_model) +
  labs(title = "Holt-Winters Forecast (Additive, Weekly Seasonality)",
       y = "Stock Price", x = "Time")

Generate Holt-Winters Forecast + Evaluation Metrics

# Set weekly frequency (assuming daily data, 5 trading days/week)
data_ts <- ts(SM_log_returns, frequency = 5)

# Forecast horizon
h <- 30
n <- length(data_ts)

# Split into training and test sets
train <- window(data_ts, end = c(floor((n - h) / 5), (n - h) %% 5 + 1))
test <- window(data_ts, start = c(floor((n - h) / 5) + 1, ((n - h) %% 5 + 1)))

# Fit Holt-Winters model (additive seasonality)
hw_model <- hw(train, seasonal = "additive", h = h)

# Extract forecasts
forecast_vals <- as.numeric(hw_model$mean)

# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)

# Print metrics
cat("Holt-Winters Evaluation Metrics:\n")
## Holt-Winters Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0163
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.011
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.0047
# Plot
autoplot(hw_model) +
  autolayer(test, series = "Actual", color = "blue") +
  labs(title = "Holt-Winters Forecast (30 Days, Weekly Seasonality)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Generate Kalman Filter Smoothed Close Prices

# Define a state space model with local level (random walk) trend
model_kf <- SSModel(data$Close ~ SSMtrend(degree = 1, Q = NA), H = NA)

# Estimate the model parameters
fit_kf <- fitSSM(model_kf, inits = c(0.1, 0.1))

# Get the smoothed values
kf_smoothed <- KFS(fit_kf$model)

# Add the Kalman smoothed estimates to the data
data$Kalman <- kf_smoothed$a[1:nrow(data), 1]

# Plot
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "gray") +
  geom_line(aes(y = Kalman), color = "purple") +
  labs(title = "Kalman Filter Smoothed Close Prices")

**Generate Kalman Filter Forecasting Stock Prices**

``` r
# Define a state space model with local level (random walk) trend
model_kf <- SSModel(SM_log_returns~ SSMtrend(degree = 1, Q = NA), H = NA)

# Estimate the model parameters
fit_kf <- fitSSM(model_kf, inits = c(0.1, 0.1))

# Get the smoothed values
kf_smoothed <- KFS(fit_kf$model)

# Add the Kalman smoothed estimates to the data
SM_Kalman <- kf_smoothed$a[1:nrow(data), 1]

# Plot
ggplot(data, aes(x = Date)) +
  geom_line(aes(y = Close), color = "gray") +
  geom_line(aes(y = Kalman), color = "purple") +
  labs(title = "Kalman Filter Smoothed Close Prices")

Generate Kalman Filter Evaluation + Evaluation Metrics

# Forecast horizon
h <- 30
n <- nrow(data)

# Define test set (last 30 days of actual vs smoothed values)
actual <- SM_log_returns[(n - h + 1):n]
actual[is.na(actual)] <- 0

predicted <- SM_Kalman[(n - h + 1):n]
actual[is.na(actual)] <- 0

# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- 1 - sum((actual - predicted)^2) / sum((actual - mean(actual))^2)

# Print metrics
cat("Kalman Filter Evaluation Metrics (Last 30 Days):\n")
## Kalman Filter Evaluation Metrics (Last 30 Days):
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0164
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0109
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.017
# Plot actual vs smoothed for just the last 30 days
library(ggplot2)
kalman_eval_df <- data.frame(
  Date = data$Date[(n - h + 1):n],
  Actual = actual,
  Smoothed = predicted
)

ggplot(kalman_eval_df, aes(x = Date)) +
  geom_line(aes(y = Actual), color = "gray", linewidth = 1.1) +
  geom_line(aes(y = Smoothed), color = "purple", linewidth = 1.1) +
  labs(title = "Kalman Filter Evaluation (Last 30 Days)",
       subtitle = paste("RMSE:", round(rmse_val, 2),
                        "MAE:", round(mae_val, 2),
                        "R²:", round(r_squared, 4)),
       y = "Stock Price")

Consolidate Log returns and data

LMdata <- data[-1 , ]
LMdata
##           Date   Open   High    Low  Close   Volume  SMA_10    EMA_10    Kalman
## 975 2020-01-03 1040.0 1069.0 1019.0 1051.0   207525      NA        NA 1039.0000
## 974 2020-01-06 1037.0 1048.0 1025.0 1040.0   121650      NA        NA 1048.4621
## 973 2020-01-07 1040.0 1078.0 1040.0 1067.0   225720      NA        NA 1041.8734
## 972 2020-01-08 1064.0 1064.0 1042.0 1055.0   183430      NA        NA 1061.4250
## 971 2020-01-09 1057.0 1072.0 1054.0 1072.0   182035      NA        NA 1056.4257
## 970 2020-01-10 1067.0 1080.0 1060.0 1079.0  1053270      NA        NA 1068.5440
## 969 2020-01-14 1074.0 1077.0 1046.0 1077.0   478250      NA        NA 1076.6798
## 968 2020-01-15 1076.0 1076.0 1056.0 1060.0   119465      NA        NA 1076.9289
## 967 2020-01-16 1058.0 1062.0 1038.0 1050.0   391965 1059.00 1059.0000 1063.7566
## 966 2020-01-17 1069.0 1069.0 1040.0 1055.0   212700 1060.60 1058.2727 1053.0526
## 965 2020-01-20 1062.0 1062.0 1012.0 1030.0   219330 1058.50 1053.1322 1054.5679
## 964 2020-01-21 1030.0 1045.0 1021.0 1026.0  1143945 1057.10 1048.1991 1035.4517
## 963 2020-01-22 1049.0 1049.0 1011.0 1025.0   172795 1052.90 1043.9811 1028.0974
## 962 2020-01-23 1054.0 1059.0 1031.0 1050.0   217420 1052.40 1045.0754 1025.6873
## 961 2020-01-24 1046.0 1049.0 1025.0 1032.0   396510 1048.40 1042.6981 1044.6049
## 960 2020-01-27 1036.0 1045.0 1025.0 1025.0    82615 1043.00 1039.4802 1034.7971
## 959 2020-01-28 1025.0 1025.0 1012.0 1015.0   214510 1036.80 1035.0293 1027.1740
## 958 2020-01-29 1015.0 1017.0 1010.0 1013.0   191825 1032.10 1031.0240 1017.7015
## 957 2020-01-30 1020.0 1020.0  995.0  995.0   311885 1026.60 1024.4742 1014.0433
## 956 2020-01-31 1000.0 1017.0  961.0  971.0   340060 1018.20 1014.7516  999.2258
## 955 2020-02-03  971.0  983.5  955.5  974.5   127450 1012.65 1007.4331  977.2634
## 954 2020-02-04  975.0  989.5  974.5  983.5   936380 1008.40 1003.0816  975.1132
## 953 2020-02-05  990.0 1010.0  990.0 1000.0  1131350 1005.90 1002.5213  981.6389
## 952 2020-02-06 1000.0 1014.0  996.0 1000.0  1339330 1000.90 1002.0629  995.9256
## 951 2020-02-07 1000.0 1004.0  998.5 1000.0   121415  997.70 1001.6878  999.0959
## 950 2020-02-10 1003.0 1010.0 1000.0 1000.0   715495  995.20 1001.3810  999.7994
## 949 2020-02-11 1000.0 1001.0  990.0 1000.0   165480  993.70 1001.1299  999.9555
## 948 2020-02-12 1000.0 1005.0  996.0 1002.0   126935  992.60 1001.2881  999.9901
## 947 2020-02-13 1004.0 1010.0  995.5 1010.0    91985  994.10 1002.8721 1001.5540
## 946 2020-02-14 1008.0 1010.0  992.0  992.0   569085  996.20 1000.8953 1008.1258
## 945 2020-02-17  992.0 1020.0  990.0 1015.0   787660 1000.25 1003.4598  995.5784
## 944 2020-02-18 1018.0 1024.0 1007.0 1012.0   147195 1003.10 1005.0126 1010.6903
## 943 2020-02-19 1018.0 1038.0 1014.0 1038.0  1205185 1006.90 1011.0103 1011.7094
## 942 2020-02-20 1054.0 1059.0 1032.0 1032.0   185325 1010.10 1014.8266 1032.1660
## 941 2020-02-21 1034.0 1045.0 1016.0 1038.0   178005 1013.90 1019.0399 1032.0368
## 940 2020-02-24 1015.0 1028.0 1002.0 1010.0   198520 1014.90 1017.3963 1036.6768
## 939 2020-02-26 1000.0 1000.0  978.0  985.0   719395 1013.40 1011.5061 1015.9197
## 938 2020-02-27  970.5  987.0  969.5  987.0   219920 1011.90 1007.0504  991.8612
## 937 2020-02-28  972.0  981.5  960.0  974.5   482350 1008.35 1001.1322  988.0787
## 936 2020-03-02  965.0  989.5  950.0  960.0   511230 1005.15  993.6536  977.5132
## 935 2020-03-03  967.0  986.0  956.5  961.0   354970  999.75  987.7166  963.8862
## 934 2020-03-04  960.0  977.0  921.0  945.0   447420  993.05  979.9499  961.6405
## 933 2020-03-05  954.5  972.0  948.5  950.0   531700  984.25  974.5045  948.6926
## 932 2020-03-06  963.0  963.0  936.0  943.0   288050  975.35  968.7764  949.7099
## 931 2020-03-09  910.0  910.5  895.0  902.5   394060  961.80  956.7261  944.4889
## 930 2020-03-10  886.0  919.0  862.0  900.0   413920  950.80  946.4123  911.8175
## 929 2020-03-11  905.0  940.0  890.5  900.0   946440  942.30  937.9737  902.6223
## 928 2020-03-12  880.0  880.0  770.0  790.0   671990  922.60  911.0694  900.5819
## 927 2020-03-13  725.0  847.5  685.0  831.5  1530940  908.30  896.6022  814.5385
## 926 2020-03-16  750.0  800.0  735.0  735.0   653420  885.80  867.2200  827.7362
## 925 2020-03-19  600.0  698.0  509.5  667.0  1600610  856.40  830.8164  755.5785
## 924 2020-03-20  700.0  740.0  689.5  721.5  1030380  834.05  810.9407  686.6559
## 923 2020-03-23  670.0  748.0  670.0  746.0   431110  813.65  799.1333  713.7680
## 922 2020-03-24  760.0  765.0  730.0  747.5   390880  794.10  789.7454  738.8476
## 921 2020-03-25  762.0  800.0  753.5  800.0   477820  783.85  791.6099  745.5800
## 920 2020-03-26  800.0  845.0  761.0  845.0   780850  778.35  801.3172  787.9240
## 919 2020-03-27  846.0  870.0  802.0  805.0   667120  768.85  801.9868  832.3346
## 918 2020-03-30  800.0  805.5  751.0  770.0   412060  766.85  796.1710  811.0657
## 917 2020-03-31  785.0  820.0  785.0  818.0   550010  765.50  800.1399  779.1126
## 916 2020-04-01  811.0  830.0  801.0  826.0   454990  774.60  804.8417  809.3707
## 915 2020-04-02  800.0  820.0  795.5  820.0   256030  789.90  807.5978  822.3099
## 914 2020-04-03  823.0  833.0  817.5  825.0   196500  800.25  810.7618  820.5126
## 913 2020-04-06  827.5  850.0  804.0  850.0   371730  810.65  817.8960  824.0042
## 912 2020-04-07  875.0  878.0  860.5  878.0   333100  823.70  828.8240  844.2314
## 911 2020-04-08  865.0  878.0  851.0  870.0   450970  830.70  836.3106  870.5066
## 910 2020-04-13  869.0  876.5  843.5  870.0   206530  833.20  842.4359  870.1124
## 909 2020-04-14  877.5  884.0  851.5  868.0   253750  839.50  847.0839  870.0249
## 908 2020-04-15  868.0  868.0  855.0  862.0   661890  848.70  849.7959  868.4493
## 907 2020-04-16  850.0  850.0  820.0  820.0   560260  848.90  844.3785  863.4311
## 906 2020-04-17  849.0  860.0  830.0  860.0   380280  852.30  847.2188  829.6375
## 905 2020-04-20  858.0  863.0  845.0  845.0   324090  854.80  846.8154  853.2625
## 904 2020-04-21  844.5  855.0  818.0  839.0   212370  856.20  845.3944  846.8335
## 903 2020-04-22  817.0  825.0  808.0  818.0   233300  853.00  840.4136  840.7383
## 902 2020-04-23  828.0  850.0  818.5  845.0   358220  849.70  841.2475  823.0457
## 901 2020-04-24  840.0  840.0  810.0  814.0   247630  844.10  836.2934  840.1283
## 900 2020-04-27  818.0  818.0  780.0  780.0   356720  835.10  826.0582  819.7980
## 899 2020-04-28  782.0  820.0  782.0  819.0   250110  830.20  824.7749  788.8313
## 898 2020-04-29  820.0  843.0  805.0  831.0   115960  827.10  825.9068  812.3055
## 897 2020-04-30  843.0  846.0  834.5  845.0   242720  829.60  829.3783  826.8516
## 896 2020-05-04  822.0  822.5  796.0  822.0   170040  825.80  828.0368  840.9728
## 895 2020-05-05  820.5  835.0  820.5  830.0   197760  824.30  828.3937  826.2101
## 894 2020-05-06  830.0  840.0  821.5  832.0   295510  823.60  829.0494  829.1590
## 893 2020-05-07  839.0  839.0  822.0  826.5   161030  824.45  828.5859  831.3696
## 892 2020-05-08  828.0  838.0  802.0  804.0   499150  820.35  824.1157  827.5806
## 891 2020-05-11  806.0  815.0  801.5  808.0   154310  819.75  821.1856  809.2326
## 890 2020-05-12  808.0  819.5  800.0  817.0   123310  823.45  820.4246  808.2735
## 889 2020-05-13  815.0  826.0  814.0  826.0    72280  824.15  821.4383  815.0636
## 888 2020-05-14  824.0  824.0  802.0  810.0   238870  822.05  819.3586  823.5732
## 887 2020-05-15  820.0  820.0  800.0  801.5   246850  817.70  816.1116  813.0119
## 886 2020-05-18  807.0  809.5  798.0  803.0   181720  815.80  813.7277  804.0545
## 885 2020-05-19  812.0  816.0  805.0  810.0   135710  813.80  813.0499  803.2340
## 884 2020-05-20  813.0  820.0  800.5  820.0   114140  812.60  814.3136  808.4986
## 883 2020-05-21  820.0  838.5  816.0  835.0   246180  813.45  818.0747  817.4478
## 882 2020-05-22  829.5  834.0  818.0  828.0   313950  815.85  819.8793  831.1051
## 881 2020-05-26  820.0  838.0  805.0  838.0   241460  818.85  823.1740  828.6890
## 880 2020-05-27  835.0  837.0  812.5  837.0   730300  820.85  825.6878  835.9339
## 879 2020-05-28  837.0  848.5  830.5  836.0   207940  821.85  827.5628  836.7634
## 878 2020-05-29  837.0  915.0  835.0  915.0  1216260  832.35  843.4604  836.1694
## 877 2020-06-01  890.0  927.5  860.0  920.0   681840  844.20  857.3767  897.5072
## 876 2020-06-02  920.0  954.0  911.5  946.0  1475830  858.50  873.4900  915.0088
## 875 2020-06-03  954.0  960.0  935.5  945.0   512470  872.00  886.4919  939.1229
## 874 2020-06-04  940.5  997.0  940.5  997.0   694010  889.70  906.5842  943.6959
## 873 2020-06-05  967.5  986.0  951.5  967.5   435380  902.95  917.6598  985.1716
## 872 2020-06-08  965.5  967.5  941.5  950.0   210910  915.15  923.5399  971.4214
## 871 2020-06-09  949.0  959.5  938.0  950.0   357250  926.35  928.3508  954.7535
## 870 2020-06-10  945.0  945.0  905.0  935.0  1418950  936.15  929.5597  951.0548
## 869 2020-06-11  930.0  951.0  911.0  951.0   198000  947.65  933.4580  938.5626
## 868 2020-06-15  950.0  950.0  915.0  915.0   325950  947.65  930.1020  948.2401
## 867 2020-06-16  921.0  940.0  916.0  940.0   126940  949.65  931.9016  922.3761
## 866 2020-06-17  961.0  969.0  926.0  956.0   176070  950.65  936.2831  936.0892
## 865 2020-06-18  931.0  963.0  925.0  963.0  1154530  952.45  941.1408  951.5817
## 864 2020-06-19  934.0  964.5  930.0  949.0   677230  947.65  942.5697  960.4662
## 863 2020-06-22  945.5  960.0  921.5  960.0   188850  946.90  945.7389  951.5444
## 862 2020-06-23  949.0  949.0  935.0  935.0   398130  945.40  943.7863  958.1237
## 861 2020-06-24  940.0  940.0  931.0  937.0   150740  944.10  942.5525  940.1312
## 860 2020-06-25  930.0  943.0  916.0  930.0   179100  943.60  940.2702  937.6948
## 859 2020-06-26  921.5  939.0  916.5  938.5   351170  942.35  939.9483  931.7075
## 858 2020-06-29  930.0  934.5  906.0  915.0   190290  942.35  935.4123  936.9927
## 857 2020-06-30  928.0  940.0  917.0  939.0   254010  942.25  936.0646  919.8803
## 856 2020-07-01  938.5  938.5  920.0  920.0  1115360  938.65  933.1438  934.7573
## 855 2020-07-02  921.0  952.0  908.0  950.0   922710  937.35  936.2085  923.2747
## 854 2020-07-03  945.0  951.0  930.0  950.0  1171300  937.45  938.7161  944.0696
## 853 2020-07-06  952.0  952.5  931.5  940.0   268730  935.45  938.9495  948.6840
## 852 2020-07-07  948.5  956.5  940.0  949.0   370100  936.85  940.7769  941.9270
## 851 2020-07-08  945.0  975.5  940.0  975.5   180680  940.70  947.0902  947.4305
## 850 2020-07-09  965.0  965.0  943.5  945.0   649600  942.20  946.7101  969.2713
## 849 2020-07-10  916.0  940.0  900.0  940.0   337280  942.35  945.4901  950.3859
## 848 2020-07-13  939.0  940.0  925.0  940.0   136080  944.85  944.4919  942.3047
## 847 2020-07-14  928.0  938.5  925.0  935.0   438560  944.45  942.7661  940.5114
## 846 2020-07-15  938.0  938.0  910.0  911.0   521960  943.55  936.9905  936.2230
## 845 2020-07-16  916.0  945.5  916.0  933.0   167230  941.85  936.2649  916.5971
## 844 2020-07-17  922.0  943.0  918.0  920.0   610350  938.85  933.3077  929.3601
## 843 2020-07-20  940.0  940.0  910.5  940.0   113270  938.85  934.5244  922.0770
## 842 2020-07-21  922.0  940.0  922.0  925.0   245300  936.45  932.7927  936.0228
## 841 2020-07-22  925.0  940.0  915.0  915.0   193670  930.40  929.5577  927.4460
## 840 2020-07-23  916.5  925.0  875.5  900.0   419490  925.90  924.1836  917.7618
## 839 2020-07-24  896.0  910.5  896.0  900.5   147410  921.95  919.8775  903.9414
## 838 2020-07-27  900.0  900.0  865.5  884.0   271930  916.35  913.3543  901.2637
## 837 2020-07-28  884.0  910.0  856.5  900.0   589260  912.85  910.9262  887.8309
## 836 2020-07-29  905.0  907.5  870.0  900.0   445190  911.75  908.9396  897.2996
## 835 2020-07-30  900.0  900.0  885.0  890.0   400020  907.45  905.4961  899.4008
## 834 2020-08-03  870.0  870.0  840.0  860.0   665150  901.45  897.2241  892.0861
## 833 2020-08-04  850.0  873.0  847.0  865.0   464270  893.95  891.3651  867.1200
## 832 2020-08-05  880.0  888.0  866.0  870.0   451400  888.45  887.4806  865.4704
## 831 2020-08-06  870.0  878.0  851.0  878.0  1982200  884.75  885.7568  868.9949
## 830 2020-08-07  876.5  876.5  846.0  850.5   699770  879.80  879.3465  876.0017
## 829 2020-08-10  850.5  865.0  835.0  862.0   227790  875.95  876.1926  856.1589
## 828 2020-08-11  859.5  874.0  852.5  858.0   450930  873.35  872.8848  860.7038
## 827 2020-08-12  865.0  870.0  860.5  870.0 15425670  870.35  872.3603  858.6000
## 826 2020-08-13  872.0  897.0  872.0  897.0   627680  870.05  876.8403  867.4703
## 825 2020-08-14  881.5  900.0  874.5  900.0  1187090  871.05  881.0511  890.4472
## 824 2020-08-17  900.0  905.0  875.0  880.0   386070  873.05  880.8600  897.8802
## 823 2020-08-18  896.0  915.0  880.5  910.0   812280  877.55  886.1582  883.9677
## 822 2020-08-19  918.0  920.0  898.0  900.0   609550  880.55  888.6749  904.2233
## 821 2020-08-20  900.5  907.0  881.0  900.0   614140  882.75  890.7340  900.9372
## 820 2020-08-24  890.0  890.0  872.0  883.0   618730  886.00  889.3278  900.2080
## 819 2020-08-25  883.0  889.0  877.0  881.0   647110  887.90  887.8137  886.8185
## 818 2020-08-26  877.0  887.5  869.5  887.0   720420  890.80  887.6657  882.2911
## 817 2020-08-27  887.0  887.0  872.0  873.0 15279810  891.10  884.9992  885.9551
## 816 2020-08-28  870.0  879.5  847.0  850.0  1338910  886.40  878.6357  875.8748
## 815 2020-09-01  853.0  885.0  837.0  837.0  1317270  880.10  871.0656  855.7417
## 814 2020-09-02  841.0  855.0  831.0  840.5   819440  876.15  865.5082  841.1589
## 813 2020-09-03  841.0  847.0  831.0  836.5   201400  868.80  860.2340  840.6462
## 812 2020-09-04  835.5  846.0  810.0  846.0   945000  863.40  857.6460  837.4201
## 811 2020-09-07  845.0  894.0  830.5  894.0   163450  862.80  864.2558  844.0961
## 810 2020-09-08  871.0  908.0  871.0  908.0   271890  865.30  872.2093  882.9261
## 809 2020-09-09  890.0  902.5  885.0  887.0   817180  865.90  874.8985  902.4360
## 808 2020-09-10  887.0  899.0  864.0  880.0  1795700  865.20  875.8261  890.4253
## 807 2020-09-11  880.0  905.0  872.0  905.0   278910  868.40  881.1304  882.3134
## 806 2020-09-14  900.0  919.5  890.5  915.0   460830  874.90  887.2885  899.9658
## 805 2020-09-15  910.5  937.0  900.0  937.0   339660  884.90  896.3270  911.6638
## 804 2020-09-16  922.0  927.0  910.0  910.0   604070  891.85  898.8130  931.3778
## 803 2020-09-17  910.0  915.0  893.0  905.0   223100  898.70  899.9379  914.7438
## 802 2020-09-18  905.0  914.0  872.0  872.0  1149150  901.30  894.8583  907.1622
## 801 2020-09-21  880.0  889.0  865.5  879.5    88180  899.85  892.0659  879.8026
## 800 2020-09-22  875.0  887.0  860.0  887.0   113230  897.75  891.1448  879.5672
## 799 2020-09-23  888.0  888.0  876.0  885.0   770470  897.55  890.0276  885.3506
## 798 2020-09-24  884.5  884.5  865.0  872.0   195270  896.75  886.7498  885.0778
## 797 2020-09-25  872.0  881.0  865.0  869.0   155450  893.15  883.5226  874.9020
## 796 2020-09-28  881.0  895.0  869.0  895.0    74000  891.15  885.6094  870.3097
## 795 2020-09-29  890.0  890.0  876.0  880.0   101010  885.45  884.5895  889.5211
## 794 2020-09-30  894.0  894.0  866.5  880.0   312410  882.45  883.7550  882.1128
## 793 2020-10-01  886.0  890.0  872.0  890.0    58210  880.95  884.8905  880.4688
## 792 2020-10-02  890.0  891.0  877.5  886.0   132120  882.35  885.0922  887.8850
## 791 2020-10-05  888.5  898.0  875.0  875.0    64370  881.90  883.2573  886.4183
## 790 2020-10-06  875.0  885.0  870.0  871.5    86180  880.35  881.1196  877.5338
## 789 2020-10-07  879.0  879.0  861.0  865.0   125870  878.35  878.1888  872.8389
## 788 2020-10-08  865.0  888.0  850.0  888.0 15185420  879.95  879.9726  866.7395
## 787 2020-10-09  887.0  899.5  887.0  899.5   157650  883.00  883.5230  883.2822
## 786 2020-10-12  899.5  903.0  894.5  900.0    72620  883.50  886.5189  895.9012
## 785 2020-10-13  900.0  900.0  884.0  884.0   140500  883.90  886.0609  899.0905
## 784 2020-10-14  884.0  890.0  864.0  864.0   213680  882.30  882.0498  887.3486
## 783 2020-10-15  864.5  880.0  864.5  874.0   104460  880.70  880.5862  869.1811
## 782 2020-10-16  865.0  875.0  864.0  864.0    85410  878.50  877.5705  872.9307
## 781 2020-10-19  866.0  894.0  866.0  894.0   208470  880.40  880.5577  865.9818
## 780 2020-10-20  893.0  917.0  891.5  910.0   303540  884.25  885.9109  887.7826
## 779 2020-10-21  910.0  938.0  910.0  921.0   474500  889.85  892.2907  905.0699
## 778 2020-10-22  934.0  945.0  917.5  945.0   507330  895.55  901.8742  917.4650
## 777 2020-10-23  950.0  989.0  950.0  970.0   604860  902.60  914.2607  938.8899
## 776 2020-10-26  971.0  997.0  953.0  981.0   513550  910.70  926.3951  963.0966
## 775 2020-10-27  980.0  989.5  963.0  969.0   293490  919.20  934.1415  977.0272
## 774 2020-10-28  970.5  979.5  963.5  965.0   201600  929.30  939.7521  970.7813
## 773 2020-10-29  964.5  965.0  942.5  950.0   279920  936.90  941.6154  966.2829
## 772 2020-10-30  940.5  959.0  931.0  950.0   361180  945.50  943.1398  953.6132
## 771 2020-11-03  969.0  975.0  931.5  974.5   459690  953.55  948.8417  950.8018
## 770 2020-11-04  974.5  996.0  951.5  996.0   338870  962.15  957.4159  969.2413
## 769 2020-11-05  995.0 1047.0  984.5 1010.0   755780  971.05  966.9767  990.0621
## 768 2020-11-06 1029.0 1029.0  991.0 1010.0   416640  977.55  974.7991 1005.5757
## 767 2020-11-09 1002.0 1006.0  982.0  990.0   282695  979.55  977.5629 1009.0182
## 766 2020-11-10 1025.0 1100.0 1025.0 1100.0  1351220  991.45  999.8242  994.2202
## 765 2020-11-11 1056.0 1090.0 1046.0 1049.0  1002865  999.45 1008.7652 1076.5271
## 764 2020-11-13 1040.0 1060.0 1030.0 1030.0   533275 1005.95 1012.6261 1055.1084
## 763 2020-11-16 1038.0 1050.0 1006.0 1015.0   434820 1012.45 1013.0577 1035.5716
## 762 2020-11-17 1030.0 1030.0 1002.0 1002.0   344620 1017.65 1011.0472 1019.5649
## 761 2020-11-18 1005.0 1029.0  999.5 1029.0   579865 1023.10 1014.3114 1005.8977
## 760 2020-11-19 1004.0 1020.0  995.5 1005.0   486255 1024.00 1012.6184 1023.8735
## 759 2020-11-20 1006.0 1050.0 1006.0 1050.0   193270 1028.00 1019.4150 1009.1881
## 758 2020-11-23 1035.0 1070.0 1035.0 1055.0   217855 1032.50 1025.8850 1040.9437
## 757 2020-11-24 1053.0 1053.0 1015.0 1030.0   238790 1036.50 1026.6332 1051.8809
## 756 2020-11-25 1030.0 1030.0 1017.0 1021.0   250405 1028.60 1025.6090 1034.8554
## 755 2020-11-26 1016.0 1025.0  992.5 1025.0   369560 1026.20 1025.4983 1024.0746
## 754 2020-11-27 1011.0 1023.0  970.0  970.0  1203935 1020.20 1015.4077 1024.7946
## 753 2020-12-01  970.0 1019.0  965.0 1019.0   544080 1020.60 1016.0608  982.1591
## 752 2020-12-02 1017.0 1044.0 1007.0 1030.0   241950 1023.40 1018.5952 1010.8249
## 751 2020-12-03 1030.0 1047.0 1007.0 1047.0   390685 1025.20 1023.7597 1025.7450
## 750 2020-12-04 1033.0 1044.0 1019.0 1026.0   299540 1027.30 1024.1670 1042.2834
## 749 2020-12-07 1044.0 1054.0 1020.0 1050.0   366925 1027.30 1028.8639 1029.6134
## 748 2020-12-09 1040.0 1079.0 1030.0 1039.0   290415 1025.70 1030.7069 1045.4761
## 747 2020-12-10 1040.0 1054.0 1040.0 1050.0   236250 1027.70 1034.2147 1040.4371
## 746 2020-12-11 1055.0 1085.0 1054.0 1068.0   273610 1032.40 1040.3575 1047.8780
## 745 2020-12-14 1068.0 1085.0 1040.0 1065.0   108300 1036.40 1044.8379 1063.5348
## 744 2020-12-15 1050.0 1064.0 1031.0 1050.0   327105 1044.40 1045.7765 1064.6749
## 743 2020-12-16 1042.0 1075.0 1035.0 1075.0   359920 1050.00 1051.0899 1053.2564
## 742 2020-12-17 1068.0 1095.0 1050.0 1094.0   378330 1056.40 1058.8917 1070.1750
## 741 2020-12-18 1069.0 1090.0 1053.0 1065.0   523810 1058.20 1060.0023 1088.7131
## 740 2020-12-21 1061.0 1081.0 1042.0 1065.0   137535 1062.10 1060.9110 1070.2620
## 739 2020-12-22 1065.0 1075.0 1046.0 1075.0   119735 1064.60 1063.4726 1066.1677
## 738 2020-12-23 1070.0 1078.0 1049.0 1077.0   151950 1068.40 1065.9321 1073.0401
## 737 2020-12-28 1065.0 1068.0 1050.0 1050.0   217125 1068.40 1063.0354 1076.1213
## 736 2020-12-29 1050.0 1060.0 1042.0 1049.0   248185 1066.50 1060.4835 1055.7964
## 735 2021-01-04 1055.0 1068.0 1046.0 1060.0   208000 1066.00 1060.3956 1050.5081
## 734 2021-01-05 1064.0 1067.0 1046.0 1050.0   122465 1066.00 1058.5055 1057.8937
## 733 2021-01-06 1050.0 1060.0 1025.0 1040.0   144465 1062.50 1055.1409 1051.7516
## 732 2021-01-07 1040.0 1054.0 1031.0 1034.0    92950 1056.50 1051.2971 1042.6077
## 731 2021-01-08 1042.0 1050.0 1037.0 1050.0   169125 1055.00 1051.0612 1035.9101
## 730 2021-01-11 1050.0 1095.0 1050.0 1050.0   312900 1053.50 1050.8683 1046.8734
## 729 2021-01-12 1060.0 1088.0 1052.0 1068.0   263010 1052.80 1053.9831 1049.3062
## 728 2021-01-13 1068.0 1086.0 1052.0 1079.0   181240 1053.00 1058.5317 1063.8518
## 727 2021-01-14 1065.0 1087.0 1065.0 1077.0   205430 1055.70 1061.8895 1075.6386
## 726 2021-01-15 1077.0 1084.0 1051.0 1051.0   157260 1055.90 1059.9096 1076.6979
## 725 2021-01-18 1051.0 1053.0 1043.0 1050.0   328055 1054.90 1058.1079 1056.7025
## 724 2021-01-19 1042.0 1074.0 1040.0 1072.0   258260 1057.10 1060.6337 1051.4873
## 723 2021-01-20 1056.0 1078.0 1045.0 1067.0   328060 1059.80 1061.7912 1067.4482
## 722 2021-01-21 1069.0 1069.0 1051.0 1067.0   160775 1063.10 1062.7383 1067.0994
## 721 2021-01-22 1052.0 1057.0 1026.0 1035.0   521960 1061.60 1057.6949 1067.0221
## 720 2021-01-25 1040.0 1047.0 1032.0 1038.0   159775 1060.40 1054.1140 1042.1058
## 719 2021-01-26 1035.0 1035.0 1020.0 1020.0   219635 1055.60 1047.9115 1038.9111
## 718 2021-01-27 1020.0 1029.0  996.0 1029.0   405275 1050.60 1044.4730 1024.1964
## 717 2021-01-28 1010.0 1043.0 1000.0 1026.0   174205 1045.50 1041.1143 1027.9341
## 716 2021-01-29 1016.0 1033.0  985.0  985.0   472445 1038.90 1030.9117 1026.4292
## 715 2021-02-01  981.0 1005.0  976.0 1005.0   404390 1034.40 1026.2005  994.1933
## 714 2021-02-02 1010.0 1050.0 1006.0 1006.0   257700 1027.80 1022.5277 1002.6020
## 713 2021-02-03 1012.0 1026.0 1007.0 1010.0   149395 1022.10 1020.2499 1005.2460
## 712 2021-02-04 1010.0 1034.0  981.0 1033.0   225680 1018.70 1022.5681 1008.9451
## 711 2021-02-05 1029.0 1046.0 1010.0 1039.0   402375 1019.10 1025.5557 1027.6621
## 710 2021-02-08 1020.0 1048.0 1013.0 1020.0   219285 1017.30 1024.5456 1036.4841
## 709 2021-02-09 1020.0 1059.0 1019.0 1056.0   403225 1020.90 1030.2646 1023.6579
## 708 2021-02-10 1055.0 1095.0 1052.0 1078.0   375190 1025.80 1038.9437 1048.8232
## 707 2021-02-11 1060.0 1078.0 1059.0 1068.0   557330 1030.00 1044.2267 1071.5256
## 706 2021-02-15 1068.0 1080.0 1055.0 1060.0 10269730 1037.50 1047.0946 1068.7823
## 705 2021-02-16 1060.0 1070.0 1060.0 1070.0 10167590 1044.00 1051.2592 1061.9488
## 704 2021-02-17 1056.0 1069.0 1030.0 1060.0 10369270 1049.40 1052.8484 1068.2134
## 703 2021-02-18 1050.0 1060.0 1033.0 1036.0   242500 1052.00 1049.7851 1061.8226
## 702 2021-02-19 1038.0 1074.0 1038.0 1065.0   432240 1055.20 1052.5514 1041.7301
## 701 2021-02-22 1060.0 1065.0 1031.0 1034.0   322215 1054.70 1049.1784 1059.8363
## 700 2021-02-23 1030.0 1060.0 1010.0 1060.0   286215 1058.70 1051.1460 1039.7332
## 699 2021-02-24 1054.0 1054.0 1035.0 1038.0   342435 1056.90 1048.7558 1055.5027
## 698 2021-02-26 1010.0 1027.0 1006.0 1009.0   848115 1050.00 1041.5275 1041.8839
## 697 2021-03-01 1025.0 1025.0 1009.0 1025.0   670320 1045.70 1038.5225 1016.2971
## 696 2021-03-02 1015.0 1052.0 1015.0 1046.0   459030 1044.30 1039.8820 1023.0688
## 695 2021-03-03 1046.0 1057.0 1026.0 1057.0   197170 1043.00 1042.9944 1040.9115
## 694 2021-03-04 1045.0 1046.0 1012.0 1040.0   249700 1041.00 1042.4500 1053.4299
## 693 2021-03-05 1030.0 1043.0 1024.0 1041.0   307150 1041.50 1042.1863 1042.9801
## 692 2021-03-08 1040.0 1041.0 1023.0 1039.0   270250 1038.90 1041.6070 1041.4394
## 691 2021-03-09 1030.0 1042.0 1023.0 1040.0   232385 1039.50 1041.3148 1039.5413
## 690 2021-03-10 1035.0 1057.0 1025.0 1057.0   282025 1039.20 1044.1667 1039.8982
## 689 2021-03-11 1041.0 1045.0 1026.0 1030.0   263775 1038.40 1041.5909 1053.2051
## 688 2021-03-12 1031.0 1040.0 1030.0 1034.0   129340 1040.90 1040.2107 1035.1493
## 687 2021-03-15 1035.0 1035.0  998.0 1018.0   340165 1040.20 1036.1724 1034.2550
## 686 2021-03-16 1000.0 1017.0  999.0 1003.0   304595 1035.90 1030.1411 1021.6071
## 685 2021-03-17 1002.0 1008.0  990.0 1005.0   424375 1030.70 1025.5700 1007.1290
## 684 2021-03-18 1006.0 1017.0  987.0  987.0   269000 1025.40 1018.5572 1005.4724
## 683 2021-03-19  990.0 1002.0  958.5  958.5  1249940 1017.15 1007.6377  991.0991
## 682 2021-03-22  950.0  968.0  940.0  961.0   327880 1009.35  999.1582  965.7339
## 681 2021-03-23  952.0  967.5  952.0  963.0   298060 1001.65  992.5839  962.0505
## 680 2021-03-24  951.5  970.0  950.0  970.0   168430  992.95  988.4778  962.7893
## 679 2021-03-25  962.0  996.5  962.0  984.0   200550  988.35  987.6636  968.3999
## 678 2021-03-26  972.0  983.5  960.0  980.0   192720  982.95  986.2702  980.5383
## 677 2021-03-29  974.0  995.0  962.0  970.0   210330  978.15  983.3120  980.1194
## 676 2021-03-30  971.0  987.0  955.5  970.0   382300  974.85  980.8917  972.2455
## 675 2021-03-31  972.0  972.0  960.0  960.0   405350  970.35  977.0932  970.4983
## 674 2021-04-05  956.0  984.0  956.0  984.0   131550  970.05  978.3490  962.3296
## 673 2021-04-06  982.0  992.0  972.0  992.0   147280  973.40  980.8310  979.1913
## 672 2021-04-07  992.0 1009.0  987.0  998.0   236930  977.10  983.9526  989.1577
## 671 2021-04-08 1003.0 1003.0  965.0  965.0   240380  977.30  980.5067  996.0379
## 670 2021-04-12  971.0  993.0  970.0  972.0   252040  977.50  978.9600  971.8874
## 669 2021-04-13  971.0  974.5  957.5  970.0   196130  976.10  977.3309  971.9750
## 668 2021-04-14  968.0  980.0  965.5  980.0   188290  976.10  977.8162  970.4383
## 667 2021-04-15  980.0  980.0  970.0  980.0   119240  977.10  978.2133  977.8782
## 666 2021-04-16  980.0  982.5  970.5  978.0   108850  977.90  978.1745  979.5292
## 665 2021-04-19  977.0  980.0  965.5  975.0   103910  979.40  977.5973  978.3393
## 664 2021-04-20  973.0  978.0  970.0  977.0   239330  978.70  977.4887  975.7410
## 663 2021-04-21  970.5  974.0  965.0  968.0   267370  976.30  975.7635  976.7206
## 662 2021-04-22  968.0  974.5  965.0  970.0   303580  973.50  974.7156  969.9351
## 661 2021-04-23  970.0  970.0  951.0  952.0   195200  972.20  970.5855  969.9856
## 660 2021-04-26  969.0  969.0  952.5  958.0   262470  970.80  968.2972  955.9911
## 659 2021-04-27  953.5  967.0  953.5  959.0   144870  969.70  966.6068  957.5542
## 658 2021-04-28  958.0  990.0  955.0  990.0   299580  970.70  970.8601  958.6792
## 657 2021-04-29  980.0  980.0  961.0  968.0   211670  969.50  970.3401  983.0498
## 656 2021-04-30  968.0  977.0  961.0  961.0   363380  967.80  968.6419  971.3396
## 655 2021-05-03  962.0  967.0  960.0  960.0   171720  966.30  967.0706  963.2944
## 654 2021-05-04  965.0  968.5  957.5  960.0   184950  964.60  965.7851  960.7310
## 653 2021-05-05  955.0  957.5  950.0  951.0   184070  962.90  963.0969  960.1622
## 652 2021-05-06  951.5  957.0  921.0  921.0   394870  958.00  955.4429  953.0331
## 651 2021-05-07  922.0  936.0  920.0  920.0   242960  954.80  948.9987  928.1083
## 650 2021-05-10  921.0  939.0  920.0  939.0   236940  952.90  947.1808  921.7993
## 649 2021-05-11  930.0  940.5  923.5  940.0   178830  951.00  945.8752  935.1831
## 648 2021-05-12  927.0  930.0  920.0  923.5   157480  944.35  941.8070  938.9311
## 647 2021-05-14  925.0  963.5  880.0  963.5   299450  943.90  945.7512  926.9242
## 646 2021-05-17  938.0  941.0  914.0  930.0   240270  940.80  942.8873  955.3837
## 645 2021-05-18  915.5  927.0  905.0  927.0   226990  937.50  939.9987  935.6327
## 644 2021-05-19  927.0  936.5  909.0  924.0   199940  933.90  937.0899  928.9156
## 643 2021-05-20  924.0  924.0  900.0  900.0   241130  928.80  930.3462  925.0908
## 642 2021-05-21  903.0  922.0  901.0  910.0   237690  927.70  926.6469  905.5677
## 641 2021-05-24  918.0  918.0  901.5  906.5   100470  926.35  922.9838  909.0165
## 640 2021-05-25  905.5  917.0  904.0  912.5   321060  923.70  921.0777  907.0584
## 639 2021-05-26  917.0  938.0  912.0  930.0   306350  922.70  922.6999  911.2925
## 638 2021-05-27  935.0 1004.0  931.0 1004.0  1001380  930.75  937.4818  925.8487
## 637 2021-05-28  989.0  989.0  965.5  980.0   304950  932.40  945.2124  986.6579
## 636 2021-05-31  965.0  990.0  962.5  970.0   177130  936.40  949.7192  981.4774
## 635 2021-06-01  970.0  970.0  957.0  960.5   102780  939.75  951.6793  972.5469
## 634 2021-06-02  965.0 1000.0  965.0 1000.0   464020  947.35  960.4649  963.1732
## 633 2021-06-03  997.5  999.0  980.5  998.0   133905  957.15  967.2895  991.8280
## 632 2021-06-04  999.0 1007.0  992.0 1000.0   229220  966.15  973.2368  996.6304
## 631 2021-06-07 1000.0 1000.0  980.0  990.0    72615  974.50  976.2847  999.2523
## 630 2021-06-08 1001.0 1008.0  992.5 1002.0   322450  983.45  980.9602  992.0531
## 629 2021-06-09 1001.0 1013.0  998.0 1000.0   264660  990.45  984.4220  999.7927
## 628 2021-06-10 1004.0 1010.0 1000.0 1009.0   245960  990.95  988.8907  999.9540
## 627 2021-06-11 1005.0 1019.0 1001.0 1019.0   109115  994.85  994.3651 1006.9927
## 626 2021-06-14 1010.0 1010.0  996.0 1000.0   111825  997.85  995.3897 1016.3355
## 625 2021-06-15 1000.0 1027.0  996.5 1015.0   274990 1003.30  998.9552 1003.6249
## 624 2021-06-16 1003.0 1019.0 1000.0 1000.0   174570 1003.30  999.1451 1012.4758
## 623 2021-06-17 1002.0 1007.0  991.0  999.0   226945 1003.40  999.1187 1002.7684
## 622 2021-06-18  995.5 1003.0  985.0 1000.0   543390 1003.40  999.2790  999.8362
## 621 2021-06-21  999.0  999.0  981.5  984.0    93420 1002.80  996.5010  999.9637
## 620 2021-06-22  985.0 1007.0  985.0 1000.0   141510 1002.60  997.1372  987.5424
## 619 2021-06-23  992.0 1000.0  990.0 1000.0   125735 1002.60  997.6577  997.2356
## 618 2021-06-24  998.0 1001.0  986.0  986.0   128525 1000.30  995.5381  999.3866
## 617 2021-06-25  988.5  997.0  988.5  995.0    72140  997.90  995.4403  988.9705
## 616 2021-06-28  996.0 1005.0  995.5 1005.0   194460  998.40  997.1784  993.6620
## 615 2021-06-29 1003.0 1015.0  999.0 1015.0   179635  998.40 1000.4187 1002.4841
## 614 2021-06-30 1013.0 1014.0  999.5  999.5   172690  998.35 1000.2517 1012.2227
## 613 2021-07-01 1015.0 1021.0 1011.0 1016.0   221920 1000.05 1003.1150 1002.3232
## 612 2021-07-02 1017.0 1021.0 1006.0 1018.0   111995 1001.85 1005.8214 1012.9651
## 611 2021-07-05 1014.0 1022.0 1013.0 1020.0   128575 1005.45 1008.3993 1016.8827
## 610 2021-07-06 1020.0 1020.0 1011.0 1014.0   104705 1006.85 1009.4176 1019.3083
## 609 2021-07-07 1014.0 1014.0 1005.0 1012.0   101130 1008.05 1009.8871 1015.1779
## 608 2021-07-08 1012.0 1015.0  984.0 1010.0   157660 1010.45 1009.9077 1012.7052
## 607 2021-07-09 1002.0 1010.0  986.5 1000.0   281625 1010.95 1008.1063 1010.6003
## 606 2021-07-12  999.0 1019.0  992.0 1019.0   126810 1012.35 1010.0869 1002.3522
## 605 2021-07-13 1019.0 1020.0  990.0  990.0   208285 1009.85 1006.4348 1015.3058
## 604 2021-07-14  992.0 1010.0  989.5 1010.0   105790 1010.90 1007.0830  995.6155
## 603 2021-07-15 1000.0 1009.0  989.0  990.0    88675 1008.30 1003.9770 1006.8080
## 602 2021-07-16  990.0  996.5  956.0  956.0   319330 1002.10  995.2539  993.7298
## 601 2021-07-19  960.0  976.5  931.0  951.0   361240  995.20  987.2077  964.3724
## 600 2021-07-21  961.0  964.0  924.0  940.0   236000  987.80  978.6245  953.9674
## 599 2021-07-22  950.0  960.0  940.5  960.0   195070  982.60  975.2382  943.0994
## 598 2021-07-23  969.0  969.5  941.5  966.0   121160  978.20  973.5586  956.2497
## 597 2021-07-26  965.0  965.0  945.0  945.0   108080  972.70  968.3661  963.8364
## 596 2021-07-27  963.0  963.0  946.0  956.0   222890  966.40  966.1177  949.1799
## 595 2021-07-28  956.0  956.0  920.0  954.0   196010  962.80  963.9145  954.4866
## 594 2021-07-29  949.0  960.0  938.0  956.0   141190  957.40  962.4755  954.1080
## 593 2021-07-30  956.0  956.0  910.0  910.5   344130  949.45  953.0254  955.5802
## 592 2021-08-02  930.0  945.0  912.0  945.0   254050  948.35  951.5662  920.5035
## 591 2021-08-03  945.0  964.5  921.0  964.5   167860  949.70  953.9178  939.5641
## 590 2021-08-04  964.5  974.5  950.0  964.0   174890  952.10  955.7510  958.9666
## 589 2021-08-05  975.0  985.0  963.0  963.0   134750  952.40  957.0690  962.8831
## 588 2021-08-06  975.0  978.0  961.5  963.0   149250  952.10  958.1473  962.9741
## 587 2021-08-09  963.0  989.0  963.0  989.0   116040  956.50  963.7569  962.9942
## 586 2021-08-10  989.0  989.0  971.5  989.0    49900  959.80  968.3466  983.2292
## 585 2021-08-11  989.0 1008.0  981.5 1008.0   119550  965.20  975.5563  987.7194
## 584 2021-08-12  999.5 1001.0  979.0  979.0    91115  967.50  976.1824 1003.4997
## 583 2021-08-13  979.0  989.0  912.0  912.0   351400  967.65  964.5129  984.4366
## 582 2021-08-16  940.0  964.5  930.0  964.0   233770  969.55  964.4196  928.0739
## 581 2021-08-17  957.0  975.0  957.0  960.0   139670  969.10  963.6161  956.0279
## 580 2021-08-18  963.0 1000.0  957.5 1000.0   208660  972.70  970.2313  959.1186
## 579 2021-08-19  999.0 1000.0  980.0  999.0    72830  976.30  975.4620  990.9283
## 578 2021-08-20 1002.0 1002.0  977.0  977.0    74470  977.70  975.7416  997.2089
## 577 2021-08-23  994.5  994.5  963.5  965.0   150880  975.30  973.7886  981.4844
## 576 2021-08-24  967.5  987.0  967.5  987.0   162460  975.10  976.1907  968.6580
## 575 2021-08-25  987.0 1010.0  974.5 1010.0   166650  975.30  982.3378  982.9298
## 574 2021-08-26 1008.0 1008.0  982.0  982.0   160345  975.60  982.2764 1003.9930
## 573 2021-08-27  981.0  999.0  975.0  975.0   102080  981.90  980.9534  986.8803
## 572 2021-08-31  975.5 1009.0  953.0 1009.0   647780  986.40  986.0528  977.6363
## 571 2021-09-01  998.5 1006.0  976.0  985.0   259095  988.90  985.8614 1002.0403
## 570 2021-09-02  998.0 1004.0  981.0  981.0   169890  987.00  984.9775  988.7813
## 569 2021-09-03  983.0 1020.0  983.0 1020.0   309510  989.10  991.3452  982.7267
## 568 2021-09-06 1002.0 1008.0  995.0  998.0    86135  991.20  992.5552 1011.7289
## 567 2021-09-07  998.0 1015.0  996.0 1015.0    65270  996.20  996.6361 1001.0465
## 566 2021-09-08 1000.0 1027.0  996.5 1025.0   273160 1000.00 1001.7931 1011.9037
## 565 2021-09-09 1024.0 1024.0 1005.0 1008.0   111805  999.80 1002.9217 1022.0939
## 564 2021-09-10 1008.0 1018.0 1002.0 1015.0    77640 1003.10 1005.1177 1011.1275
## 563 2021-09-13 1015.0 1015.0 1002.0 1009.0    63375 1006.50 1005.8236 1014.1407
## 562 2021-09-14 1010.0 1016.0  988.0  988.0   109300 1004.40 1002.5829 1010.1407
## 561 2021-09-15 1006.0 1015.0  990.0 1015.0   286280 1007.40 1004.8406  992.9131
## 560 2021-09-16 1000.0 1013.0 1000.0 1005.0   100140 1009.80 1004.8696 1010.0988
## 559 2021-09-17  995.5 1000.0  989.0  994.0   300370 1007.20 1002.8933 1006.1315
## 558 2021-09-20  994.5  999.0  983.0  986.0    58860 1006.00  999.8218  996.6920
## 557 2021-09-21  980.0  993.0  972.5  983.0    78890 1002.80  996.7633  988.3726
## 556 2021-09-22  995.0  995.0  975.0  975.0    92920  997.80  992.8063  984.1922
## 555 2021-09-23  980.0  995.0  976.0  976.0   118700  994.60  989.7506  977.0398
## 554 2021-09-24  982.0  984.5  962.0  965.0   211380  989.60  985.2505  976.2307
## 553 2021-09-27  965.5  977.0  953.5  960.0   226980  984.70  980.6595  967.4921
## 552 2021-09-28  978.0  978.0  955.5  977.0   257750  983.60  979.9941  961.6625
## 551 2021-09-29  977.0  987.0  961.0  987.0   307190  980.80  981.2679  973.5966
## 550 2021-09-30  986.0  999.0  979.5  990.0   228670  979.30  982.8556  984.0257
## 549 2021-10-01  988.0  997.5  970.0  975.0   184280  977.40  981.4273  988.6743
## 548 2021-10-04  975.0  990.0  972.5  990.0    94930  977.80  982.9860  978.0344
## 547 2021-10-05  977.5 1000.0  977.5 1000.0    77240  979.50  986.0794  987.3448
## 546 2021-10-06  997.0 1002.0  982.0 1000.0    82185  982.00  988.6104  997.1918
## 545 2021-10-07  987.0  997.0  975.0  980.0   169775  982.40  987.0449  999.3768
## 544 2021-10-08  980.0  998.0  965.0  966.0   233370  982.50  983.2186  984.2998
## 543 2021-10-11  968.0 1018.0  968.0 1005.0   241280  987.00  987.1788  970.0608
## 542 2021-10-12  986.5 1005.0  986.5  999.0    83720  989.20  989.3281  997.2469
## 541 2021-10-13 1000.0 1015.0  968.0  975.0   246210  988.00  986.7230  998.6110
## 540 2021-10-14  992.0 1010.0  986.0 1000.0   215810  989.00  989.1370  980.2394
## 539 2021-10-15 1000.0 1015.0  990.0  991.0   137025  990.60  989.4757  995.6150
## 538 2021-10-18  980.0  980.0  960.0  970.0   335180  988.60  985.9347  992.0241
## 537 2021-10-19  980.0 1009.0  977.5 1008.0   255980  989.40  989.9466  974.8872
## 536 2021-10-20  996.0 1025.0  996.0 1025.0   201240  991.90  996.3199 1000.6522
## 535 2021-10-21 1025.0 1038.0 1015.0 1038.0   205110  997.70 1003.8981 1019.5971
## 534 2021-10-22 1032.0 1041.0 1020.0 1034.0   196005 1004.50 1009.3712 1033.9163
## 533 2021-10-25 1021.0 1030.0 1010.0 1021.0   131175 1006.10 1011.4855 1033.9814
## 532 2021-10-26 1021.0 1028.0 1000.0 1028.0   124875 1009.00 1014.4881 1023.8806
## 531 2021-10-27 1024.0 1025.0  987.5  990.0   347750 1010.50 1010.0358 1027.0859
## 530 2021-10-28  993.0 1007.0  980.0  992.0   155840 1009.70 1006.7565  998.2295
## 529 2021-10-29  993.0  993.0  961.0  965.0   520640 1007.10  999.1644  993.3823
## 528 2021-11-02  976.0 1005.0  975.0 1005.0   312910 1010.60 1000.2254  971.2981
## 527 2021-11-03  990.0 1005.0  990.0  998.0   114905 1009.60  999.8208  997.5214
## 526 2021-11-04 1002.0 1002.0  976.0  990.0   227140 1006.10  998.0352  997.8938
## 525 2021-11-05  995.0 1001.0  980.0  998.0   119190 1002.10  998.0288  991.7517
## 524 2021-11-08  998.0  998.0  973.0  974.5   483200  996.15  993.7508  996.6135
## 523 2021-11-09  980.0  991.0  980.0  984.0   309280  992.45  991.9780  979.4071
## 522 2021-11-10  990.0  993.0  971.0  975.0   264070  987.15  988.8911  982.9808
## 521 2021-11-11  975.0  981.0  975.0  979.0   216660  986.05  987.0927  976.7710
## 520 2021-11-12  975.0  995.0  975.0  990.0   170110  985.85  987.6213  978.5054
## 519 2021-11-15  989.5  996.0  975.0  990.0   103840  988.35  988.0538  987.4493
## 518 2021-11-16  990.0  998.0  982.5  998.0   198880  987.65  989.8622  989.4340
## 517 2021-11-17  990.0  991.5  975.0  975.0   207130  985.35  987.1600  996.0992
## 516 2021-11-18  976.5  987.5  970.5  975.0   264690  983.85  984.9491  979.6820
## 515 2021-11-19  987.0  987.0  971.0  975.0   186160  981.55  983.1401  976.0389
## 514 2021-11-22  975.0  975.5  965.0  975.0   160950  981.60  981.6601  975.2305
## 513 2021-11-23  975.0  990.0  967.0  985.0   205880  981.70  982.2674  975.0512
## 512 2021-11-24  985.0  991.0  979.0  988.0   181130  983.00  983.3097  982.7923
## 511 2021-11-25  980.0  980.5  973.0  978.0   132930  982.90  982.3443  986.8444
## 510 2021-11-26  975.0  990.0  974.5  979.5   256170  981.85  981.8271  979.9626
## 509 2021-11-29  975.0  980.0  945.0  980.0   637330  980.85  981.4949  979.6027
## 508 2021-12-01  975.0  977.5  922.5  932.0   504100  974.25  972.4958  979.9118
## 507 2021-12-02  932.0  953.0  932.0  947.5   386390  971.50  967.9511  942.6318
## 506 2021-12-03  954.0  959.5  939.0  939.0   174070  967.90  962.6873  946.4197
## 505 2021-12-06  949.0  951.0  930.5  935.0   169180  963.90  957.6532  940.6465
## 504 2021-12-07  940.0  959.5  935.5  959.5   172290  962.35  957.9890  936.2530
## 503 2021-12-09  944.0  957.0  936.0  950.0   242270  958.85  956.5365  954.3414
## 502 2021-12-10  950.0  955.0  937.0  940.0   144990  954.05  953.5298  950.9634
## 501 2021-12-13  940.0  950.0  940.0  944.5   118170  950.70  951.8881  942.4328
## 500 2021-12-14  959.0  977.0  941.0  968.0   208280  949.55  954.8175  944.0413
## 499 2021-12-15  970.0  981.0  950.0  950.0   236140  946.55  953.9416  962.6835
## 498 2021-12-16  970.0  979.0  952.0  979.0   212880  951.25  958.4977  952.8145
## 497 2021-12-17  969.0  999.0  956.0  999.0   253940  956.40  965.8617  973.1893
## 496 2021-12-20  970.0  983.5  964.0  980.0   125660  960.50  968.4323  993.2725
## 495 2021-12-21  976.0  987.0  965.0  971.0   194280  964.10  968.8992  982.9452
## 494 2021-12-22  975.0  977.5  940.0  943.0   256680  962.45  964.1902  973.6507
## 493 2021-12-23  950.0  979.0  950.0  979.0   164880  965.35  966.8829  949.8015
## 492 2021-12-24  978.5  978.5  961.5  961.5    41380  967.50  965.9042  972.5207
## 491 2021-12-27  960.0  975.0  960.0  975.0    57670  970.55  967.5580  963.9455
## 490 2021-12-28  965.5  989.0  965.5  987.0   121180  972.45  971.0929  972.5470
## 489 2021-12-29  988.0  988.0  964.0  971.0   143390  974.55  971.0760  983.7928
## 488 2021-12-31  971.0  971.0  940.0  943.0   245380  970.95  965.9713  973.8388
## 487 2022-01-03  950.0  950.5  932.0  932.0   255750  964.25  959.7947  949.8432
## 486 2022-01-05  948.0  957.0  923.0  929.5   215800  959.20  954.2866  935.9595
## 485 2022-01-06  929.0  947.0  920.0  947.0   373440  956.80  952.9617  930.9334
## 484 2022-01-07  944.0  944.0  932.0  937.0   173030  956.20  950.0596  943.4348
## 483 2022-01-10  932.0  960.0  931.5  940.0   247910  952.30  948.2306  938.4279
## 482 2022-01-11  940.0  948.0  926.0  930.0   388200  949.15  944.9159  939.6511
## 481 2022-01-12  952.0  952.0  934.0  950.0   254360  946.65  945.8403  932.1416
## 480 2022-01-13  941.0  963.5  941.0  950.0   276460  942.95  946.5966  946.0372
## 479 2022-01-14  951.0  958.0  940.5  947.0   181510  940.55  946.6700  949.1206
## 478 2022-01-17  950.0  960.0  943.0  950.0   102980  941.25  947.2754  947.4706
## 477 2022-01-18  950.0  968.0  946.0  968.0   152340  944.85  951.0435  949.4387
## 476 2022-01-19  965.0  967.5  953.0  959.0   206130  947.80  952.4902  963.8812
## 475 2022-01-20  953.5  962.0  943.0  958.0   113970  948.90  953.4919  960.0832
## 474 2022-01-21  956.0  959.0  945.0  959.0   141740  951.10  954.4934  958.4623
## 473 2022-01-24  958.5  958.5  942.5  950.0   108810  952.10  953.6764  958.8807
## 472 2022-01-25  952.0  954.5  947.0  950.0   157050  954.10  953.0080  951.9707
## 471 2022-01-26  950.0  950.5  938.5  950.0   377950  954.10  952.4611  950.4373
## 470 2022-01-27  950.0  955.5  942.0  951.0   137050  954.20  952.1954  950.0970
## 469 2022-01-28  942.5  952.0  939.0  939.0   393820  953.40  949.7963  950.7996
## 468 2022-01-31  942.0  953.0  940.5  949.0   259840  953.30  949.6515  941.6184
## 467 2022-02-02  949.0  995.0  949.0  965.0   303110  953.00  952.4421  947.3620
## 466 2022-02-03  965.0  965.0  949.0  949.0   214530  952.00  951.8163  961.0861
## 465 2022-02-04  956.0  976.5  951.0  976.5   123040  953.85  956.3042  951.6819
## 464 2022-02-07  974.0  976.5  946.0  950.0   329890  952.95  955.1580  970.9928
## 463 2022-02-08  950.0  978.5  948.0  976.0   354130  955.55  958.9475  954.6584
## 462 2022-02-09  976.0  985.0  962.5  962.5   249620  956.80  959.5934  971.2642
## 461 2022-02-10  970.0  975.0  940.0  940.0   396330  955.80  956.0309  964.4448
## 460 2022-02-11  940.5  949.0  911.0  911.0   853080  951.80  947.8435  945.4244
## 459 2022-02-14  935.0  940.0  921.0  940.0   359040  951.90  946.4174  918.6389
## 458 2022-02-15  925.0  940.0  925.0  940.0   311670  951.00  945.2506  935.2599
## 457 2022-02-16  930.0  942.0  930.0  937.0   308670  948.20  943.7505  938.9482
## 456 2022-02-17  937.0  947.5  925.0  927.0   346510  946.00  940.7050  937.4323
## 455 2022-02-18  925.0  932.0  921.0  921.0   364420  940.45  937.1222  929.3150
## 454 2022-02-21  850.0  878.0  843.0  860.0  1588390  931.45  923.1000  922.8451
## 453 2022-02-22  861.5  897.5  856.5  895.0   804840  923.35  917.9909  873.9456
## 452 2022-02-23  893.0  898.5  877.0  880.0   259010  915.10  911.0835  890.3279
## 451 2022-02-24  880.0  905.0  865.0  871.0   480190  908.20  903.7956  882.2918
## 450 2022-02-28  871.5  910.0  871.5  892.0   483700  906.30  901.6509  873.5057
## 449 2022-03-01  900.0  947.0  898.0  947.0   893810  907.00  909.8962  887.8960
## 448 2022-03-02  937.0  955.0  922.5  930.0   448230  906.00  913.5514  933.8846
## 447 2022-03-03  932.0  957.0  925.0  957.0   329900  908.00  921.4512  930.8620
## 446 2022-03-04  950.0  951.0  930.0  932.0   228960  908.50  923.3691  951.1999
## 445 2022-03-07  930.0  931.0  904.0  929.0   155740  909.30  924.3929  936.2605
## 444 2022-03-08  902.0  938.0  890.0  890.0   476770  912.30  918.1397  930.6111
## 443 2022-03-09  890.5  919.5  871.0  871.0   705530  909.90  909.5688  899.0118
## 442 2022-03-10  889.0  908.0  880.0  908.0   371630  912.70  909.2836  877.2159
## 441 2022-03-11  885.5  912.0  885.5  909.0   271210  916.50  909.2320  901.1689
## 440 2022-03-14  901.0  901.0  871.0  880.0   495990  915.30  903.9171  907.2622
## 439 2022-03-15  875.0  911.0  851.5  911.0   504280  911.70  905.2049  886.0496
## 438 2022-03-16  890.0  908.5  875.0  900.0   443920  908.70  904.2586  905.4634
## 437 2022-03-17  891.0  911.0  886.0  906.0   395120  903.60  904.5752  901.2124
## 436 2022-03-18  894.0  934.0  885.0  902.5 12456970  900.65  904.1979  904.9376
## 435 2022-03-21  902.5  909.5  871.5  880.0  1560800  895.75  899.7983  903.0409
## 434 2022-03-22  875.0  885.0  872.0  882.0   479800  894.95  896.5622  885.1129
## 433 2022-03-23  878.0  891.5  861.0  867.0  1170230  894.55  891.1873  882.6908
## 432 2022-03-24  866.5  885.0  861.0  885.0   791410  892.25  890.0623  870.4818
## 431 2022-03-25  880.0  897.0  877.0  897.0   203940  891.05  891.3237  881.7784
## 430 2022-03-28  897.0  900.0  882.0  900.0   301460  893.05  892.9012  893.6223
## 429 2022-03-29  881.0  900.5  881.0  896.0   240460  891.55  893.4646  898.5848
## 428 2022-03-30  885.0  902.5  884.5  898.0   799910  891.35  894.2892  896.5736
## 427 2022-03-31  892.0  909.0  885.5  909.0   431160  891.65  896.9639  897.6835
## 426 2022-04-01  891.0  901.5  886.0  898.0   212900  891.20  897.1523  906.4888
## 425 2022-04-04  895.0  899.0  886.0  890.0   166160  892.20  895.8519  899.8837
## 424 2022-04-05  887.0  889.0  865.0  889.0   384770  892.90  894.6061  892.1932
## 423 2022-04-06  876.0  888.0  870.0  882.0   246680  894.40  892.3141  889.7086
## 422 2022-04-07  878.5  887.0  865.5  870.0   501380  892.90  888.2570  883.7106
## 421 2022-04-08  870.0  872.0  863.5  865.0   479270  889.70  884.0284  873.0424
## 420 2022-04-11  865.0  875.0  860.0  865.0   273200  886.20  880.5687  866.7846
## 419 2022-04-12  865.0  874.0  861.0  865.0   241960  883.10  877.7380  865.3960
## 418 2022-04-13  866.0  873.0  864.0  872.5   292230  880.55  876.7857  865.0879
## 417 2022-04-18  872.5  874.0  865.0  865.0   144170  876.15  874.6428  870.8552
## 416 2022-04-19  865.0  872.0  855.5  871.5   569580  873.50  874.0714  866.2993
## 415 2022-04-20  895.0  895.0  865.5  877.0   302310  872.20  874.6039  870.3459
## 414 2022-04-21  880.0  885.0  862.0  865.0   421950  869.80  872.8577  875.5234
## 413 2022-04-22  866.0  869.0  858.0  869.0   300700  868.50  872.1563  867.3352
## 412 2022-04-25  860.0  885.0  855.5  885.0   268520  870.00  874.4915  868.6306
## 411 2022-04-26  870.0  871.5  858.5  860.0   245420  869.50  871.8567  881.3676
## 410 2022-04-27  858.5  860.0  848.0  851.0   509780  868.10  868.0646  864.7415
## 409 2022-04-28  851.0  860.0  848.5  860.0   403970  867.60  866.5983  854.0493
## 408 2022-04-29  858.0  860.0  824.0  851.5  1191260  865.50  863.8531  858.6795
## 407 2022-05-02  850.0  851.5  840.0  849.0    81170  863.90  861.1526  853.0932
## 406 2022-05-04  849.0  849.0  825.0  849.0   360110  861.65  858.9430  849.9083
## 405 2022-05-05  851.5  870.0  840.0  861.0   663360  860.05  859.3170  849.2016
## 404 2022-05-06  840.0  848.0  832.0  845.5   906610  858.10  856.8048  858.3819
## 403 2022-05-10  836.0  855.0  810.5  845.0   692470  855.70  854.6585  848.3585
## 402 2022-05-11  845.0  853.5  811.5  825.0   630420  849.70  849.2660  845.7453
## 401 2022-05-12  824.0  839.0  820.0  828.0   352560  846.50  845.3995  829.6035
## 400 2022-05-13  830.0  838.0  789.0  789.0   483880  840.30  835.1450  828.3558
## 399 2022-05-16  801.0  816.5  791.5  808.0   412870  835.10  830.2096  797.7332
## 398 2022-05-17  808.0  832.0  800.5  832.0   282150  833.15  830.5351  805.7218
## 397 2022-05-18  832.0  870.0  820.0  870.0   659720  835.25  837.7105  826.1688
## 396 2022-05-19  849.0  849.0  815.5  839.0   512330  834.25  837.9450  860.2737
## 395 2022-05-20  848.0  855.0  835.0  845.0   156420  832.65  839.2277  843.7207
## 394 2022-05-23  848.0  860.0  842.0  848.0   288260  832.90  840.8227  844.7161
## 393 2022-05-24  848.5  848.5  830.0  830.0   170530  831.40  838.8549  847.2713
## 392 2022-05-25  830.0  847.0  830.0  847.0   188470  833.60  840.3358  833.8326
## 391 2022-05-26  847.0  847.0  822.0  835.0   305010  834.30  839.3657  844.0781
## 390 2022-05-27  837.0  839.5  834.5  838.5   199820  839.25  839.2083  837.0145
## 389 2022-05-30  840.0  864.0  839.0  862.0   371350  844.65  843.3522  838.1704
## 388 2022-05-31  862.0  867.0  845.5  858.0   905670  847.25  846.0155  856.7121
## 387 2022-06-01  858.0  858.0  850.0  850.0   152870  845.25  846.7399  857.7142
## 386 2022-06-02  857.0  857.0  840.0  856.0   182900  846.95  848.4236  851.7118
## 385 2022-06-03  850.0  865.0  845.5  865.0   244500  848.95  851.4375  855.0484
## 384 2022-06-06  860.0  864.5  855.0  861.0   245190  850.25  853.1761  862.7917
## 383 2022-06-07  861.0  864.0  852.0  864.0   101090  853.65  855.1441  861.3976
## 382 2022-06-08  863.0  864.0  852.0  852.0   211140  854.15  854.5724  863.4225
## 381 2022-06-09  860.0  862.0  844.5  862.0   300980  856.85  855.9229  854.5347
## 380 2022-06-10  861.0  861.0  820.0  820.0   485030  855.00  849.3915  860.3434
## 379 2022-06-13  818.5  827.0  805.0  806.0   373440  849.40  841.5021  828.9524
## 378 2022-06-14  807.0  830.0  796.0  830.0   397790  846.60  839.4108  811.0932
## 377 2022-06-15  810.0  816.5  795.0  795.0   265140  841.10  831.3361  825.8045
## 376 2022-06-16  808.0  824.0  789.0  809.5   401920  836.45  827.3659  801.8356
## 375 2022-06-17  807.5  807.5  785.0  785.0   571890  828.45  819.6630  807.7992
## 374 2022-06-20  785.0  807.5  785.0  790.0   224360  821.35  814.2697  790.0592
## 373 2022-06-21  790.0  796.5  772.0  774.0   390460  812.35  806.9480  790.0131
## 372 2022-06-22  779.0  786.0  763.0  763.0   194320  803.45  798.9574  777.5534
## 371 2022-06-23  766.0  773.0  738.0  769.5   273080  794.20  793.6015  766.2294
## 370 2022-06-24  794.0  804.0  780.5  801.5   270970  792.35  795.0376  768.7743
## 369 2022-06-27  810.0  810.0  790.0  799.5   185480  791.70  795.8490  794.2380
## 368 2022-06-28  802.0  829.0  801.0  829.0   246390  791.60  801.8764  798.3324
## 367 2022-06-29  829.0  829.0  803.0  820.0   173860  794.10  805.1716  822.1947
## 366 2022-06-30  810.0  820.0  778.0  782.0   422700  791.35  800.9586  820.4870
## 365 2022-07-01  780.0  786.0  769.0  770.0   294440  789.85  795.3298  790.5404
## 364 2022-07-04  780.0  804.0  771.0  800.0   278230  790.85  796.1789  774.5580
## 363 2022-07-05  801.0  801.0  783.0  792.0   171190  792.65  795.4191  794.3543
## 362 2022-07-06  799.5  839.0  793.0  839.0   375910  800.25  803.3429  792.5224
## 361 2022-07-07  817.0  846.0  817.0  844.0   258410  807.70  810.7351  828.6865
## 360 2022-07-08  844.0  859.5  823.5  839.0   510240  811.45  815.8742  840.6019
## 359 2022-07-11  839.0  858.0  826.0  838.0   127390  815.30  819.8970  839.3555
## 358 2022-07-12  825.0  837.0  810.5  813.0   415020  813.70  818.6430  838.3008
## 357 2022-07-13  815.0  816.5  791.0  797.0   657780  811.40  814.7079  818.6143
## 356 2022-07-14  797.0  797.0  771.5  775.5   519960  810.75  807.5792  801.7963
## 355 2022-07-15  775.5  780.0  758.0  775.0   355480  811.25  801.6557  781.3352
## 354 2022-07-18  762.0  781.0  762.0  781.0   464530  809.35  797.9001  776.4058
## 353 2022-07-19  792.0  796.0  782.5  796.0    97230  809.75  797.5547  779.9805
## 352 2022-07-20  797.0  804.0  786.0  788.0   298630  804.65  795.8175  792.4452
## 351 2022-07-21  800.0  807.5  772.0  774.0   325740  797.65  791.8506  788.9864
## 350 2022-07-22  775.0  793.0  774.0  788.0   260700  792.55  791.1505  777.3255
## 349 2022-07-25  788.5  793.0  775.0  789.0   264700  787.65  790.7595  785.6313
## 348 2022-07-26  792.0  792.0  781.0  790.0    80360  785.35  790.6214  788.2525
## 347 2022-07-27  790.0  790.0  771.0  780.0   164410  783.65  788.6903  789.6122
## 346 2022-07-28  786.0  801.0  786.0  800.0   265100  786.10  790.7466  782.1330
## 345 2022-07-29  802.0  804.0  771.0  775.5   639650  786.15  787.9745  796.0352
## 344 2022-08-01  779.0  788.0  763.0  780.0   319680  786.05  786.5246  780.0568
## 343 2022-08-02  778.0  780.0  764.0  769.0   424570  783.35  783.3383  780.0126
## 342 2022-08-03  772.0  798.0  765.0  795.0   353400  784.05  785.4586  771.4437
## 341 2022-08-04  790.5  803.0  785.0  792.0   294960  785.85  786.6479  789.7728
## 340 2022-08-05  792.0  798.0  770.5  780.0   630640  785.05  785.4392  791.5058
## 339 2022-08-08  789.0  789.0  767.0  778.0   441390  783.95  784.0866  782.5532
## 338 2022-08-09  780.0  807.5  780.0  805.0   424940  785.45  787.8891  779.0104
## 337 2022-08-10  805.0  813.0  793.0  809.0   411620  788.35  791.7274  799.2328
## 336 2022-08-11  819.0  845.0  811.0  845.0   480450  792.85  801.4133  806.8326
## 335 2022-08-12  844.5  847.5  834.5  843.0   355310  799.60  808.9746  836.5305
## 334 2022-08-15  845.0  861.5  843.0  860.0   521800  807.60  818.2519  841.5644
## 333 2022-08-16  860.0  883.5  855.0  880.0   615320  818.70  829.4788  855.9091
## 332 2022-08-17  880.0  887.5  855.5  882.0   465840  827.40  839.0281  874.6541
## 331 2022-08-18  861.0  883.0  861.0  880.0   427160  836.20  846.4776  880.3699
## 330 2022-08-19  880.0  887.0  875.0  883.0   101060  846.50  853.1180  880.0821
## 329 2022-08-22  880.0  883.0  850.0  850.0   108890  853.70  852.5511  882.3525
## 328 2022-08-23  849.0  859.5  832.5  842.0    94830  857.40  850.6327  857.1791
## 327 2022-08-24  840.0  860.0  840.0  851.0    67380  861.60  850.6995  845.3683
## 326 2022-08-25  859.5  880.0  854.5  880.0   192370  865.10  856.0269  849.7503
## 325 2022-08-26  870.0  885.0  865.0  879.0   194080  868.70  860.2038  873.2875
## 324 2022-08-30  858.0  878.5  850.0  875.5   241390  870.25  862.9849  877.7324
## 323 2022-08-31  875.0  875.0  831.0  831.0   402510  865.35  857.1695  875.9954
## 322 2022-09-01  843.5  847.5  836.5  840.0   224310  861.15  854.0478  840.9846
## 321 2022-09-02  840.5  873.5  840.5  860.0   164620  859.15  855.1300  840.2185
## 320 2022-09-05  868.5  878.0  853.0  870.0   159930  857.85  857.8336  855.6104
## 319 2022-09-06  870.0  881.0  859.0  877.0   243320  860.55  861.3184  866.8069
## 318 2022-09-07  877.0  877.0  837.0  841.0   144620  860.45  857.6242  874.7381
## 317 2022-09-08  842.0  851.5  840.0  840.0   143130  859.35  854.4198  848.4866
## 316 2022-09-09  850.0  875.0  844.0  865.0   118010  857.85  856.3434  841.8832
## 315 2022-09-12  865.0  891.0  862.5  885.0   402570  858.45  861.5537  859.8703
## 314 2022-09-13  881.0  893.5  878.0  884.5   307590  859.35  865.7258  879.4236
## 313 2022-09-14  867.0  878.0  854.0  859.5   253300  862.20  864.5938  883.3735
## 312 2022-09-15  862.0  877.5  850.0  850.0   340280  863.20  861.9404  864.7976
## 311 2022-09-16  855.0  871.0  844.5  871.0   386130  864.30  863.5876  853.2836
## 310 2022-09-19  866.0  870.0  835.0  835.0   385170  860.80  858.3899  867.0687
## 309 2022-09-20  850.0  854.0  828.0  828.0   394560  855.90  852.8644  842.1162
## 308 2022-09-21  828.5  834.0  800.5  818.5   524240  853.65  846.6163  831.1324
## 307 2022-09-22  800.0  819.5  786.0  819.5   564270  851.60  841.6861  821.3032
## 306 2022-09-23  820.0  820.0  800.0  808.0   349440  845.90  835.5614  819.9001
## 305 2022-09-27  784.0  784.0  747.5  763.0   953030  833.70  822.3684  810.6407
## 304 2022-09-28  770.0  774.0  725.0  733.0   942170  818.55  806.1196  773.5716
## 303 2022-09-29  751.0  764.5  741.5  760.0   531650  808.60  797.7342  742.0030
## 302 2022-09-30  750.0  762.5  725.0  725.0   367580  796.10  784.5098  756.0064
## 301 2022-10-03  722.0  760.0  720.0  760.0   163010  785.00  780.0535  731.8804
## 300 2022-10-04  760.0  794.0  750.0  794.0   395120  780.90  782.5892  753.7602
## 299 2022-10-05  799.5  800.0  760.5  785.0   253560  776.60  783.0275  785.0706
## 298 2022-10-06  785.0  789.5  760.0  760.0   155270  770.75  778.8407  785.0157
## 297 2022-10-07  758.0  765.0  745.0  760.0    99890  764.80  775.4151  765.5511
## 296 2022-10-10  749.0  764.5  741.5  760.0    67770  760.00  772.6124  761.2318
## 295 2022-10-11  761.0  770.0  751.0  759.0   428010  759.60  770.1374  760.2733
## 294 2022-10-12  759.0  770.0  759.0  764.0   142410  762.70  769.0215  759.2826
## 293 2022-10-13  768.0  788.5  755.5  788.5   155400  765.55  772.5631  762.9532
## 292 2022-10-14  788.5  788.5  762.0  762.0   310490  769.25  770.6425  782.8311
## 291 2022-10-17  765.0  799.0  750.0  799.0   198660  773.15  775.7984  766.6225
## 290 2022-10-18  799.0  799.0  780.5  786.0   445990  772.35  777.6532  791.8153
## 289 2022-10-19  790.0  799.0  780.0  799.0    82370  773.75  781.5345  787.2904
## 288 2022-10-20  795.0  817.5  770.5  777.0   696710  775.45  780.7100  796.4016
## 287 2022-10-21  781.5  789.0  770.0  770.0   389490  776.45  778.7627  781.3053
## 286 2022-10-24  775.5  789.5  764.5  765.0   430620  776.95  776.2604  772.5087
## 285 2022-10-25  773.0  784.0  773.0  780.0   444730  779.05  776.9403  766.6662
## 284 2022-10-26  781.0  799.5  781.0  799.5   294290  782.60  781.0421  777.0412
## 283 2022-10-27  798.0  830.0  792.0  830.0   557260  786.75  789.9435  794.5163
## 282 2022-10-28  820.0  828.0  790.0  820.0   123360  792.55  795.4084  822.1260
## 281 2022-11-02  833.0  843.0  807.5  843.0   505170  796.95  804.0614  820.4718
## 280 2022-11-03  820.0  820.5  800.5  820.0   184260  800.35  806.9593  838.0009
## 279 2022-11-04  819.0  835.0  811.5  835.0   132380  803.95  812.0576  823.9945
## 278 2022-11-07  830.0  839.5  820.5  835.0   214730  809.75  816.2290  832.5578
## 277 2022-11-08  836.0  843.0  826.5  833.0   465070  816.05  819.2782  834.4581
## 276 2022-11-09  825.0  837.0  820.0  831.0   401200  822.65  821.4095  833.3236
## 275 2022-11-10  825.0  831.0  784.0  787.0   491370  823.35  815.1532  831.5156
## 274 2022-11-11  810.0  829.0  808.0  825.0   322310  825.90  816.9435  796.8782
## 273 2022-11-14  825.0  847.0  821.5  842.0   615170  827.10  821.4993  818.7597
## 272 2022-11-15  843.0  870.0  830.5  870.0   350250  832.10  830.3176  836.8429
## 271 2022-11-16  870.0  873.5  842.0  870.0   553530  834.80  837.5326  862.6423
## 270 2022-11-17  867.0  878.0  855.0  867.0   262260  839.50  842.8903  868.3673
## 269 2022-11-18  869.0  878.0  855.0  859.0   361850  841.90  845.8193  867.3034
## 268 2022-11-21  860.0  860.0  836.0  836.0   269310  842.00  844.0340  860.8426
## 267 2022-11-22  837.0  869.5  837.0  869.0   224300  845.60  848.5733  841.5127
## 266 2022-11-23  865.0  898.0  865.0  895.0   256990  852.00  857.0145  862.9005
## 265 2022-11-24  893.0  894.0  876.0  894.0   369510  862.70  863.7391  887.8770
## 264 2022-11-25  893.0  919.0  882.0  910.0   761090  871.20  872.1502  892.6413
## 263 2022-11-28  905.0  931.5  900.0  927.0   610210  879.70  882.1229  906.1480
## 262 2022-11-29  915.0  939.0  905.5  939.0   754100  886.60  892.4642  922.3729
## 261 2022-12-01  954.0  981.5  940.0  980.0  1052130  897.60  908.3798  935.3104
## 260 2022-12-02  968.0  968.0  901.5  901.5   647500  901.05  907.1289  970.0832
## 259 2022-12-05  905.0  910.0  890.0  894.0   237650  904.55  904.7418  916.7189
## 258 2022-12-06  900.0  943.0  893.0  943.0   387480  915.25  911.6979  899.0414
## 257 2022-12-07  940.0  940.0  910.0  910.0   223250  919.35  911.3892  933.2454
## 256 2022-12-09  928.0  939.0  910.0  930.0   338250  922.85  914.7730  915.1582
## 255 2022-12-12  923.0  950.0  915.5  936.0   453440  927.05  918.6324  926.7066
## 254 2022-12-13  940.0  946.0  916.0  916.0   128990  927.65  918.1538  933.9378
## 253 2022-12-14  922.0  939.0  922.0  928.0   243360  927.75  919.9440  919.9805
## 252 2022-12-15  921.0  933.5  910.5  930.0   198370  926.85  921.7724  926.2204
## 251 2022-12-16  922.0  929.0  910.0  929.0   340930  921.75  923.0865  929.1613
## 250 2022-12-19  922.0  923.5  894.0  908.5   225790  922.45  920.4344  929.0358
## 249 2022-12-20  905.0  915.0  898.0  905.0   156620  923.55  917.6281  913.0570
## 248 2022-12-21  900.0  915.0  898.5  909.0   101910  920.15  916.0594  906.7879
## 247 2022-12-22  910.0  926.0  910.0  926.0   326750  921.75  917.8668  908.5091
## 246 2022-12-23  924.0  927.0  913.0  914.0   308450  920.15  917.1637  922.1187
## 245 2022-12-27  914.0  932.5  912.0  930.0   352220  919.55  919.4976  915.8016
## 244 2022-12-28  920.0  930.0  901.0  910.0   442540  918.95  917.7708  926.8493
## 243 2022-12-29  910.0  916.5  900.0  900.0   623110  916.15  914.5397  913.7389
## 242 2023-01-03  900.0  919.0  900.0  900.0   230080  913.15  911.8961  903.0487
## 241 2023-01-04  900.0  929.5  900.0  921.0   322840  912.35  913.5514  900.6765
## 240 2023-01-05  925.0  933.0  910.0  915.0   300190  913.00  913.8148  916.4901
## 239 2023-01-06  918.0  920.0  900.0  900.0   465530  912.50  911.3030  915.3307
## 238 2023-01-09  901.0  909.5  899.5  900.0   749990  911.60  909.2479  903.4019
## 237 2023-01-10  902.0  907.0  899.5  903.5   594580  909.35  908.2028  900.7549
## 236 2023-01-11  903.5  911.0  897.0  900.0   700020  907.95  906.7114  902.8909
## 235 2023-01-12  900.0  905.0  900.0  904.0   459290  905.35  906.2184  900.6415
## 234 2023-01-13  904.0  913.0  901.5  908.0   686140  905.15  906.5423  903.2547
## 233 2023-01-16  911.0  962.5  911.0  947.0   835660  909.85  913.8983  906.9470
## 232 2023-01-17  935.0  945.0  923.0  933.0   712370  913.15  917.3713  938.1121
## 231 2023-01-18  933.0  935.0  915.0  934.0   658560  914.45  920.3947  934.1344
## 230 2023-01-19  930.0  935.5  925.5  930.5   411660  916.00  922.2320  934.0298
## 229 2023-01-20  930.0  958.5  930.0  950.0   364610  921.00  927.2808  931.2833
## 228 2023-01-23  950.0  950.0  933.0  950.0   127530  926.00  931.4115  945.8467
## 227 2023-01-24  944.0  956.5  939.0  945.0    98930  930.15  933.8822  949.0784
## 226 2023-01-25  950.0  952.0  943.0  945.0   119240  934.65  935.9036  945.9050
## 225 2023-01-26  950.0  952.0  942.0  942.0   143390  938.45  937.0120  945.2008
## 224 2023-01-27  942.0  949.0  940.0  944.0   122160  942.05  938.2826  942.7103
## 223 2023-01-30  949.5  949.5  926.0  930.0   224130  940.35  936.7766  943.7138
## 222 2023-01-31  925.0  928.0  900.0  920.0   832110  939.05  933.7263  933.0431
## 221 2023-02-01  920.0  946.0  905.0  946.0   385740  940.25  935.9579  922.8943
## 220 2023-02-02  948.0  948.0  930.0  930.0   381700  940.20  934.8747  940.8728
## 219 2023-02-03  938.0  938.0  903.0  919.0   857370  937.10  931.9884  932.4127
## 218 2023-02-06  919.0  924.0  910.0  910.0   344760  933.10  927.9905  921.9763
## 217 2023-02-07  910.0  918.5  908.0  915.0   419150  930.10  925.6286  912.6576
## 216 2023-02-08  906.0  923.0  905.5  909.0   396480  926.50  922.6052  914.4802
## 215 2023-02-09  910.0  910.0  888.0  895.0   583240  921.80  917.5861  910.2161
## 214 2023-02-10  897.0  904.0  897.0  900.0   373650  917.40  914.3886  898.3765
## 213 2023-02-13  900.0  904.0  893.0  895.0   404290  913.90  910.8634  899.6397
## 212 2023-02-14  898.0  908.0  883.0  885.0   623790  910.40  906.1610  896.0296
## 211 2023-02-15  885.5  898.0  878.0  891.0   337440  904.90  903.4044  887.4475
## 210 2023-02-16  886.5  895.0  885.5  888.0   237950  900.70  900.6036  890.2117
## 209 2023-02-17  890.0  890.0  870.0  875.0   392980  896.30  895.9484  888.4908
## 208 2023-02-20  884.0  884.0  860.0  872.0   254050  892.50  891.5942  877.9937
## 207 2023-02-21  885.0  901.5  873.0  897.5   344670  890.75  892.6679  873.3300
## 206 2023-02-22  894.5  897.0  879.0  890.0   439140  888.85  892.1829  892.1366
## 205 2023-02-23  890.0  902.5  881.0  900.0   129070  889.35  893.6042  890.4741
## 204 2023-02-27  895.0  895.0  866.0  894.5   331370  888.80  893.7670  897.8862
## 203 2023-02-28  894.5  900.0  852.0  852.0   945520  884.50  886.1730  895.2514
## 202 2023-03-01  876.0  893.0  860.0  889.0   522690  884.90  886.6870  861.5976
## 201 2023-03-02  893.0  911.0  884.5  890.5   365030  884.85  887.3803  882.9193
## 200 2023-03-03  893.0  898.5  886.0  896.0   202590  885.65  888.9475  888.8178
## 199 2023-03-06  900.0  903.5  886.0  886.0   149540  886.75  888.4116  894.4062
## 198 2023-03-07  888.5  898.5  880.0  880.0   280940  887.55  886.8822  887.8654
## 197 2023-03-08  880.0  894.5  858.0  889.0   175780  886.70  887.2673  881.7454
## 196 2023-03-09  887.5  895.0  871.0  871.0   260620  884.80  884.3096  887.3902
## 195 2023-03-10  878.0  878.0  852.5  875.0    79970  882.30  882.6169  874.6370
## 194 2023-03-13  860.0  899.0  856.0  875.0   162020  880.35  881.2320  874.9195
## 193 2023-03-14  875.0  889.5  860.0  860.0   291630  881.15  877.3717  874.9821
## 192 2023-03-15  868.0  882.5  866.5  874.0   212220  879.65  876.7586  863.3246
## 191 2023-03-16  874.0  879.0  848.0  874.0   227800  878.00  876.2571  871.6311
## 190 2023-03-17  861.0  897.5  861.0  897.0   337780  878.10  880.0285  873.4743
## 189 2023-03-20  884.0  888.5  877.0  883.5   119400  877.85  880.6597  891.7796
## 188 2023-03-21  880.0  901.0  880.0  900.0   556710  879.85  884.1761  885.3373
## 187 2023-03-22  903.0  911.0  891.5  900.0   455430  880.95  887.0532  896.7463
## 186 2023-03-23  893.0  900.0  885.0  900.0   219450  883.85  889.4071  899.2780
## 185 2023-03-24  900.0  909.0  899.5  905.0   360650  886.85  892.2422  899.8398
## 184 2023-03-27  905.0  918.5  898.5  918.0   242430  891.15  896.9254  903.8549
## 183 2023-03-28  918.0  919.5  911.0  915.5   359250  896.70  900.3026  914.8612
## 182 2023-03-29  915.5  915.5  905.0  909.0   514580  900.20  901.8840  915.3582
## 181 2023-03-30  910.0  910.5  901.0  902.5   280950  903.05  901.9960  910.4109
## 180 2023-03-31  907.0  907.0  889.0  889.0   669790  902.25  899.6331  904.2555
## 179 2023-04-03  889.0  891.0  882.0  885.0   407280  902.40  896.9725  892.3852
## 178 2023-04-04  885.0  894.5  862.0  870.0   531640  899.40  892.0684  886.6388
## 177 2023-04-05  870.0  899.0  870.0  896.0   184470  899.00  892.7833  873.6922
## 176 2023-04-11  896.0  903.0  880.5  899.0   422640  898.90  893.9136  891.0498
## 175 2023-04-12  900.0  900.0  886.5  890.0   745240  897.40  893.2020  897.2358
## 174 2023-04-13  886.5  889.0  872.0  884.0   220120  894.00  891.5289  891.6057
## 173 2023-04-14  883.5  904.0  883.5  904.0   158570  892.85  893.7964  885.6877
## 172 2023-04-17  899.5  906.0  883.5  900.0   560250  891.95  894.9243  899.9364
## 171 2023-04-18  900.0  902.5  889.0  900.0   263420  891.70  895.8472  899.9859
## 170 2023-04-19  904.0  904.0  891.0  900.0   180030  892.80  896.6022  899.9969
## 169 2023-04-20  900.0  903.5  899.5  900.0   182300  894.30  897.2200  899.9993
## 168 2023-04-24  902.0  907.0  895.0  900.0   224340  897.30  897.7255  899.9998
## 167 2023-04-25  906.5  906.5  896.0  900.0   241450  897.70  898.1390  900.0000
## 166 2023-04-26  899.0  905.0  885.0  898.0   393860  897.60  898.1137  900.0000
## 165 2023-04-27  898.0  900.5  888.0  888.0   286370  897.40  896.2749  898.4438
## 164 2023-04-28  895.0  901.5  895.0  895.0   401440  898.50  896.0431  890.3175
## 163 2023-05-02  899.5  920.0  899.5  920.0   313680  900.10  900.3989  893.9609
## 162 2023-05-03  920.0  924.0  903.5  907.0   164960  900.80  901.5991  914.2218
## 161 2023-05-04  907.0  918.0  907.0  913.5   323090  902.15  903.7629  908.6026
## 160 2023-05-05  913.5  927.0  913.5  925.0   280470  904.65  907.6242  912.4132
## 159 2023-05-08  927.0  935.0  913.0  920.0   153910  906.65  909.8743  922.2070
## 158 2023-05-09  920.0  935.0  919.5  935.0   422360  910.15  914.4426  920.4897
## 157 2023-05-10  934.0  944.5  929.5  943.0   317220  914.45  919.6349  931.7801
## 156 2023-05-11  943.0  944.0  935.0  941.0   348150  918.75  923.5194  940.5103
## 155 2023-05-12  939.5  940.0  920.0  927.0   115250  922.65  924.1523  940.8913
## 154 2023-05-15  926.0  939.0  922.5  924.5   183600  925.60  924.2155  930.0825
## 153 2023-05-16  922.0  934.0  922.0  930.5    78100  926.65  925.3581  925.7388
## 152 2023-05-17  928.5  940.0  928.5  940.0   234700  929.95  928.0203  929.4435
## 151 2023-05-18  940.0  940.0  926.0  927.0   178980  931.30  927.8348  937.6575
## 150 2023-05-19  933.0  938.5  925.5  929.0   144320  931.70  928.0466  929.3649
## 149 2023-05-22  925.0  940.0  910.5  924.0   179540  932.10  927.3109  929.0810
## 148 2023-05-23  911.0  927.0  911.0  920.0   331700  930.60  925.9816  925.1275
## 147 2023-05-24  918.5  930.0  918.5  929.0   434840  929.20  926.5304  921.1378
## 146 2023-05-25  925.0  934.0  912.5  916.0   348450  926.70  924.6158  927.2554
## 145 2023-05-26  920.0  924.0  901.0  920.0   361060  926.00  923.7766  918.4976
## 144 2023-05-29  921.0  924.5  910.5  920.0   349890  925.55  923.0899  919.6666
## 143 2023-05-30  919.0  922.0  910.0  910.5   350410  923.55  920.8008  919.9260
## 142 2023-05-31  910.5  929.0  910.5  929.0   912220  922.45  922.2916  912.5917
## 141 2023-06-01  916.5  926.0  908.0  910.0   183570  920.75  920.0568  925.3589
## 140 2023-06-02  910.0  920.0  910.0  920.0   105860  919.85  920.0464  913.4082
## 139 2023-06-05  920.0  930.0  915.0  928.0   111750  920.25  921.4925  918.5373
## 138 2023-06-06  928.0  928.0  903.0  905.0   372910  918.75  918.4939  925.9002
## 137 2023-06-07  909.0  925.0  906.0  925.0   135210  918.35  919.6768  909.6378
## 136 2023-06-08  925.0  928.0  913.5  924.0    95250  919.15  920.4629  921.5911
## 135 2023-06-09  917.0  927.5  910.0  910.0   140420  918.15  918.5605  923.4655
## 134 2023-06-13  910.0  928.0  909.0  926.0   155750  918.75  919.9132  912.9880
## 133 2023-06-14  929.0  935.0  910.0  910.0   421100  918.70  918.1108  923.1126
## 132 2023-06-15  915.0  922.0  904.5  922.0   416660  918.00  918.8179  912.9097
## 131 2023-06-16  922.0  925.0  905.5  924.0   522420  919.40  919.7601  919.9828
## 130 2023-06-19  925.0  925.0  907.0  908.0    95120  918.20  917.6219  923.1086
## 129 2023-06-20  920.0  920.0  907.5  915.0   306810  916.90  917.1452  911.3526
## 128 2023-06-21  915.0  924.0  911.5  924.0   392130  918.80  918.3915  914.1906
## 127 2023-06-22  924.0  924.0  908.0  910.0   381790  917.30  916.8658  921.8233
## 126 2023-06-23  910.0  915.0  908.0  909.5   351670  915.85  915.5266  912.6236
## 125 2023-06-26  918.5  933.5  913.0  929.0   394480  917.75  917.9763  910.1931
## 124 2023-06-27  929.0  937.5  915.5  919.0   354350  917.05  918.1624  924.8267
## 123 2023-06-29  928.0  932.0  914.0  916.0   319570  917.65  917.7692  920.2930
## 122 2023-06-30  924.0  929.5  916.0  925.0   295570  917.95  919.0839  916.9526
## 121 2023-07-03  925.0  934.0  923.0  932.0   135640  918.75  921.4323  923.2143
## 120 2023-07-04  932.0  938.5  931.5  938.0   140780  921.75  924.4446  930.0504
## 119 2023-07-05  937.5  937.5  918.0  932.0   272150  923.45  925.8183  936.2360
## 118 2023-07-06  929.5  934.0  922.0  932.0    78010  924.25  926.9423  932.9400
## 117 2023-07-07  932.0  932.0  910.5  910.5   338290  924.30  923.9528  932.2086
## 116 2023-07-10  910.5  919.0  907.0  908.0   276100  924.15  921.0523  915.3172
## 115 2023-07-11  910.0  922.5  910.0  910.5   218700  922.30  919.1337  909.6237
## 114 2023-07-12  923.0  923.0  910.5  910.5   100670  921.45  917.5639  910.3055
## 113 2023-07-13  915.5  933.5  915.5  931.0   295990  922.95  920.0068  910.4569
## 112 2023-07-14  932.0  946.5  932.0  946.5   487820  925.10  924.8238  926.4414
## 111 2023-07-17  946.0  946.0  925.0  925.0   125110  924.40  924.8558  942.0489
## 110 2023-07-18  926.0  935.0  920.5  929.0   103770  923.50  925.6093  928.7832
## 109 2023-07-19  927.5  935.0  921.0  921.0   203680  922.40  924.7712  928.9519
## 108 2023-07-20  920.5  945.5  920.5  940.0   221460  923.20  927.5401  922.7646
## 107 2023-07-21  940.0  947.0  935.0  940.0   197890  926.15  929.8055  936.1754
## 106 2023-07-24  940.0  944.5  923.0  923.0   124780  927.65  928.5682  939.1513
## 105 2023-07-25  929.5  934.5  924.0  924.0   211680  929.00  927.7376  926.5840
## 104 2023-07-26  934.0  937.5  923.0  937.5   297010  931.70  929.5126  924.5734
## 103 2023-07-27  929.0  931.5  922.0  922.0   241620  930.80  928.1467  934.6315
## 102 2023-07-28  922.0  929.5  918.0  918.0   121470  927.95  926.3018  924.8030
## 101 2023-07-31  920.5  931.0  912.0  912.0   299750  926.65  923.7015  919.5096
## 100 2023-08-01  916.0  919.0  913.0  915.0   225140  925.25  922.1194  913.6664
## 99  2023-08-02  915.0  916.5  896.0  904.5   377900  923.60  918.9159  914.7041
## 98  2023-08-03  904.5  913.5  902.0  912.0    69240  920.80  917.6584  906.7643
## 97  2023-08-04  909.0  913.5  905.0  908.5   578090  917.65  915.9933  910.8382
## 96  2023-08-07  908.5  916.5  901.5  901.5   217400  915.50  913.3581  909.0189
## 95  2023-08-08  903.0  907.0  889.0  895.0   277810  912.60  910.0203  903.1685
## 94  2023-08-09  895.5  906.5  888.5  900.0   300280  908.85  908.1984  896.8126
## 93  2023-08-10  900.0  900.0  884.0  887.0   205030  905.35  904.3442  899.2927
## 92  2023-08-11  886.5  896.0  877.0  882.5   130110  901.80  900.3725  889.7278
## 91  2023-08-14  882.5  883.5  862.0  867.0   259740  897.30  894.3048  884.1039
## 90  2023-08-15  870.0  884.5  857.0  860.0 24237539  891.80  888.0675  870.7954
## 89  2023-08-16  865.0  886.0  860.0  886.0   166020  889.95  887.6916  862.3955
## 88  2023-08-17  886.0  889.5  860.5  860.5   284670  884.80  882.7477  880.7621
## 87  2023-08-18  860.0  869.0  857.5  860.0   172170  879.95  878.6117  864.9962
## 86  2023-08-22  856.0  856.5  828.5  829.5   288630  872.75  869.6823  861.1087
## 85  2023-08-23  832.0  834.0  821.5  829.0   241570  866.15  862.2855  836.5141
## 84  2023-08-24  838.0  842.0  830.5  835.0   101140  859.65  857.3245  830.6674
## 83  2023-08-25  839.0  839.0  821.5  825.0   180830  853.45  851.4474  834.0386
## 82  2023-08-29  821.0  825.0  802.5  812.5   581550  846.45  844.3660  827.0057
## 81  2023-08-30  821.5  847.5  813.0  844.0   198940  844.15  844.2995  815.7189
## 80  2023-08-31  839.0  852.0  832.0  833.0   538060  841.45  842.2450  837.7243
## 79  2023-09-01  841.0  846.0  815.0  820.0   102670  834.85  838.2005  834.0483
## 78  2023-09-04  825.0  834.0  813.0  820.0   171540  830.80  834.8913  823.1174
## 77  2023-09-05  824.0  844.0  822.5  840.0   120160  828.80  835.8201  820.6918
## 76  2023-09-06  843.0  856.0  834.5  856.0    92070  831.45  839.4892  835.7154
## 75  2023-09-07  850.0  850.0  821.5  824.0   165670  830.95  836.6730  851.4988
## 74  2023-09-08  825.0  828.5  822.5  824.0   222260  829.85  834.3688  830.1021
## 73  2023-09-11  824.5  826.0  822.0  825.0   113210  829.85  832.6654  825.3541
## 72  2023-09-12  825.0  825.0  818.0  820.0   153500  830.60  830.3626  825.0786
## 71  2023-09-13  821.0  821.0  801.0  801.0   483720  826.30  825.0239  821.1270
## 70  2023-09-14  809.5  812.0  801.0  812.0   346950  824.20  822.6560  805.4662
## 69  2023-09-15  812.0  819.0  803.0  803.0   183220  822.50  819.0821  810.5501
## 68  2023-09-18  808.0  810.0  800.0  810.0   207880  821.50  817.4308  804.6754
## 67  2023-09-19  810.0  810.0  800.0  801.0   112060  817.60  814.4434  808.8185
## 66  2023-09-20  805.0  807.5  789.5  789.5   455730  810.95  809.9083  802.7349
## 65  2023-09-21  798.0  798.0  786.0  793.5   268280  807.90  806.9249  792.4369
## 64  2023-09-22  796.5  807.5  795.0  804.0   132470  805.90  806.3931  793.2641
## 63  2023-09-25  806.0  834.5  804.0  827.5   236370  806.15  810.2307  801.6177
## 62  2023-09-26  828.0  838.0  815.0  838.0   220220  807.95  815.2797  821.7566
## 61  2023-09-27  833.0  852.0  828.0  850.0   745660  812.85  821.5925  834.3955
## 60  2023-09-28  850.0  853.0  841.0  846.5   234910  816.30  826.1211  846.5373
## 59  2023-09-29  849.0  850.0  841.0  843.5   383000  820.35  829.2809  846.5083
## 58  2023-10-02  844.0  848.0  840.0  841.0   920430  823.45  831.4117  844.1675
## 57  2023-10-03  841.5  844.0  821.0  827.0   256070  826.05  830.6095  841.7029
## 56  2023-10-04  825.0  832.5  822.0  826.5   599240  829.75  829.8623  830.2626
## 55  2023-10-05  827.5  831.5  806.0  814.0   572860  831.80  826.9783  827.3349
## 54  2023-10-06  810.5  838.0  808.5  833.0   214040  834.70  828.0731  816.9591
## 53  2023-10-09  830.0  838.5  824.0  830.0   133010  834.95  828.4235  829.4405
## 52  2023-10-10  830.0  844.0  821.0  821.0   109090  833.25  827.0738  829.8758
## 51  2023-10-11  831.0  844.0  823.0  828.0   364740  831.05  827.2422  822.9696
## 50  2023-10-12  829.0  835.0  823.5  830.0   125520  829.40  827.7436  826.8837
## 49  2023-10-13  830.5  831.0  821.5  825.0   706550  827.55  827.2448  829.3085
## 48  2023-10-16  822.0  828.5  802.0  802.0   261590  823.65  822.6548  825.9561
## 47  2023-10-17  808.0  817.5  807.0  817.0   346260  822.65  821.6267  807.3159
## 46  2023-10-18  813.0  821.5  810.0  812.5   446630  821.25  819.9673  814.8511
## 45  2023-10-19  815.0  824.0  808.0  820.0   234570  821.85  819.9732  813.0217
## 44  2023-10-20  819.5  819.5  815.0  817.0   154340  820.25  819.4326  818.4515
## 43  2023-10-23  817.0  824.0  808.0  811.0   154940  818.35  817.8994  817.3221
## 42  2023-10-24  811.0  823.5  810.0  811.0   112810  817.35  816.6450  812.4029
## 41  2023-10-25  811.0  817.5  808.5  817.5   114650  816.30  816.8004  811.3113
## 40  2023-10-26  817.0  817.0  803.5  814.0   100920  814.70  816.2913  816.1267
## 39  2023-10-27  811.0  815.0  803.0  805.5   169280  812.75  814.3292  814.4719
## 38  2023-10-31  810.0  818.5  801.0  801.0   289500  812.65  811.9057  807.4909
## 37  2023-11-03  812.0  815.5  804.0  805.0   285670  811.45  810.6501  802.4404
## 36  2023-11-06  805.0  833.5  805.0  833.5   814450  813.55  814.8047  804.4320
## 35  2023-11-07  832.0  832.0  822.0  829.0   163640  814.45  817.3856  827.0497
## 34  2023-11-08  829.0  829.0  814.0  819.0   257640  814.65  817.6792  828.5672
## 33  2023-11-09  816.0  828.5  816.0  817.0   284460  815.25  817.5557  821.1230
## 32  2023-11-10  824.0  824.0  807.0  821.0   168510  816.25  818.1819  817.9149
## 31  2023-11-13  820.0  825.0  815.0  819.0    41470  816.40  818.3307  820.3154
## 30  2023-11-14  819.0  825.0  815.0  825.0    67660  817.50  819.5433  819.2919
## 29  2023-11-15  825.0  843.0  820.0  839.0  1093810  820.85  823.0809  823.7333
## 28  2023-11-16  840.0  845.0  835.5  842.5   233710  825.00  826.6116  835.6123
## 27  2023-11-17  843.0  861.0  841.0  855.0   221170  830.00  831.7731  840.9716
## 26  2023-11-20  854.0  854.0  829.0  829.0   235580  829.55  831.2689  851.8870
## 25  2023-11-21  835.0  840.0  825.0  827.0   247480  829.35  830.4928  834.0787
## 24  2023-11-22  831.5  832.5  827.0  830.0    54440  830.45  830.4032  828.5708
## 23  2023-11-23  835.0  835.5  823.5  830.0   116120  831.75  830.3299  829.6829
## 22  2023-11-24  830.0  834.5  825.5  834.0   151050  833.05  830.9972  829.9296
## 21  2023-11-28  835.5  847.5  835.5  845.0   267150  835.65  833.5431  833.0968
## 20  2023-11-29  844.0  855.0  839.0  848.0   218950  837.95  836.1717  842.3586
## 19  2023-11-30  839.0  843.0  819.0  819.0   500460  835.95  833.0495  846.7482
## 18  2023-12-01  825.0  832.5  824.0  825.0    70470  834.20  831.5860  825.1574
## 17  2023-12-04  830.0  832.0  821.0  825.0   463440  831.20  830.3885  825.0349
## 16  2023-12-05  832.5  834.5  821.0  823.5   232880  830.65  829.1361  825.0078
## 15  2023-12-06  823.5  828.5  821.0  828.0   102820  830.75  828.9295  823.8346
## 14  2023-12-07  829.5  830.5  823.5  826.0   452380  830.35  828.3969  827.0757
## 13  2023-12-11  822.0  840.0  820.0  835.0   200670  830.85  829.5974  826.2387
## 12  2023-12-12  835.0  839.0  826.0  839.0   153290  831.35  831.3070  833.0558
## 11  2023-12-13  838.0  849.5  830.5  832.0   131710  830.05  831.4330  837.6810
## 10  2023-12-14  836.5  877.0  836.5  875.0   599190  832.75  839.3543  833.2606
## 9   2023-12-15  870.0  912.0  870.0  906.0   900000  841.45  851.4717  865.7379
## 8   2023-12-18  903.0  919.0  886.5  912.5   461200  850.20  862.5677  897.0657
## 7   2023-12-19  910.0  910.0  895.0  903.5   298550  858.05  870.0100  909.0751
## 6   2023-12-20  909.0  917.0  903.5  904.5   446550  866.15  876.2809  904.7371
## 5   2023-12-21  900.0  903.0  891.5  903.0   218920  873.65  881.1389  904.5526
## 4   2023-12-22  902.5  915.0  901.0  904.5   212770  881.50  885.3864  903.3445
## 3   2023-12-27  899.0  903.0  886.5  889.0   298610  886.90  886.0434  904.2436
## 2   2023-12-28  891.0  899.0  887.0  894.0   128600  892.40  887.4901  892.3826
## 1   2023-12-29  893.0  894.0  872.0  872.0   362440  896.40  884.6737  893.6411
##     Index  Pred_LM
## 975     2 972.8858
## 974     3 972.7682
## 973     4 972.6507
## 972     5 972.5332
## 971     6 972.4157
## 970     7 972.2981
## 969     8 972.1806
## 968     9 972.0631
## 967    10 971.9455
## 966    11 971.8280
## 965    12 971.7105
## 964    13 971.5930
## 963    14 971.4754
## 962    15 971.3579
## 961    16 971.2404
## 960    17 971.1228
## 959    18 971.0053
## 958    19 970.8878
## 957    20 970.7702
## 956    21 970.6527
## 955    22 970.5352
## 954    23 970.4177
## 953    24 970.3001
## 952    25 970.1826
## 951    26 970.0651
## 950    27 969.9475
## 949    28 969.8300
## 948    29 969.7125
## 947    30 969.5950
## 946    31 969.4774
## 945    32 969.3599
## 944    33 969.2424
## 943    34 969.1248
## 942    35 969.0073
## 941    36 968.8898
## 940    37 968.7723
## 939    38 968.6547
## 938    39 968.5372
## 937    40 968.4197
## 936    41 968.3021
## 935    42 968.1846
## 934    43 968.0671
## 933    44 967.9496
## 932    45 967.8320
## 931    46 967.7145
## 930    47 967.5970
## 929    48 967.4794
## 928    49 967.3619
## 927    50 967.2444
## 926    51 967.1269
## 925    52 967.0093
## 924    53 966.8918
## 923    54 966.7743
## 922    55 966.6567
## 921    56 966.5392
## 920    57 966.4217
## 919    58 966.3042
## 918    59 966.1866
## 917    60 966.0691
## 916    61 965.9516
## 915    62 965.8340
## 914    63 965.7165
## 913    64 965.5990
## 912    65 965.4815
## 911    66 965.3639
## 910    67 965.2464
## 909    68 965.1289
## 908    69 965.0113
## 907    70 964.8938
## 906    71 964.7763
## 905    72 964.6588
## 904    73 964.5412
## 903    74 964.4237
## 902    75 964.3062
## 901    76 964.1886
## 900    77 964.0711
## 899    78 963.9536
## 898    79 963.8360
## 897    80 963.7185
## 896    81 963.6010
## 895    82 963.4835
## 894    83 963.3659
## 893    84 963.2484
## 892    85 963.1309
## 891    86 963.0133
## 890    87 962.8958
## 889    88 962.7783
## 888    89 962.6608
## 887    90 962.5432
## 886    91 962.4257
## 885    92 962.3082
## 884    93 962.1906
## 883    94 962.0731
## 882    95 961.9556
## 881    96 961.8381
## 880    97 961.7205
## 879    98 961.6030
## 878    99 961.4855
## 877   100 961.3679
## 876   101 961.2504
## 875   102 961.1329
## 874   103 961.0154
## 873   104 960.8978
## 872   105 960.7803
## 871   106 960.6628
## 870   107 960.5452
## 869   108 960.4277
## 868   109 960.3102
## 867   110 960.1927
## 866   111 960.0751
## 865   112 959.9576
## 864   113 959.8401
## 863   114 959.7225
## 862   115 959.6050
## 861   116 959.4875
## 860   117 959.3700
## 859   118 959.2524
## 858   119 959.1349
## 857   120 959.0174
## 856   121 958.8998
## 855   122 958.7823
## 854   123 958.6648
## 853   124 958.5473
## 852   125 958.4297
## 851   126 958.3122
## 850   127 958.1947
## 849   128 958.0771
## 848   129 957.9596
## 847   130 957.8421
## 846   131 957.7245
## 845   132 957.6070
## 844   133 957.4895
## 843   134 957.3720
## 842   135 957.2544
## 841   136 957.1369
## 840   137 957.0194
## 839   138 956.9018
## 838   139 956.7843
## 837   140 956.6668
## 836   141 956.5493
## 835   142 956.4317
## 834   143 956.3142
## 833   144 956.1967
## 832   145 956.0791
## 831   146 955.9616
## 830   147 955.8441
## 829   148 955.7266
## 828   149 955.6090
## 827   150 955.4915
## 826   151 955.3740
## 825   152 955.2564
## 824   153 955.1389
## 823   154 955.0214
## 822   155 954.9039
## 821   156 954.7863
## 820   157 954.6688
## 819   158 954.5513
## 818   159 954.4337
## 817   160 954.3162
## 816   161 954.1987
## 815   162 954.0812
## 814   163 953.9636
## 813   164 953.8461
## 812   165 953.7286
## 811   166 953.6110
## 810   167 953.4935
## 809   168 953.3760
## 808   169 953.2585
## 807   170 953.1409
## 806   171 953.0234
## 805   172 952.9059
## 804   173 952.7883
## 803   174 952.6708
## 802   175 952.5533
## 801   176 952.4358
## 800   177 952.3182
## 799   178 952.2007
## 798   179 952.0832
## 797   180 951.9656
## 796   181 951.8481
## 795   182 951.7306
## 794   183 951.6130
## 793   184 951.4955
## 792   185 951.3780
## 791   186 951.2605
## 790   187 951.1429
## 789   188 951.0254
## 788   189 950.9079
## 787   190 950.7903
## 786   191 950.6728
## 785   192 950.5553
## 784   193 950.4378
## 783   194 950.3202
## 782   195 950.2027
## 781   196 950.0852
## 780   197 949.9676
## 779   198 949.8501
## 778   199 949.7326
## 777   200 949.6151
## 776   201 949.4975
## 775   202 949.3800
## 774   203 949.2625
## 773   204 949.1449
## 772   205 949.0274
## 771   206 948.9099
## 770   207 948.7924
## 769   208 948.6748
## 768   209 948.5573
## 767   210 948.4398
## 766   211 948.3222
## 765   212 948.2047
## 764   213 948.0872
## 763   214 947.9697
## 762   215 947.8521
## 761   216 947.7346
## 760   217 947.6171
## 759   218 947.4995
## 758   219 947.3820
## 757   220 947.2645
## 756   221 947.1470
## 755   222 947.0294
## 754   223 946.9119
## 753   224 946.7944
## 752   225 946.6768
## 751   226 946.5593
## 750   227 946.4418
## 749   228 946.3243
## 748   229 946.2067
## 747   230 946.0892
## 746   231 945.9717
## 745   232 945.8541
## 744   233 945.7366
## 743   234 945.6191
## 742   235 945.5016
## 741   236 945.3840
## 740   237 945.2665
## 739   238 945.1490
## 738   239 945.0314
## 737   240 944.9139
## 736   241 944.7964
## 735   242 944.6788
## 734   243 944.5613
## 733   244 944.4438
## 732   245 944.3263
## 731   246 944.2087
## 730   247 944.0912
## 729   248 943.9737
## 728   249 943.8561
## 727   250 943.7386
## 726   251 943.6211
## 725   252 943.5036
## 724   253 943.3860
## 723   254 943.2685
## 722   255 943.1510
## 721   256 943.0334
## 720   257 942.9159
## 719   258 942.7984
## 718   259 942.6809
## 717   260 942.5633
## 716   261 942.4458
## 715   262 942.3283
## 714   263 942.2107
## 713   264 942.0932
## 712   265 941.9757
## 711   266 941.8582
## 710   267 941.7406
## 709   268 941.6231
## 708   269 941.5056
## 707   270 941.3880
## 706   271 941.2705
## 705   272 941.1530
## 704   273 941.0355
## 703   274 940.9179
## 702   275 940.8004
## 701   276 940.6829
## 700   277 940.5653
## 699   278 940.4478
## 698   279 940.3303
## 697   280 940.2128
## 696   281 940.0952
## 695   282 939.9777
## 694   283 939.8602
## 693   284 939.7426
## 692   285 939.6251
## 691   286 939.5076
## 690   287 939.3901
## 689   288 939.2725
## 688   289 939.1550
## 687   290 939.0375
## 686   291 938.9199
## 685   292 938.8024
## 684   293 938.6849
## 683   294 938.5673
## 682   295 938.4498
## 681   296 938.3323
## 680   297 938.2148
## 679   298 938.0972
## 678   299 937.9797
## 677   300 937.8622
## 676   301 937.7446
## 675   302 937.6271
## 674   303 937.5096
## 673   304 937.3921
## 672   305 937.2745
## 671   306 937.1570
## 670   307 937.0395
## 669   308 936.9219
## 668   309 936.8044
## 667   310 936.6869
## 666   311 936.5694
## 665   312 936.4518
## 664   313 936.3343
## 663   314 936.2168
## 662   315 936.0992
## 661   316 935.9817
## 660   317 935.8642
## 659   318 935.7467
## 658   319 935.6291
## 657   320 935.5116
## 656   321 935.3941
## 655   322 935.2765
## 654   323 935.1590
## 653   324 935.0415
## 652   325 934.9240
## 651   326 934.8064
## 650   327 934.6889
## 649   328 934.5714
## 648   329 934.4538
## 647   330 934.3363
## 646   331 934.2188
## 645   332 934.1013
## 644   333 933.9837
## 643   334 933.8662
## 642   335 933.7487
## 641   336 933.6311
## 640   337 933.5136
## 639   338 933.3961
## 638   339 933.2786
## 637   340 933.1610
## 636   341 933.0435
## 635   342 932.9260
## 634   343 932.8084
## 633   344 932.6909
## 632   345 932.5734
## 631   346 932.4559
## 630   347 932.3383
## 629   348 932.2208
## 628   349 932.1033
## 627   350 931.9857
## 626   351 931.8682
## 625   352 931.7507
## 624   353 931.6331
## 623   354 931.5156
## 622   355 931.3981
## 621   356 931.2806
## 620   357 931.1630
## 619   358 931.0455
## 618   359 930.9280
## 617   360 930.8104
## 616   361 930.6929
## 615   362 930.5754
## 614   363 930.4579
## 613   364 930.3403
## 612   365 930.2228
## 611   366 930.1053
## 610   367 929.9877
## 609   368 929.8702
## 608   369 929.7527
## 607   370 929.6352
## 606   371 929.5176
## 605   372 929.4001
## 604   373 929.2826
## 603   374 929.1650
## 602   375 929.0475
## 601   376 928.9300
## 600   377 928.8125
## 599   378 928.6949
## 598   379 928.5774
## 597   380 928.4599
## 596   381 928.3423
## 595   382 928.2248
## 594   383 928.1073
## 593   384 927.9898
## 592   385 927.8722
## 591   386 927.7547
## 590   387 927.6372
## 589   388 927.5196
## 588   389 927.4021
## 587   390 927.2846
## 586   391 927.1671
## 585   392 927.0495
## 584   393 926.9320
## 583   394 926.8145
## 582   395 926.6969
## 581   396 926.5794
## 580   397 926.4619
## 579   398 926.3444
## 578   399 926.2268
## 577   400 926.1093
## 576   401 925.9918
## 575   402 925.8742
## 574   403 925.7567
## 573   404 925.6392
## 572   405 925.5216
## 571   406 925.4041
## 570   407 925.2866
## 569   408 925.1691
## 568   409 925.0515
## 567   410 924.9340
## 566   411 924.8165
## 565   412 924.6989
## 564   413 924.5814
## 563   414 924.4639
## 562   415 924.3464
## 561   416 924.2288
## 560   417 924.1113
## 559   418 923.9938
## 558   419 923.8762
## 557   420 923.7587
## 556   421 923.6412
## 555   422 923.5237
## 554   423 923.4061
## 553   424 923.2886
## 552   425 923.1711
## 551   426 923.0535
## 550   427 922.9360
## 549   428 922.8185
## 548   429 922.7010
## 547   430 922.5834
## 546   431 922.4659
## 545   432 922.3484
## 544   433 922.2308
## 543   434 922.1133
## 542   435 921.9958
## 541   436 921.8783
## 540   437 921.7607
## 539   438 921.6432
## 538   439 921.5257
## 537   440 921.4081
## 536   441 921.2906
## 535   442 921.1731
## 534   443 921.0556
## 533   444 920.9380
## 532   445 920.8205
## 531   446 920.7030
## 530   447 920.5854
## 529   448 920.4679
## 528   449 920.3504
## 527   450 920.2329
## 526   451 920.1153
## 525   452 919.9978
## 524   453 919.8803
## 523   454 919.7627
## 522   455 919.6452
## 521   456 919.5277
## 520   457 919.4101
## 519   458 919.2926
## 518   459 919.1751
## 517   460 919.0576
## 516   461 918.9400
## 515   462 918.8225
## 514   463 918.7050
## 513   464 918.5874
## 512   465 918.4699
## 511   466 918.3524
## 510   467 918.2349
## 509   468 918.1173
## 508   469 917.9998
## 507   470 917.8823
## 506   471 917.7647
## 505   472 917.6472
## 504   473 917.5297
## 503   474 917.4122
## 502   475 917.2946
## 501   476 917.1771
## 500   477 917.0596
## 499   478 916.9420
## 498   479 916.8245
## 497   480 916.7070
## 496   481 916.5895
## 495   482 916.4719
## 494   483 916.3544
## 493   484 916.2369
## 492   485 916.1193
## 491   486 916.0018
## 490   487 915.8843
## 489   488 915.7668
## 488   489 915.6492
## 487   490 915.5317
## 486   491 915.4142
## 485   492 915.2966
## 484   493 915.1791
## 483   494 915.0616
## 482   495 914.9441
## 481   496 914.8265
## 480   497 914.7090
## 479   498 914.5915
## 478   499 914.4739
## 477   500 914.3564
## 476   501 914.2389
## 475   502 914.1214
## 474   503 914.0038
## 473   504 913.8863
## 472   505 913.7688
## 471   506 913.6512
## 470   507 913.5337
## 469   508 913.4162
## 468   509 913.2987
## 467   510 913.1811
## 466   511 913.0636
## 465   512 912.9461
## 464   513 912.8285
## 463   514 912.7110
## 462   515 912.5935
## 461   516 912.4759
## 460   517 912.3584
## 459   518 912.2409
## 458   519 912.1234
## 457   520 912.0058
## 456   521 911.8883
## 455   522 911.7708
## 454   523 911.6532
## 453   524 911.5357
## 452   525 911.4182
## 451   526 911.3007
## 450   527 911.1831
## 449   528 911.0656
## 448   529 910.9481
## 447   530 910.8305
## 446   531 910.7130
## 445   532 910.5955
## 444   533 910.4780
## 443   534 910.3604
## 442   535 910.2429
## 441   536 910.1254
## 440   537 910.0078
## 439   538 909.8903
## 438   539 909.7728
## 437   540 909.6553
## 436   541 909.5377
## 435   542 909.4202
## 434   543 909.3027
## 433   544 909.1851
## 432   545 909.0676
## 431   546 908.9501
## 430   547 908.8326
## 429   548 908.7150
## 428   549 908.5975
## 427   550 908.4800
## 426   551 908.3624
## 425   552 908.2449
## 424   553 908.1274
## 423   554 908.0099
## 422   555 907.8923
## 421   556 907.7748
## 420   557 907.6573
## 419   558 907.5397
## 418   559 907.4222
## 417   560 907.3047
## 416   561 907.1872
## 415   562 907.0696
## 414   563 906.9521
## 413   564 906.8346
## 412   565 906.7170
## 411   566 906.5995
## 410   567 906.4820
## 409   568 906.3644
## 408   569 906.2469
## 407   570 906.1294
## 406   571 906.0119
## 405   572 905.8943
## 404   573 905.7768
## 403   574 905.6593
## 402   575 905.5417
## 401   576 905.4242
## 400   577 905.3067
## 399   578 905.1892
## 398   579 905.0716
## 397   580 904.9541
## 396   581 904.8366
## 395   582 904.7190
## 394   583 904.6015
## 393   584 904.4840
## 392   585 904.3665
## 391   586 904.2489
## 390   587 904.1314
## 389   588 904.0139
## 388   589 903.8963
## 387   590 903.7788
## 386   591 903.6613
## 385   592 903.5438
## 384   593 903.4262
## 383   594 903.3087
## 382   595 903.1912
## 381   596 903.0736
## 380   597 902.9561
## 379   598 902.8386
## 378   599 902.7211
## 377   600 902.6035
## 376   601 902.4860
## 375   602 902.3685
## 374   603 902.2509
## 373   604 902.1334
## 372   605 902.0159
## 371   606 901.8984
## 370   607 901.7808
## 369   608 901.6633
## 368   609 901.5458
## 367   610 901.4282
## 366   611 901.3107
## 365   612 901.1932
## 364   613 901.0757
## 363   614 900.9581
## 362   615 900.8406
## 361   616 900.7231
## 360   617 900.6055
## 359   618 900.4880
## 358   619 900.3705
## 357   620 900.2530
## 356   621 900.1354
## 355   622 900.0179
## 354   623 899.9004
## 353   624 899.7828
## 352   625 899.6653
## 351   626 899.5478
## 350   627 899.4302
## 349   628 899.3127
## 348   629 899.1952
## 347   630 899.0777
## 346   631 898.9601
## 345   632 898.8426
## 344   633 898.7251
## 343   634 898.6075
## 342   635 898.4900
## 341   636 898.3725
## 340   637 898.2550
## 339   638 898.1374
## 338   639 898.0199
## 337   640 897.9024
## 336   641 897.7848
## 335   642 897.6673
## 334   643 897.5498
## 333   644 897.4323
## 332   645 897.3147
## 331   646 897.1972
## 330   647 897.0797
## 329   648 896.9621
## 328   649 896.8446
## 327   650 896.7271
## 326   651 896.6096
## 325   652 896.4920
## 324   653 896.3745
## 323   654 896.2570
## 322   655 896.1394
## 321   656 896.0219
## 320   657 895.9044
## 319   658 895.7869
## 318   659 895.6693
## 317   660 895.5518
## 316   661 895.4343
## 315   662 895.3167
## 314   663 895.1992
## 313   664 895.0817
## 312   665 894.9642
## 311   666 894.8466
## 310   667 894.7291
## 309   668 894.6116
## 308   669 894.4940
## 307   670 894.3765
## 306   671 894.2590
## 305   672 894.1415
## 304   673 894.0239
## 303   674 893.9064
## 302   675 893.7889
## 301   676 893.6713
## 300   677 893.5538
## 299   678 893.4363
## 298   679 893.3187
## 297   680 893.2012
## 296   681 893.0837
## 295   682 892.9662
## 294   683 892.8486
## 293   684 892.7311
## 292   685 892.6136
## 291   686 892.4960
## 290   687 892.3785
## 289   688 892.2610
## 288   689 892.1435
## 287   690 892.0259
## 286   691 891.9084
## 285   692 891.7909
## 284   693 891.6733
## 283   694 891.5558
## 282   695 891.4383
## 281   696 891.3208
## 280   697 891.2032
## 279   698 891.0857
## 278   699 890.9682
## 277   700 890.8506
## 276   701 890.7331
## 275   702 890.6156
## 274   703 890.4981
## 273   704 890.3805
## 272   705 890.2630
## 271   706 890.1455
## 270   707 890.0279
## 269   708 889.9104
## 268   709 889.7929
## 267   710 889.6754
## 266   711 889.5578
## 265   712 889.4403
## 264   713 889.3228
## 263   714 889.2052
## 262   715 889.0877
## 261   716 888.9702
## 260   717 888.8527
## 259   718 888.7351
## 258   719 888.6176
## 257   720 888.5001
## 256   721 888.3825
## 255   722 888.2650
## 254   723 888.1475
## 253   724 888.0300
## 252   725 887.9124
## 251   726 887.7949
## 250   727 887.6774
## 249   728 887.5598
## 248   729 887.4423
## 247   730 887.3248
## 246   731 887.2073
## 245   732 887.0897
## 244   733 886.9722
## 243   734 886.8547
## 242   735 886.7371
## 241   736 886.6196
## 240   737 886.5021
## 239   738 886.3845
## 238   739 886.2670
## 237   740 886.1495
## 236   741 886.0320
## 235   742 885.9144
## 234   743 885.7969
## 233   744 885.6794
## 232   745 885.5618
## 231   746 885.4443
## 230   747 885.3268
## 229   748 885.2093
## 228   749 885.0917
## 227   750 884.9742
## 226   751 884.8567
## 225   752 884.7391
## 224   753 884.6216
## 223   754 884.5041
## 222   755 884.3866
## 221   756 884.2690
## 220   757 884.1515
## 219   758 884.0340
## 218   759 883.9164
## 217   760 883.7989
## 216   761 883.6814
## 215   762 883.5639
## 214   763 883.4463
## 213   764 883.3288
## 212   765 883.2113
## 211   766 883.0937
## 210   767 882.9762
## 209   768 882.8587
## 208   769 882.7412
## 207   770 882.6236
## 206   771 882.5061
## 205   772 882.3886
## 204   773 882.2710
## 203   774 882.1535
## 202   775 882.0360
## 201   776 881.9185
## 200   777 881.8009
## 199   778 881.6834
## 198   779 881.5659
## 197   780 881.4483
## 196   781 881.3308
## 195   782 881.2133
## 194   783 881.0958
## 193   784 880.9782
## 192   785 880.8607
## 191   786 880.7432
## 190   787 880.6256
## 189   788 880.5081
## 188   789 880.3906
## 187   790 880.2730
## 186   791 880.1555
## 185   792 880.0380
## 184   793 879.9205
## 183   794 879.8029
## 182   795 879.6854
## 181   796 879.5679
## 180   797 879.4503
## 179   798 879.3328
## 178   799 879.2153
## 177   800 879.0978
## 176   801 878.9802
## 175   802 878.8627
## 174   803 878.7452
## 173   804 878.6276
## 172   805 878.5101
## 171   806 878.3926
## 170   807 878.2751
## 169   808 878.1575
## 168   809 878.0400
## 167   810 877.9225
## 166   811 877.8049
## 165   812 877.6874
## 164   813 877.5699
## 163   814 877.4524
## 162   815 877.3348
## 161   816 877.2173
## 160   817 877.0998
## 159   818 876.9822
## 158   819 876.8647
## 157   820 876.7472
## 156   821 876.6297
## 155   822 876.5121
## 154   823 876.3946
## 153   824 876.2771
## 152   825 876.1595
## 151   826 876.0420
## 150   827 875.9245
## 149   828 875.8070
## 148   829 875.6894
## 147   830 875.5719
## 146   831 875.4544
## 145   832 875.3368
## 144   833 875.2193
## 143   834 875.1018
## 142   835 874.9843
## 141   836 874.8667
## 140   837 874.7492
## 139   838 874.6317
## 138   839 874.5141
## 137   840 874.3966
## 136   841 874.2791
## 135   842 874.1615
## 134   843 874.0440
## 133   844 873.9265
## 132   845 873.8090
## 131   846 873.6914
## 130   847 873.5739
## 129   848 873.4564
## 128   849 873.3388
## 127   850 873.2213
## 126   851 873.1038
## 125   852 872.9863
## 124   853 872.8687
## 123   854 872.7512
## 122   855 872.6337
## 121   856 872.5161
## 120   857 872.3986
## 119   858 872.2811
## 118   859 872.1636
## 117   860 872.0460
## 116   861 871.9285
## 115   862 871.8110
## 114   863 871.6934
## 113   864 871.5759
## 112   865 871.4584
## 111   866 871.3409
## 110   867 871.2233
## 109   868 871.1058
## 108   869 870.9883
## 107   870 870.8707
## 106   871 870.7532
## 105   872 870.6357
## 104   873 870.5182
## 103   874 870.4006
## 102   875 870.2831
## 101   876 870.1656
## 100   877 870.0480
## 99    878 869.9305
## 98    879 869.8130
## 97    880 869.6955
## 96    881 869.5779
## 95    882 869.4604
## 94    883 869.3429
## 93    884 869.2253
## 92    885 869.1078
## 91    886 868.9903
## 90    887 868.8728
## 89    888 868.7552
## 88    889 868.6377
## 87    890 868.5202
## 86    891 868.4026
## 85    892 868.2851
## 84    893 868.1676
## 83    894 868.0501
## 82    895 867.9325
## 81    896 867.8150
## 80    897 867.6975
## 79    898 867.5799
## 78    899 867.4624
## 77    900 867.3449
## 76    901 867.2273
## 75    902 867.1098
## 74    903 866.9923
## 73    904 866.8748
## 72    905 866.7572
## 71    906 866.6397
## 70    907 866.5222
## 69    908 866.4046
## 68    909 866.2871
## 67    910 866.1696
## 66    911 866.0521
## 65    912 865.9345
## 64    913 865.8170
## 63    914 865.6995
## 62    915 865.5819
## 61    916 865.4644
## 60    917 865.3469
## 59    918 865.2294
## 58    919 865.1118
## 57    920 864.9943
## 56    921 864.8768
## 55    922 864.7592
## 54    923 864.6417
## 53    924 864.5242
## 52    925 864.4067
## 51    926 864.2891
## 50    927 864.1716
## 49    928 864.0541
## 48    929 863.9365
## 47    930 863.8190
## 46    931 863.7015
## 45    932 863.5840
## 44    933 863.4664
## 43    934 863.3489
## 42    935 863.2314
## 41    936 863.1138
## 40    937 862.9963
## 39    938 862.8788
## 38    939 862.7613
## 37    940 862.6437
## 36    941 862.5262
## 35    942 862.4087
## 34    943 862.2911
## 33    944 862.1736
## 32    945 862.0561
## 31    946 861.9386
## 30    947 861.8210
## 29    948 861.7035
## 28    949 861.5860
## 27    950 861.4684
## 26    951 861.3509
## 25    952 861.2334
## 24    953 861.1158
## 23    954 860.9983
## 22    955 860.8808
## 21    956 860.7633
## 20    957 860.6457
## 19    958 860.5282
## 18    959 860.4107
## 17    960 860.2931
## 16    961 860.1756
## 15    962 860.0581
## 14    963 859.9406
## 13    964 859.8230
## 12    965 859.7055
## 11    966 859.5880
## 10    967 859.4704
## 9     968 859.3529
## 8     969 859.2354
## 7     970 859.1179
## 6     971 859.0003
## 5     972 858.8828
## 4     973 858.7653
## 3     974 858.6477
## 2     975 858.5302
## 1     976 858.4127
LMdata$Logret <- SM_log_returns

Generate Linear Regression on Log Returns

data$Index <- 1:nrow(data)
lm_model <- lm(Close ~ Index, data = data)
data$Pred_LM <- predict(lm_model)

ggplot(data, aes(x = Index, y = Close)) +
  geom_line(color = "blue") +
  geom_line(aes(y = Pred_LM), color = "orange") +
  labs(title = "Linear Regression on Close Prices")

Generate Regression Evaluation Metrics

# Actual and predicted values
actual <- LMdata$Close
predicted <- LMdata$Pred_LM

# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- summary(lm_model)$r.squared

# Print results
cat("Linear Regression Evaluation Metrics:\n")
## Linear Regression Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 70.034
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 57.9517
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.1827

Generate ARIMA Forecast

auto_fit <- auto.arima(SM_log_returns)
forecast_arima <- forecast(auto_fit, h = 30)
autoplot(forecast_arima) + labs(title = "ARIMA Forecast")

Generate ARIMA Evaluation Metrics

# Fit the ARIMA model
auto_fit <- auto.arima(SM_log_returns)

# Generate forecasts for the next 30 periods
forecast_arima <- forecast(auto_fit, h = 30)

# Assuming you have a test set (actual values for comparison)
# Replace 'actual_test_values' with the actual values for the test period
actual_test_values <- SM_log_returns[(length(SM_log_returns)-29):length(SM_log_returns)]

# Get the predicted values from the forecast
predicted_values <- forecast_arima$mean

# RMSE (Root Mean Squared Error)
rmse <- sqrt(mean((predicted_values - actual_test_values)^2))

# MAE (Mean Absolute Error)
mae <- mean(abs(predicted_values - actual_test_values))

# R-squared (Coefficient of Determination)
sst <- sum((actual_test_values - mean(actual_test_values))^2)  # Total Sum of Squares
sse <- sum((predicted_values - actual_test_values)^2)  # Sum of Squares due to Error
rsq <- 1 - (sse / sst)

# Print the evaluation metrics
cat("RMSE: ", rmse, "\n")
## RMSE:  0.01640586
cat("MAE: ", mae, "\n")
## MAE:  0.01088867
cat("R-squared: ", rsq, "\n")
## R-squared:  -0.01038861

Generate Table for the Results of Each Model

library(knitr)

results <- data.frame(
  Model = c("SMA", "EMA", "SES", "Holt Method", "Holt-Winters Method", "Kalman Filter", "Regression", "ARIMA"),
  RMSE = c(0.0205, 0.0219, 0.0163, 0.0165, 0.0163, 0.0164, 918.8477, 0.0164),
  MAE = c(0.0149,0.0159, 0.0106, 0.0109, 0.011, 0.0109, 915.5817, 0.1099),
  R_squared = c(0.0884, -0.0409, 0, -0.022, 0.0047, -0.017, 0, -0.0104)
)