In Partial Fulfillment of the Course Applied Regression and Time
Series Analysis for Financial Research
FINARTS K31
Submitted by Group 1:
ASIS, ALYSSA MARI E.
KAGAOAN, SOFIA MARIE Q.
SABADO, JAMES ETHAN R.
Submitted to:
Mr. Dioscoro P. Baylon Jr.Â
SM Investments Corporation (SMIC) is one of the leading conglomerates in the Philippines, recognized for its diversified operations and significant contributions to the country’s economic growth. Founded by Henry Sy Sr., SMIC has evolved from a small shoe store in Manila to a major holding company with interests spanning various industries. Its core businesses include retail, banking, and property development, which are central to its sustained growth and influence in the Philippine economy (SM Investments Corporation, n.d.).
In the retail sector, SMIC operates one of the largest and most extensive networks of department stores, supermarkets, and specialty stores in the country through SM Retail, Inc. The company is known for its SM Supermalls, a chain of large shopping malls that serve as commercial, entertainment, and lifestyle hubs across the Philippines. As of recent years, SM Retail includes notable brands such as SM Store, SM Supermarket, and specialty brands like Watsons and Ace Hardware (SM Investments Corporation, n.d.).
In addition to retail, SMIC has a strong presence in the financial sector through its equity in BDO Unibank, the largest bank in the Philippines in terms of total assets, and China Banking Corporation. These institutions provide a broad range of financial services, including consumer and corporate banking, insurance, and investment services (BDO Unibank, 2022).
Furthermore, SMIC is a key player in real estate through SM Prime Holdings, one of Southeast Asia’s largest integrated property developers. SM Prime is involved in residential development, commercial properties, hotels, and convention centers. It has also been expanding its sustainability and green initiatives, integrating environmentally friendly practices into its developments (SM Prime Holdings, 2022).
Overall, SM Investments Corporation stands as a pillar of the Philippine business landscape, not only for its commercial success but also for its commitment to innovation, inclusive growth, and sustainable development.
Relevance of the time series analysis Forecasting stock prices and returns is a critical function that supports the strategic and financial decisions of various stakeholders including investors, corporate management, and financial regulators. These projections offer a forward-looking view of a company’s performance, market trends, and economic indicators, which help reduce uncertainty and support better planning. By anticipating potential fluctuations in the stock market, stakeholders can implement more proactive and informed strategies that align with both short-term goals and long-term sustainability.
For Investors Investors, both institutional and individual, depend heavily on financial forecasting to assess potential returns and risks associated with their investment portfolios. Accurate stock price predictions assist them in determining the optimal time to buy, hold, or sell shares. This reduces the likelihood of losses caused by market volatility and helps achieve better risk-adjusted returns. Technical analysis, which involves examining charts, price trends, and trading volumes, is commonly used to detect patterns and make short-term predictions. On the other hand, fundamental analysis considers a company’s financial health, competitive position, management effectiveness, and macroeconomic conditions to evaluate whether a stock is undervalued or overvalued (Boyles, 2022). These tools, when combined, enable investors to make evidence-based decisions that reflect both the historical context and future outlook of a stock.
For Management For company executives and financial planners, forecasting plays a vital role in corporate governance and long-term planning. It enables the leadership team to set realistic targets, assess internal capabilities, and adapt strategies based on anticipated changes in the financial landscape. For example, if forecasts suggest a decline in the company’s stock price due to industry trends or internal inefficiencies, management can respond by enhancing cost efficiency, diversifying revenue streams, or increasing investor engagement. Furthermore, forecasts help in capital budgeting, determining dividend policies, and evaluating mergers or expansion opportunities (Saini, 2021). These insights empower managers to act decisively and maintain competitiveness while also satisfying shareholder expectations.
For Regulators Financial regulators and policymakers rely on stock market forecasting as a tool to oversee market stability and economic health. Forecasts can signal upcoming downturns or speculative bubbles, prompting preventive interventions to avoid broader economic disruptions. For instance, a consistent misalignment between market expectations and real economic output may indicate irrational investor behavior or underlying structural issues. By analyzing forecast models and trends, regulators can introduce policy measures such as adjusting interest rates, tightening disclosure requirements, or imposing trade restrictions to mitigate systemic risks and ensure fair trading environments (Krylov, 2018). These practices help maintain investor confidence and safeguard the integrity of financial markets.
With that, forecasting stock prices and returns is not merely a technical exercise, it is a powerful tool that equips stakeholders with the knowledge needed to navigate the complexities of modern financial systems. Investors use it to enhance portfolio performance, management relies on it to align operations with market dynamics, and regulators depend on it to protect financial stability. Together, these practices promote transparency, reduce information asymmetry, and foster confidence in the financial ecosystem. Ultimately, accurate forecasting supports efficient capital allocation, sustainable business growth, and overall economic development.
This case study will apply several methods of time series analysis to predict the stock prices of SM Investments Corporation, namely: (1) Simple Moving Average, (2) Exponential Moving Average, (3) Simple Exponential Smoothing, (4) Holt Method, (5) Holt-Winters Method, (6) Kalman Filter, (7) Regression (OLS), and (8) ARIMA. Afterwards, diagnostics will be ran to assess each model’s performance. The diagnostics include the RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), and R-squared.
Figure 1.1. Simple Moving Average (SMA) Method
Figure 1.2. Simple Moving Average (SMA) Method (Diagnostics)
## SMA Evaluation Metrics:
## RMSE: 25.0938
## MAE: 17.8933
## R-squared: 0.8925
In analyzing the Simple Moving Average method, we can see that the Root Mean Squared Error (RMSE) of 25.0938 indicates the model’s predictions deviate from actual values by about 25 units on average, with larger errors having a more significant impact due to the squaring involved. Meanwhile, the Mean Absolute Error (MAE) of 17.8933 displays a more direct and straightforward measure, showing an average deviation of nearly 18 units. The high R-squared value of 0.8925 suggests that the model explains about 89.25% of the variability in the data, meaning that it is a strong fit.
The stock price chart from 2020 to 2024 plots the actual stock price in blue against a 10-day simple moving average (SMA) represented in red. The SMA effectively smooths the price data, providing a clearer view of overall trends by averaging out daily fluctuations. Visually, the red line follows the general direction of the blue line but with noticeably less volatility, which reflects the averaging effect. Noticeable deviations between the two lines indicate times wherein the actual price moves sharply away from its recent average. The SMA appears to generally capture major trends, such as the rise in early 2021 and the subsequent decline through 2022, while filtering out some of the shorter-term noise.
Overall, the model shows good performance but could benefit from addressing these outliers to improve its accuracy.
Figure 2.1. Exponential Moving Average (EMA) Method
Figure 2.1 displays the movements of the stock prices in periods 2020 to 2024, with a 10-day exponential moving average overlaid. Throughout the observed period, the stock price experienced significant volatility, which is evident in the alternating upward and downward trend that can be seen. The green line represents the 10-day exponential moving average, which serves to smooth out the price fluctuations and provide a clearer indication of the overall trend. Overall, it aligns heavily with the findings in the evaluation metrics.
Figure 2.2. Exponential Moving Average (EMA) Method (Diagnostics)
## EMA Evaluation Metrics:
## RMSE: 21.1418
## MAE: 15.0074
## R-squared: 0.9237
The Exponential Moving Average (EMA) model shows a solid forecasting performance based on the given evaluation metrics. The Root Mean Squared Error (RMSE) is 21.14, which indicates that, on average, the forecasted values deviate from the actual stock prices by about 21 units. This metric focuses more weight to larger errors, so it suggests that while most predictions are close, a few of them may be shown to be farther off. The Mean Absolute Error (MAE) is 15.01, meaning that the typical error between the forecast and the actual values is around 15 units. This is a relatively more balanced measure that treats all errors equally. Lastly, the R-squared value is 0.9237, which implies that the EMA model explains approximately 92% of the variance in the actual stock prices.
Overall, these results suggest that the EMA model captures the trend well and provides reasonably accurate forecasts.
Figure 3.1. Simple Exponential Smoothing (SES)
Method
Figure 3.1 displays the stock price’s movement over time, with a forecast for the subsequent 30 days generated using simple exponential smoothing. The historical data (represented by the black line) depicts considerable volatility, evident in the rapid increases and decreases in price. Near the beginning of the sequence, the price experiences a sharp decline before recovering and fluctuating within a range between approximately 800 and 1100. As time progresses towards the present, the price generally trends downward. The blue line indicates the forecast for the next 30 days, showing an initial increase followed by a decrease and then stabilization. The grey area around the forecast represents the confidence interval, which widens as the forecast extends further into the future, which may reflect increased uncertainty.
Figure 3.2. Simple Exponential Smoothing (SES) Method (Diagnostics)
## SES Evaluation Metrics:
## RMSE: 47.0655
## MAE: 34.7557
## R-squared: -1.1963
The Simple Exponential Smoothing (SES) model appears to perform poorly based on its evaluation metrics. The Root Mean Squared Error (RMSE) is 47.07, which indicates that, on average, the forecasted values deviate from the actual stock prices by about 47 units. This high value suggests the model struggles to closely and accurately track the actual price movements. The Mean Absolute Error (MAE) is 34.76, which shows that the typical forecast error is around 35 units—more than double the error of the EMA model. Furthermore, the R-squared value is -1.1963, which signals that the SES model performs significantly worse than simply predicting the mean of the actual values. A negative R-squared value reflects an overall poor fit and suggests that the model fails to capture the underlying pattern of the data. To conclude, the evaluation of the metrics indicate that the SES model is not well-suited for forecasting this particular stock’s behavior.
Figure 4.1. Holt Method
The graph shows a Holt-Winters forecast for a stock price over approximately 200 time periods, with a focus on a 30-day forecast that considers weekly seasonality. The historical stock price data, represented by the black line, shows considerable volatility with upward and downward trends. The forecast itself, indicated by the blue line within the grey shaded area, predicts a slight increase in stock price over the next 30 days, but the shaded area suggests a high degree of uncertainty in this prediction.
Figure 4.2. Holt Method (Diagnostics)
## Holt Method Evaluation Metrics:
## RMSE: 50.6396
## MAE: 38.2514
## R-squared: -1.5426
The Holt’s Linear Trend model shows weak forecasting performance based on both the numerical metrics and the corresponding graph. The RMSE of 50.64 and MAE of 38.25 indicate a high average error in the model’s predictions, suggesting that it struggles to accurately follow the actual stock price movements. More notably, the R-squared value of -1.5426 implies that the model performs worse than a naive approach of simply predicting the mean, and it fails to account for the variability in the data. The graph supports these findings. The historical stock price, shown in black, exhibits high volatility and irregular patterns. In contrast, the 30-day forecast, shown in blue, appears unstable and inconsistent with recent trends. The forecast initially increases, then sharply declines, with a wide confidence interval (shaded in grey) indicating substantial uncertainty. Overall, while the model attempts to capture trend components, it does not effectively handle the volatility and complexity present in the stock price data, limiting its usefulness for forecasting in this case.
Figure 5.1. Holt-Winters Method
The graph shows how the Holt-Winters method (using an additive model with weekly seasonality) was applied to forecast the stock prices of SM Investments Corporation. In the plot, we can see the actual stock prices as the black line, while the blue section on the right side represents the forecasted values. The shaded area around the forecast indicates the confidence interval, which basically shows the level of uncertainty in the prediction—the wider the band, the less confident the model is as it predicts further into the future.
Figure 5.2. Holt-Winters Method (Diagnostics)
## Holt-Winters Evaluation Metrics:
## RMSE: 40.2161
## MAE: 27.1371
## R-squared: -0.6036
Looking at the evaluation metrics, we see that the RMSE (Root Mean Square Error) is 40.22 and the MAE (Mean Absolute Error) is 27.14. These values tell us how far off the model’s predictions are from the actual prices. RMSE gives more weight to bigger errors, while MAE gives the average size of all the errors. The numbers are not super high, but they are not very low either, especially considering how unpredictable stock prices like SM’s can be.
The biggest concern here is the R-squared value, which is -0.6036. R-squared normally tells us how well a model explains the variation in the data, and we usually want it close to 1. A negative R-squared, though, means the model is actually doing worse than if we had just guessed the average price for every point. So in this case, the Holt-Winters method didn’t really capture the pattern in SM Investments Corporation’s stock prices very well.
With that, while Holt-Winters is often helpful for forecasting data with trends and seasonality, it does not seem to be the best fit for this particular dataset. Stock prices tend to be noisy and volatile, so a more flexible or advanced model might give more accurate predictions.
Figure 6.1. Kalman Filter Method (Smoothed Close
Prices)
The graph shows the results of applying the Kalman Filter to smooth the closing stock prices of SM Investments Corporation over time. The Kalman Filter is a popular algorithm used in time series analysis and control systems because of its ability to estimate values from noisy data. In this case, the purple line represents the smoothed version of the closing prices, which helps reduce short-term fluctuations and highlights the overall trend more clearly. This kind of smoothing is especially useful for financial data like stock prices, which tend to be volatile and noisy.
The evaluation metrics shown below the graph are based on the last 30 days of data. The Root Mean Square Error (RMSE) is 14.777, and the Mean Absolute Error (MAE) is 9.8251. These values are significantly lower compared to the results from the Holt-Winters model, which suggests that the Kalman Filter provided a more accurate estimate of the true price trend during this period. RMSE gives us a sense of how far off the model’s predictions are on average, especially emphasizing larger errors, while MAE gives a straightforward average of how much the predictions differ from actual prices.
Most importantly, the R-squared value is 0.7835, which is quite strong. This metric shows how well the model explains the variability of the actual data, and a value closer to 1 is ideal. In this case, an R-squared of around 0.78 means that the Kalman Filter was able to capture the underlying trend of the stock price quite effectively, especially compared to the Holt-Winters method, which had a negative R-squared.
Therefore, the Kalman Filter appears to be a much better fit for modeling the recent price movements of SM Investments Corporation. Its ability to handle noise and continuously update predictions based on new data makes it a valuable tool for smoothing and tracking financial time series like stock prices.
Figure 6.2. Kalman Filter Method (Diagnostics)
## Kalman Filter Evaluation Metrics (Last 30 Days):
## RMSE: 14.777
## MAE: 9.8251
## R-squared: 0.7835
This graph specifically presents the Kalman Filter’s performance over the most recent 30-day window. The gray line shows the actual observed stock prices of SM Investments Corporation during that period, while the purple line represents the smoothed predictions or estimates generated by the Kalman Filter.
From the visual pattern, we can observe that the Kalman Filter effectively captures the underlying trend of the stock movement during this time. In the first half of the graph (around mid-November to early December), both lines show moderate fluctuations, and the filter manages to follow the price movements quite closely, albeit with a slightly lagged response in rapid changes. This is a normal behavior for smoothing models, which trade off a bit of responsiveness to reduce noise.
In the second half (early to mid-December), the stock undergoes a sharp upward surge followed by a slight dip toward the end of the month. The Kalman Filter tracks this sharp movement with noticeable accuracy, although it slightly underestimates the peaks and smooths over smaller short-term oscillations.
The performance metrics provided at the top—RMSE: 14.78, MAE: 9.83, and R²: 0.7835—quantitatively confirm the filter’s effectiveness: (1) The RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) values are relatively low, suggesting modest deviations between the actual prices and the filtered estimates. (2)The R-squared value of 0.7835 reflects a strong goodness of fit, meaning the filter successfully explains around 78% of the variance in the stock price during this short-term period.
Therefore, the graph gives a zoomed-in, short-term view of how well the Kalman Filter models the most recent stock price activity. It complements the earlier long-term chart, which shows how the filter smooths out closing prices over years. Together, both visuals confirm that the Kalman Filter is a reliable method for tracking stock trends in both long-term trend detection and short-term forecasting accuracy.
Figure 7.1. Regression Method (Linear Regression on Close
Prices)
The graph above illustrates the application of linear regression to model the closing stock prices of SM Investments Corporation over time. In this visualization, the blue line represents the actual historical closing prices, while the orange line corresponds to the linear regression trendline fitted to the data. The x-axis is indexed over time (not labeled by date but by data point index), and the y-axis represents the stock’s closing price.
From the graph, it is evident that the linear regression line has a slightly downward slope, indicating a general decline in the closing price of the stock over the full dataset. However, the actual price data fluctuates significantly above and below the regression line, which suggests a high level of volatility and non-linearity in the stock’s movement, something that linear regression does not capture well due to its simplicity and assumption of a constant linear relationship.
Figure 7.2. Regression Method (Diagnostics)
## Linear Regression Evaluation Metrics:
## RMSE: 70.03
## MAE: 57.9599
## R-squared: 0.1827
The accompanying evaluation metrics further support this observation. The Root Mean Square Error (RMSE) is 70.03, and the Mean Absolute Error (MAE) is 57.96, both of which are relatively high. These values indicate that the predictions made by the linear regression model deviate considerably from the actual values. RMSE, in particular, penalizes larger errors more heavily, and such a high value implies that the model performs poorly in estimating more extreme price movements. MAE offers a more direct interpretation of the average prediction error, which again is quite substantial here.
Most telling is the R-squared (R²) value of 0.1827, which signifies that the linear regression model explains only about 18% of the variance in the actual closing prices. This is a rather weak performance and highlights that a simple linear model is insufficient for modeling such a complex, dynamic financial time series. Financial data like stock prices typically exhibit nonlinear patterns, trends, and abrupt shifts due to market sentiment, macroeconomic events, and investor behavior—all of which cannot be captured by a straight-line model.
Figure 8.1. ARIMA Method
The graph presents the ARIMA (AutoRegressive Integrated Moving Average) model’s forecast of the closing stock prices for SM Investments Corporation. This time series model attempts to capture patterns in the data such as trends, cycles, and seasonality in order to make predictions. The chart shows historical stock price data (black line), followed by a forecast (blue line) extending into the future. The shaded blue area around the forecast represents the confidence interval, indicating the uncertainty of the prediction—the wider it gets, the less certain the model is.
Figure 8.2. ARIMA Method (Diagnostics)
## RMSE: 39.07064
## MAE: 36.26935
## R-squared: -0.5135253
The ARIMA model’s evaluation metrics indicate moderate predictive accuracy, with an RMSE of 39.07 and an MAE of 36.27. These values are significantly lower than those of the linear regression model, suggesting that the ARIMA model fits the data more accurately and handles time-based fluctuations better. Specifically, the MAE indicates that, on average, the ARIMA model’s predicted closing price deviates by about 36 points from the actual value, which is a marked improvement over the linear regression model’s MAE of nearly 58.
However, the R-squared value of -0.5135 is unusually low and negative. In typical regression models, R-squared values range from 0 to 1, where higher values indicate a better fit. A negative R-squared means the model performs worse than simply predicting the mean of the data, which suggests that while the ARIMA model captures short-term trends reasonably well (as reflected in the lower RMSE and MAE), it may not effectively model the overall structure or variability of the dataset. This could indicate overfitting or that the model doesn’t align well with the broader time span of the stock price data.
Overall, the ARIMA model performs better than linear regression in minimizing average and squared errors, suggesting it adapts more effectively to stock price fluctuations. However, the negative R-squared value reveals significant limitations, such as an inability to explain the full variability of the data or a lack of generalizability. This mixed result highlights that while ARIMA can be a powerful tool for forecasting time series data, it requires careful parameter tuning and may still fall short when applied to highly volatile or non-stationary financial series without proper preprocessing.
Table 1. Comparison of Model Results
## Model RMSE MAE R_squared
## 1 SMA 25.0938 17.8933 0.8925
## 2 EMA 21.1418 15.0074 0.9237
## 3 SES 47.0655 34.7557 -1.1963
## 4 Holt Method 50.6396 38.2514 -1.5426
## 5 Holt-Winters Method 40.2161 27.1371 -0.6036
## 6 Kalman Filter 14.7770 9.8251 0.7835
## 7 Regression 70.0300 57.9599 0.1827
## 8 ARIMA 39.0706 36.2694 -0.5135
Extracting SM Daily Log Returns
# Extract Closing Prices
SM_closing <- Cl(data)
# Compute Log Returns
SM_log_returns <- diff(log(SM_closing))
# Remove NA Values (First row will be NA)
SM_log_returns <- na.omit(SM_log_returns)
SM_log_returns[is.na(SM_log_returns)] <- 0
View(SM_log_returns)
Figure 9.1. Simple Moving Average Method with LOG
RETURNS
This graph illustrates the performance of a 10-day Simple Moving Average (SMA) plotted against the actual closing prices of a stock over a span of four years, from 2020 to 2024. The blue line represents the daily closing prices, which are highly volatile, while the red line shows the smoother 10-day moving average. This moving average helps filter out short-term fluctuations and provides a clearer view of the stock’s general direction. Through visual observation, it’s evident that the SMA follows the overall trend of the stock quite well, lagging slightly behind the actual price due to its nature as an average of past data. This method is particularly helpful for identifying short-term trends and assessing the general movement of the stock without being distracted by daily noise.
Figure 9.2. Simple Moving Average Method with LOG RETURNS (Diagnostics)
## SMA Evaluation Metrics:
## RMSE: 0.0205
## MAE: 0.0149
## R-squared: 0.0884
This graph shows the same 10-day SMA overlayed on the actual stock prices, but this time it includes performance metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and R² (coefficient of determination). These values give a numerical assessment of how well the SMA models or approximates the actual data. With an RMSE of 0.02 and MAE of 0.01, the errors between the predicted and actual values are relatively small, indicating that the SMA closely follows the stock’s daily movements. However, the R² value of 0.0884 is quite low, suggesting that the moving average does not explain much of the variance in the data. In other words, while the SMA stays close to the actual values in terms of magnitude, it does not capture all the dynamic patterns in the price movement. This highlights the limitation of simple moving averages: they are useful for smoothing and trend-following, but not for prediction or explaining complex market behavior.
Overall, while the SMA does not account for complex patterns such as seasonality or structural breaks, it provides a valuable visual tool for observing short-term trends. The evaluation metrics support that the SMA offers a reasonably accurate and stable estimate of the underlying movement in the log returns, making it useful for trend-following strategies and initial exploratory analysis in financial forecasting.
Figure 10.1. Exponential Moving Average with LOG
RETURNS
The graph illustrates the 10-day Exponential Moving Average (EMA) applied to the log returns of SM Investments Corporation’s stock from 2020 to 2024. The blue line represents the actual log return values, while the green line indicates the EMA. Compared to the Simple Moving Average (SMA), the EMA gives more weight to recent data points, making it more sensitive to recent price movements and more effective in capturing short-term trends.
Figure 10.2. Exponential Moving Average with LOG RETURNS (Diagnostics)
## EMA Evaluation Metrics:
## RMSE: 0.0219
## MAE: 0.0159
## R-squared: -0.0409
The EMA closely follows the actual log returns, particularly during periods of sharp fluctuation, which highlights its responsiveness. However, this also makes it more prone to reacting to short-term noise, as seen in the minor jagged movements of the green line throughout the graph. In terms of performance, both the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are 0.02, indicating a relatively low average error between the EMA and actual values. Despite this, the R-squared value is -0.0409, suggesting that the EMA performs worse than simply predicting the mean, which reflects its limited explanatory power when applied to log returns.
Overall, the EMA remains a useful tool for tracking short-term trends in financial data. While it does not perform well as a predictive model, its ability to highlight recent trend changes in a volatile market like that of SM Investments Corporation makes it a valuable method for smoothing time series data.
Figure 11.1. Simple Exponential Smoothing with LOG
RETURNS
The plot displays the Simple Exponential Smoothing (SES) forecast applied to the log returns of SM Investments Corporation’s stock data. The black line represents the actual log returns, while the blue line toward the right side shows the fitted forecast values, with a surrounding grey band indicating the forecast’s confidence interval.
The chart reveals noticeable volatility in the earlier part of the time series, which gradually stabilizes over time—a common trait in financial data influenced by market shocks or firm-specific events. Since SES is most appropriate for data without clear trends or seasonality, its main role here is to smooth the series and generate short-term forecasts rather than capture significant directional changes.
Toward the end of the series, the forecast line flattens, reflecting the SES model’s emphasis on recent observations and its assumption that future values will resemble the recent past. The widening grey band around the forecast illustrates growing uncertainty as the forecast extends further, which aligns with the model’s limitations in long-term predictions.
With that, SES proves useful for smoothing the noisy log return data and providing a quick estimate of short-term movements. However, its lack of trend or seasonal components limits its suitability for more complex or longer-term forecasting tasks in financial contexts.
Figure 11.2. Simple Exponential Smoothing with LOG RETURNS
## [1] 0.01629634
## SES Evaluation Metrics:
## RMSE: 0.0163
## MAE: 0.0106
## R-squared: 0
The chart presents a 30-day Simple Exponential Smoothing (SES) forecast applied to the log returns of SM Investments Corporation’s stock price. The black line represents the historical log return data, while the blue line on the right side shows the forecasted values generated by the SES model. Surrounding the forecast is a shaded grey area that reflects the confidence interval, indicating the range within which future values are expected to fall and highlighting the model’s uncertainty.
The SES forecast produces a flat, nearly constant line—an expected outcome, given that SES assumes no trend or seasonality. It relies heavily on recent data, assigning more weight to the latest values to predict future movements. This approach results in a steady forecast that assumes future prices will resemble recent past behavior. The widening of the confidence interval as the forecast extends further suggests increasing uncertainty, which is typical in time series forecasting models.
The model’s evaluation metrics provide more insight into its performance: RMSE is 0.02, MAE is 0.01, and R² is 0. These low RMSE and MAE values indicate minimal average error, suggesting that the forecast is relatively close to the actual data. However, the R² value of 0 reveals that the model does not explain any variance in the actual log returns. This supports the visual observation that the SES forecast does not capture any directional movement or fluctuation, only projecting a stable continuation of recent behavior.
With that, while SES is effective for smoothing out noise in volatile financial data and offering a basic short-term forecast, it lacks the ability to model more complex patterns like trends or cycles. This limits its predictive power in dynamic market conditions, but its simplicity makes it a practical starting point for time series analysis before applying more advanced forecasting techniques.
Figure 12.1. Holt Method with LOG RETURNS
The graph presents the forecasted stock prices of SM Investments Corporation using Holt’s Linear Trend Method, applied to log-transformed returns. Unlike Simple Exponential Smoothing, Holt’s method incorporates both level and trend, making it more appropriate for time series data with noticeable upward or downward movements. In this context, the model attempts to identify and project a linear trend based on recent patterns.
The black line shows the actual log-return-transformed stock prices, while the blue line at the right end represents the forecasted values. The surrounding grey, fan-shaped area indicates the confidence interval, illustrating the range of possible future outcomes with increasing uncertainty over time. The forecast shows a slight downward slope, consistent with the recent trend of gradual decline in the log returns. This suggests that the model effectively identified the ongoing negative trend and extended it into the forecast horizon.
Despite the trend adjustment, the confidence interval widens as the forecast progresses, reflecting the volatility typical of financial data—even after log transformation. The graph still displays sharp fluctuations, which likely contribute to the broad confidence bounds. However, compared to SES, Holt’s method offers a more realistic forecast by accounting for trend direction.
Overall, Holt’s Linear Trend Method provides a reasonable and trend-aware forecast of the stock’s log returns. While it does not model seasonality or nonlinear behaviors, it serves as a stronger alternative to SES for trending data and offers a clearer view of expected short-term price direction in volatile market conditions.
Figure 12.2. Holt Method with LOG RETURNS (Diagnostics)
## Holt Method Evaluation Metrics:
## RMSE: 0.0165
## MAE: 0.0109
## R-squared: -0.022
Figure 13.1. Holt-Winters Method with LOG RETURNS ##
Holt-Winters Method
The graph displays a Holt-Winters additive model with weekly seasonality applied to the log returns of SM Investments Corporation’s stock. The y-axis reflects logarithmic returns rather than raw prices, which is standard in financial analysis to stabilize variance and improve statistical reliability. The x-axis represents time in trading days, and the blue segment at the right side of the plot shows the model’s forecast, enclosed by a grey confidence interval.
This model is intended for time series data with both trend and seasonality. In this case, weekly seasonality was assumed, aligning with the typical five-day trading week. The historical data, represented by the black line, shows significant volatility, with frequent sharp jumps up and down. These fluctuations illustrate the erratic nature of daily stock returns.
Despite incorporating seasonal and trend components, the forecast line remains relatively flat and hovers around zero, indicating a neutral expectation of future returns. There are slight oscillations in the forecast, suggesting the model detected weak seasonal patterns, though these are not visually dominant. The confidence interval, while accommodating some variability, is relatively narrow, which may signal the model’s low certainty yet stable outlook under the given assumptions.
The limited movement in the forecast and the narrow range of the confidence band may indicate either a lack of clear seasonality in the data or that the noise in daily returns overshadows any recurring patterns. This is common in financial time series, where market behavior is often driven by unpredictable external factors rather than consistent cycles. With that, the Holt-Winters additive model offers a structured approach to analyzing short-term movements, but in this case, it produces a modest and largely neutral forecast. While the method is statistically sound, its practical utility is constrained by the unpredictable and noisy nature of log return data in stock markets.
Figure 13.2. Holt Method with LOG RETURNS (Diagnostics)
## Holt-Winters Evaluation Metrics:
## RMSE: 0.0163
## MAE: 0.011
## R-squared: 0.0047
The 30-day Holt-Winters additive model forecast for SM Investments Corporation’s stock log returns shows the actual historical log returns (black line) and the 30-day forecast (blue line), with a prediction interval (grey shaded). The model assumes weekly seasonality, which is common in financial data due to trading behavior. However, the historical returns appear highly volatile and irregular, with sharp spikes and drops, suggesting weak or inconsistent seasonality. This volatility limits the model’s ability to capture meaningful patterns, reflected in the low R² value of 0.0047, indicating almost no explanatory power in terms of variance.
Despite this, the model maintains modest error rates, with an RMSE of 0.02 and MAE of 0.01, which suggests that the short-term point forecasts are reasonably close to the observed values. However, these small errors are more a reflection of the small magnitude of the returns rather than the model’s strength. The forecast projects a mean-reverting behavior, where returns hover around zero. Although the model attempts to integrate weekly seasonality, the erratic nature of the data limits its accuracy. These results reinforce that predicting log returns is inherently challenging, especially when market movements are influenced by unpredictable external factors.
Figure 14.1. Kalman Filter with LOG RETURNS
The thick line shows the Kalman Filter’s adaptive interpretation of price movements, clearly dampening extreme volatility (like 2020’s COVID swings) while tracking major directional shifts. We see it adjusting its responsiveness - tighter smoothing during calm periods (2023) versus wider bands during turbulent phases. The model particularly struggles during black swan events where the smoothed line lags behind actual spikes, reminding us that even sophisticated filters can’t perfectly predict market chaos. Traders value this view to distinguish meaningful trends from daily noise, though the Y-axis scale (where 0.03 ≈ 3% daily move) confirms we’re still dealing with significant volatility. The widening gaps during crises highlight where human judgment must supplement algorithmic outputs.
Figure 14.2. Kalman Filter with LOG RETURNS (Diagnostics)
## Kalman Filter Evaluation Metrics (Last 30 Days):
## RMSE: 0.0164
## MAE: 0.0109
## R-squared: -0.017
The model achieves low error metrics (RMSE: 0.02, MAE: 0.01) but has a negative R² (-0.017), indicating it fails to explain the variance better than a simple mean model. The forecast (likely the smooth line) appears to track the general trend of the volatile price data (jagged line), though the widening confidence interval suggests increasing uncertainty in predictions over time. The Kalman Filter adapts to new data efficiently but struggles with the inherent noise in financial time series.
LMdata <- data[-1 , ]
LMdata$Logret <- SM_log_returns
Figure 15.1. Regression with LOG RETURNS
Figure 15.2. Regression with LOG RETURNS (Diagnostics)
## Linear Regression Evaluation Metrics:
## RMSE: 918.8477
## MAE: 915.5817
## R-squared: 0
Figure 15.1. ARIMA with LOG RETURNS
This graph shows the results of an ARIMA forecast applied to a time series of log returns. The black line represents historical log returns, which are characterized by high volatility, rapid fluctuations, and a mean-reverting tendency around zero. The blue line represents the out-of-sample forecast, while the shaded grey region indicates the confidence interval.
The forecast remains near zero, reflecting the stationary nature of the data and the ARIMA model’s assumption that future returns will behave similarly to past returns. The tight confidence intervals suggest limited deviation from the mean, though this may underestimate risk due to the large spikes and noise earlier in the series.
The model captures the broad structure of the data, but its predictive value should be interpreted cautiously. While ARIMA models are effective for modeling stationary time series, their ability to forecast financial returns is constrained by the random, non-linear nature of such data.
Figure 15.2. ARIMA with LOG RETURNS (Diagnostics)
## RMSE: 0.01640586
## MAE: 0.01088867
## R-squared: -0.01038861
The ARIMA model shows low error values (RMSE: 0.0164, MAE: 0.0109), which is reasonable given the small scale of log returns. However, the R-squared value of -0.0104 suggests the model performs worse than a simple mean predictor, indicating that it does not explain meaningful variation in the data. This highlights the challenge of capturing patterns in volatile and noisy financial return series.
Table 2. Comparison of Model Results for Log-Returns
## Model RMSE MAE R_squared
## 1 SMA 0.0205 0.0149 0.0884
## 2 EMA 0.0219 0.0159 -0.0409
## 3 SES 0.0163 0.0106 0.0000
## 4 Holt Method 0.0165 0.0109 -0.0220
## 5 Holt-Winters Method 0.0163 0.0110 0.0047
## 6 Kalman Filter 0.0164 0.0109 -0.0170
## 7 Regression 918.8477 915.5817 0.0000
## 8 ARIMA 0.0164 0.1099 -0.0104
The Simple Exponential Smoothing (SES) and Holt-Winters methods deliver the best overall results, with the lowest RMSE and MAE (SES: RMSE = 0.0163, MAE = 0.0106; Holt-Winters: RMSE = 0.0163, MAE = 0.0110). SES, despite a near-zero R-squared, is the most accurate due to its minimal error.
In contrast, the Simple Moving Average (SMA) and Exponential Moving Average (EMA) models show higher RMSE and MAE values, with EMA having a negative R-squared (-0.0409), indicating poor performance. The Regression model performs poorly, with extremely high error metrics (RMSE = 918.85, MAE = 915.58) and an R-squared of 0, highlighting its unsuitability for forecasting log returns.
The ARIMA, Holt, and Kalman Filter models are similar in performance to SES and Holt-Winters, but their low or negative R-squared values suggest limited explanatory power. In conclusion, SES stands out as the most reliable model, offering consistent and accurate forecasts, while Holt-Winters is a close second.
The comparative analysis reveals distinct patterns in how each model handles trends and noise in SM Investments Corporation’s stock data. SMA and EMA effectively smooth short-term volatility, with EMA (R²: 0.92) outperforming SMA (R²: 0.89) due to its responsiveness to recent data, though both lag during abrupt market shifts. SES excels in minimizing errors (lowest RMSE/MAE) but fails to explain variance (R²: 0), producing flat forecasts ideal for stable trends but inadequate for volatile markets. Holt’s method captures linear trends better than SES, yet its negative R² (-1.54) highlights oversimplification of complex price dynamics. The Holt-Winters model, while incorporating seasonality, struggles with financial data’s erratic nature (R²: -0.60), reflecting the challenge of modeling non-recurring shocks.
The Kalman Filter stands out for adaptive smoothing (R²: 0.78), dynamically adjusting to new data while reducing noise, though it lags during extreme events like the 2020 crash. Conversely, Regression and ARIMA models appear to underperform, with Regression’s linear assumptions (R²: 0.18) and ARIMA’s negative R² (-0.51) which shows their mismatch with nonlinear, volatile returns.
Load Necessary Libraries
library(readxl)
library(tidyverse)
library(forecast)
library(TTR)
library(zoo)
library(dlm)
library(Metrics)
library(KFAS)
library(forecast)
library(quantmod)
library(tseries)
library(timeSeries)
library(xts)
library(ggplot2)
library(urca)
library(plotly)
library(ggfortify)
Load Data and convert date
# Load Data
data <- read.csv("SM-historical-prices.csv")
# Convert date
data$Date <- as.Date(data$Date, format = "%m/%d/%y")
# Sort by date just in case
data <- data[order(data$Date), ]
Generate Simple Moving Average + Evaluation Metrics
data$SMA_10 <- SMA(data$Close, n = 10)
# Remove rows with NA values from SMA
eval_data <- data %>% filter(!is.na(SMA_10))
# Calculate evaluation metrics
rmse_val <- rmse(eval_data$Close, eval_data$SMA_10)
mae_val <- mae(eval_data$Close, eval_data$SMA_10)
r_squared <- 1 - sum((eval_data$Close - eval_data$SMA_10)^2) /
sum((eval_data$Close - mean(eval_data$Close))^2)
# Print the results
cat("SMA Evaluation Metrics:\n")
## SMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 25.0938
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 17.8933
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.8925
# Plot the SMA vs actual
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "blue") +
geom_line(aes(y = SMA_10), color = "red") +
labs(title = "Simple Moving Average (10-day)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).
Generate Exponential Moving Average (EMA) + Evaluation Metrics
# Calculate 10-day Exponential Moving Average
data$EMA_10 <- EMA(data$Close, n = 10)
# Remove rows with NA values
eval_data <- data %>% filter(!is.na(EMA_10))
# Compute evaluation metrics
rmse_val <- rmse(eval_data$Close, eval_data$EMA_10)
mae_val <- mae(eval_data$Close, eval_data$EMA_10)
r_squared <- 1 - sum((eval_data$Close - eval_data$EMA_10)^2) /
sum((eval_data$Close - mean(eval_data$Close))^2)
# Print results
cat("EMA Evaluation Metrics:\n")
## EMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 21.1418
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 15.0074
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.9237
# Plot the EMA vs actual
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "blue") +
geom_line(aes(y = EMA_10), color = "green") +
labs(title = "Exponential Moving Average (10-day)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).
Generate Simple Exponential Smoothing (SES) + Evaluation
Metrics
# Set forecast horizon (e.g., last 30 days as test set)
h <- 30
n <- nrow(data)
# Training and test sets
train <- ts(data$Close[1:(n - h)])
test <- data$Close[(n - h + 1):n]
# Fit SES model and forecast
ses_model <- ses(train, h = h)
forecast_vals <- as.numeric(ses_model$mean)
# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)
# Print results
cat("SES Evaluation Metrics:\n")
## SES Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 47.0655
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 34.7557
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -1.1963
# Convert test set into a time series (match start time and frequency)
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))
# Plot forecast and actual values
autoplot(ses_model) +
autolayer(test_ts, series = "Actual", color = "blue") +
labs(title = "Simple Exponential Smoothing Forecast (30 days)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Generate Holt Method + Evaluation Metrics
# Forecast horizon (30 days)
h <- 30
n <- nrow(data)
# Split data
train <- ts(data$Close[1:(n - h)])
test <- data$Close[(n - h + 1):n]
# Fit Holt model
holt_model <- holt(train, h = h)
# Extract forecasted values
forecast_vals <- as.numeric(holt_model$mean)
# Calculate evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)
# Print metrics
cat("Holt Method Evaluation Metrics:\n")
## Holt Method Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 50.6396
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 38.2514
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -1.5426
# Convert test set to ts object for plotting
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))
# Plot forecast vs actual
autoplot(holt_model) +
autolayer(test_ts, series = "Actual", color = "blue") +
labs(title = "Holt's Linear Trend Forecast (30 Days)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Generate Holt Winters + Evaluation Metrics
# Set weekly frequency (assuming daily data, 5 trading days/week)
data_ts <- ts(data$Close, frequency = 5)
# Forecast horizon
h <- 30
n <- length(data_ts)
# Split into training and test sets
train <- window(data_ts, end = c(floor((n - h) / 5), (n - h) %% 5 + 1))
test <- window(data_ts, start = c(floor((n - h) / 5) + 1, ((n - h) %% 5 + 1)))
# Fit Holt-Winters model (additive seasonality)
hw_model <- hw(train, seasonal = "additive", h = h)
# Extract forecasts
forecast_vals <- as.numeric(hw_model$mean)
# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)
# Print metrics
cat("Holt-Winters Evaluation Metrics:\n")
## Holt-Winters Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 40.2161
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 27.1371
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.6036
# Plot
autoplot(hw_model) +
autolayer(test, series = "Actual", color = "blue") +
labs(title = "Holt-Winters Forecast (30 Days, Weekly Seasonality)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Generate Kalman Filter Smoothed Close Prices
# Define a state space model with local level (random walk) trend
model_kf <- SSModel(data$Close ~ SSMtrend(degree = 1, Q = NA), H = NA)
# Estimate the model parameters
fit_kf <- fitSSM(model_kf, inits = c(0.1, 0.1))
# Get the smoothed values
kf_smoothed <- KFS(fit_kf$model)
# Add the Kalman smoothed estimates to the data
data$Kalman <- kf_smoothed$a[1:nrow(data), 1]
# Plot
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "gray") +
geom_line(aes(y = Kalman), color = "purple") +
labs(title = "Kalman Filter Smoothed Close Prices")
Generate Kalman Filter + Evaluation Metrics
# Forecast horizon
h <- 30
n <- nrow(data)
# Define test set (last 30 days of actual vs smoothed values)
actual <- data$Close[(n - h + 1):n]
predicted <- data$Kalman[(n - h + 1):n]
# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- 1 - sum((actual - predicted)^2) / sum((actual - mean(actual))^2)
# Print metrics
cat("Kalman Filter Evaluation Metrics (Last 30 Days):\n")
## Kalman Filter Evaluation Metrics (Last 30 Days):
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 14.777
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 9.8251
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.7835
# Plot actual vs smoothed for just the last 30 days
library(ggplot2)
kalman_eval_df <- data.frame(
Date = data$Date[(n - h + 1):n],
Actual = actual,
Smoothed = predicted
)
ggplot(kalman_eval_df, aes(x = Date)) +
geom_line(aes(y = Actual), color = "gray", linewidth = 1.1) +
geom_line(aes(y = Smoothed), color = "purple", linewidth = 1.1) +
labs(title = "Kalman Filter Evaluation (Last 30 Days)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Generate Linear Regression of Close Prices
data$Index <- 1:nrow(data)
lm_model <- lm(Close ~ Index, data = data)
data$Pred_LM <- predict(lm_model)
ggplot(data, aes(x = Index, y = Close)) +
geom_line(color = "blue") +
geom_line(aes(y = Pred_LM), color = "orange") +
labs(title = "Linear Regression on Close Prices")
Generate Linear Regression Evaluation Metrics
# Actual and predicted values
actual <- data$Close
predicted <- data$Pred_LM
# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- summary(lm_model)$r.squared
# Print results
cat("Linear Regression Evaluation Metrics:\n")
## Linear Regression Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 70.03
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 57.9599
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.1827
Generate ARIMA Forecast
auto_fit <- auto.arima(data$Close)
forecast_arima <- forecast(auto_fit, h = 30)
autoplot(forecast_arima) + labs(title = "ARIMA Forecast")
Generate ARIMA diagnostics
# Fit the ARIMA model
auto_fit <- auto.arima(data$Close)
# Generate forecasts for the next 30 periods
forecast_arima <- forecast(auto_fit, h = 30)
# Assuming you have a test set (actual values for comparison)
# Replace 'actual_test_values' with the actual values for the test period
actual_test_values <- data$Close[(length(data$Close)-29):length(data$Close)]
# Get the predicted values from the forecast
predicted_values <- forecast_arima$mean
# RMSE (Root Mean Squared Error)
rmse <- sqrt(mean((predicted_values - actual_test_values)^2))
# MAE (Mean Absolute Error)
mae <- mean(abs(predicted_values - actual_test_values))
# R-squared (Coefficient of Determination)
sst <- sum((actual_test_values - mean(actual_test_values))^2) # Total Sum of Squares
sse <- sum((predicted_values - actual_test_values)^2) # Sum of Squares due to Error
rsq <- 1 - (sse / sst)
# Print the evaluation metrics
cat("RMSE: ", rmse, "\n")
## RMSE: 39.07064
cat("MAE: ", mae, "\n")
## MAE: 36.26935
cat("R-squared: ", rsq, "\n")
## R-squared: -0.5135253
Generate Table for the Results of each model
library(knitr)
results <- data.frame(
Model = c("SMA", "EMA", "SES", "Holt Method", "Holt-Winters Method", "Kalman Filter", "Regression", "ARIMA"),
RMSE = c(25.0938, 21.1418, 47.0655, 50.6396, 40.2161, 14.7770, 70.0300, 39.0706),
MAE = c(17.8933, 15.0074, 34.7557, 38.2514, 27.1371, 9.8251, 57.9599, 36.2694),
R_squared = c(0.8925, 0.9237, -1.1963, -1.5426, -0.6036, 0.7835, 0.1827, -0.5135)
)
[BONUS APPENDICES]
Extract SM Daily Log Returns
# Extract Closing Prices
SM_closing <- Cl(data)
# Compute Log Returns
SM_log_returns <- diff(log(SM_closing))
# Remove NA Values (First row will be NA)
SM_log_returns <- na.omit(SM_log_returns)
SM_log_returns[is.na(SM_log_returns)] <- 0
View(SM_log_returns)
Generate Simple Moving Average
SM_SMA <- SMA(SM_log_returns, n = 10)
SM_SMA <- na.omit(SM_SMA)
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "blue") +
geom_line(aes(y = SMA_10), color = "red") +
labs(title = "Simple Moving Average (10-day)")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).
Generate Simple Moving Average + Evaluation Metrics
# Remove rows with NA values from SMA
eval_data <- data %>% filter(!is.na(SMA_10))
# Calculate evaluation metrics
rmse_val <- rmse(SM_log_returns, SM_SMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
mae_val <- mae(SM_log_returns, SM_SMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
r_squared <- 1 - sum((SM_log_returns - SM_SMA)^2) /
sum((SM_log_returns - mean(SM_SMA))^2)
## Warning in SM_log_returns - SM_SMA: longer object length is not a multiple of
## shorter object length
# Print the results
cat("SMA Evaluation Metrics:\n")
## SMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0205
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0149
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.0884
# Plot the SMA vs actual
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "blue") +
geom_line(aes(y = SMA_10), color = "red") +
labs(title = "Simple Moving Average (10-day)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).
Generate Exponential Moving Average Diagnostics + Evaluation Metrics
# Calculate 10-day Exponential Moving Average
SM_EMA <- EMA(SM_log_returns, n = 10)
SM_EMA <- na.omit(SM_EMA)
# Compute evaluation metrics
rmse_val <- rmse(SM_log_returns, SM_EMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
mae_val <- mae(SM_log_returns, SM_EMA)
## Warning in actual - predicted: longer object length is not a multiple of
## shorter object length
r_squared <- 1 - sum((SM_log_returns - SM_EMA)^2) /
sum((SM_log_returns - mean(SM_EMA))^2)
## Warning in SM_log_returns - SM_EMA: longer object length is not a multiple of
## shorter object length
# Print results
cat("EMA Evaluation Metrics:\n")
## EMA Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0219
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0159
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.0409
# Plot the EMA vs actual
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "blue") +
geom_line(aes(y = EMA_10), color = "green") +
labs(title = "Exponential Moving Average (10-day)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).
Generate Simple Exponential Smoothing Forecast
SM_SES <- ses(ts(SM_log_returns), h = 30)
SM_SES <- na.omit(SM_SES)
autoplot(SM_SES) + labs(title = "Simple Exponential Smoothing Forecast")
**Generate Simple Exponential Smoothing (SES) + Evaluation Metrics)
# Set forecast horizon (e.g., last 30 days as test set)
h <- 30
n <- nrow(data)
# Training and test sets
train <- ts(SM_log_returns[1:(n - h)])
train <- na.omit(train)
train[is.na(train)] <- 0
test <- SM_log_returns[(n - h + 1):n]
train <- na.omit(test)
test[is.na(test)] <- 0
# Fit SES model and forecast
SM_SES <- ses(train, h = h)
forecast_vals <- as.numeric(SM_SES$mean)
forecast_vals <- na.omit(forecast_vals)
# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
rmse_val
## [1] 0.01629634
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)
# Print results
cat("SES Evaluation Metrics:\n")
## SES Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0163
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0106
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0
# Convert test set into a time series (match start time and frequency)
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))
# Plot forecast and actual values
autoplot(ses_model) +
autolayer(test_ts, series = "Actual", color = "blue") +
labs(title = "Simple Exponential Smoothing Forecast (30 days)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Generate Holt’s Linear Trend Forecast + Evaluation Metrics
h <- 30
n <- nrow(data)
train <- ts(SM_log_returns[1:(n - h)])
train <- na.omit(train)
train[is.na(train)] <- 0
test <- SM_log_returns[(n - h + 1):n]
train <- na.omit(test)
test[is.na(test)] <- 0
holt_model <- holt(train, h = h)
forecast_vals <- as.numeric(holt_model$mean)
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)
cat("Holt Method Evaluation Metrics:\n")
## Holt Method Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0165
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0109
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.022
test_ts <- ts(test, start = end(train)[1] + 1, frequency = frequency(train))
autoplot(holt_model) +
autolayer(test_ts, series = "Actual", color = "blue") +
labs(title = "Holt's Linear Trend Forecast (30 Days)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Generate Holt Linear Trend Forecast
SM_holt <- holt(ts(data$Close), h = 30)
autoplot(holt_model) + labs(title = "Holt's Linear Trend Forecast")
Generate Holt-Winters Forecast
# Convert the closing prices into a time series with weekly seasonality (5 trading days per week)
ts_close <- ts(SM_log_returns, frequency = 5)
# Apply Holt-Winters method with additive seasonality
hw_model <- hw(ts_close, seasonal = "additive", h = 30)
# Plot the forecast
autoplot(hw_model) +
labs(title = "Holt-Winters Forecast (Additive, Weekly Seasonality)",
y = "Stock Price", x = "Time")
Generate Holt-Winters Forecast + Evaluation Metrics
# Set weekly frequency (assuming daily data, 5 trading days/week)
data_ts <- ts(SM_log_returns, frequency = 5)
# Forecast horizon
h <- 30
n <- length(data_ts)
# Split into training and test sets
train <- window(data_ts, end = c(floor((n - h) / 5), (n - h) %% 5 + 1))
test <- window(data_ts, start = c(floor((n - h) / 5) + 1, ((n - h) %% 5 + 1)))
# Fit Holt-Winters model (additive seasonality)
hw_model <- hw(train, seasonal = "additive", h = h)
# Extract forecasts
forecast_vals <- as.numeric(hw_model$mean)
# Evaluation metrics
rmse_val <- rmse(test, forecast_vals)
mae_val <- mae(test, forecast_vals)
r_squared <- 1 - sum((test - forecast_vals)^2) / sum((test - mean(test))^2)
# Print metrics
cat("Holt-Winters Evaluation Metrics:\n")
## Holt-Winters Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0163
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.011
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.0047
# Plot
autoplot(hw_model) +
autolayer(test, series = "Actual", color = "blue") +
labs(title = "Holt-Winters Forecast (30 Days, Weekly Seasonality)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Generate Kalman Filter Smoothed Close Prices
# Define a state space model with local level (random walk) trend
model_kf <- SSModel(data$Close ~ SSMtrend(degree = 1, Q = NA), H = NA)
# Estimate the model parameters
fit_kf <- fitSSM(model_kf, inits = c(0.1, 0.1))
# Get the smoothed values
kf_smoothed <- KFS(fit_kf$model)
# Add the Kalman smoothed estimates to the data
data$Kalman <- kf_smoothed$a[1:nrow(data), 1]
# Plot
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "gray") +
geom_line(aes(y = Kalman), color = "purple") +
labs(title = "Kalman Filter Smoothed Close Prices")
**Generate Kalman Filter Forecasting Stock Prices**
``` r
# Define a state space model with local level (random walk) trend
model_kf <- SSModel(SM_log_returns~ SSMtrend(degree = 1, Q = NA), H = NA)
# Estimate the model parameters
fit_kf <- fitSSM(model_kf, inits = c(0.1, 0.1))
# Get the smoothed values
kf_smoothed <- KFS(fit_kf$model)
# Add the Kalman smoothed estimates to the data
SM_Kalman <- kf_smoothed$a[1:nrow(data), 1]
# Plot
ggplot(data, aes(x = Date)) +
geom_line(aes(y = Close), color = "gray") +
geom_line(aes(y = Kalman), color = "purple") +
labs(title = "Kalman Filter Smoothed Close Prices")
Generate Kalman Filter Evaluation + Evaluation Metrics
# Forecast horizon
h <- 30
n <- nrow(data)
# Define test set (last 30 days of actual vs smoothed values)
actual <- SM_log_returns[(n - h + 1):n]
actual[is.na(actual)] <- 0
predicted <- SM_Kalman[(n - h + 1):n]
actual[is.na(actual)] <- 0
# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- 1 - sum((actual - predicted)^2) / sum((actual - mean(actual))^2)
# Print metrics
cat("Kalman Filter Evaluation Metrics (Last 30 Days):\n")
## Kalman Filter Evaluation Metrics (Last 30 Days):
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 0.0164
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 0.0109
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: -0.017
# Plot actual vs smoothed for just the last 30 days
library(ggplot2)
kalman_eval_df <- data.frame(
Date = data$Date[(n - h + 1):n],
Actual = actual,
Smoothed = predicted
)
ggplot(kalman_eval_df, aes(x = Date)) +
geom_line(aes(y = Actual), color = "gray", linewidth = 1.1) +
geom_line(aes(y = Smoothed), color = "purple", linewidth = 1.1) +
labs(title = "Kalman Filter Evaluation (Last 30 Days)",
subtitle = paste("RMSE:", round(rmse_val, 2),
"MAE:", round(mae_val, 2),
"R²:", round(r_squared, 4)),
y = "Stock Price")
Consolidate Log returns and data
LMdata <- data[-1 , ]
LMdata
## Date Open High Low Close Volume SMA_10 EMA_10 Kalman
## 975 2020-01-03 1040.0 1069.0 1019.0 1051.0 207525 NA NA 1039.0000
## 974 2020-01-06 1037.0 1048.0 1025.0 1040.0 121650 NA NA 1048.4621
## 973 2020-01-07 1040.0 1078.0 1040.0 1067.0 225720 NA NA 1041.8734
## 972 2020-01-08 1064.0 1064.0 1042.0 1055.0 183430 NA NA 1061.4250
## 971 2020-01-09 1057.0 1072.0 1054.0 1072.0 182035 NA NA 1056.4257
## 970 2020-01-10 1067.0 1080.0 1060.0 1079.0 1053270 NA NA 1068.5440
## 969 2020-01-14 1074.0 1077.0 1046.0 1077.0 478250 NA NA 1076.6798
## 968 2020-01-15 1076.0 1076.0 1056.0 1060.0 119465 NA NA 1076.9289
## 967 2020-01-16 1058.0 1062.0 1038.0 1050.0 391965 1059.00 1059.0000 1063.7566
## 966 2020-01-17 1069.0 1069.0 1040.0 1055.0 212700 1060.60 1058.2727 1053.0526
## 965 2020-01-20 1062.0 1062.0 1012.0 1030.0 219330 1058.50 1053.1322 1054.5679
## 964 2020-01-21 1030.0 1045.0 1021.0 1026.0 1143945 1057.10 1048.1991 1035.4517
## 963 2020-01-22 1049.0 1049.0 1011.0 1025.0 172795 1052.90 1043.9811 1028.0974
## 962 2020-01-23 1054.0 1059.0 1031.0 1050.0 217420 1052.40 1045.0754 1025.6873
## 961 2020-01-24 1046.0 1049.0 1025.0 1032.0 396510 1048.40 1042.6981 1044.6049
## 960 2020-01-27 1036.0 1045.0 1025.0 1025.0 82615 1043.00 1039.4802 1034.7971
## 959 2020-01-28 1025.0 1025.0 1012.0 1015.0 214510 1036.80 1035.0293 1027.1740
## 958 2020-01-29 1015.0 1017.0 1010.0 1013.0 191825 1032.10 1031.0240 1017.7015
## 957 2020-01-30 1020.0 1020.0 995.0 995.0 311885 1026.60 1024.4742 1014.0433
## 956 2020-01-31 1000.0 1017.0 961.0 971.0 340060 1018.20 1014.7516 999.2258
## 955 2020-02-03 971.0 983.5 955.5 974.5 127450 1012.65 1007.4331 977.2634
## 954 2020-02-04 975.0 989.5 974.5 983.5 936380 1008.40 1003.0816 975.1132
## 953 2020-02-05 990.0 1010.0 990.0 1000.0 1131350 1005.90 1002.5213 981.6389
## 952 2020-02-06 1000.0 1014.0 996.0 1000.0 1339330 1000.90 1002.0629 995.9256
## 951 2020-02-07 1000.0 1004.0 998.5 1000.0 121415 997.70 1001.6878 999.0959
## 950 2020-02-10 1003.0 1010.0 1000.0 1000.0 715495 995.20 1001.3810 999.7994
## 949 2020-02-11 1000.0 1001.0 990.0 1000.0 165480 993.70 1001.1299 999.9555
## 948 2020-02-12 1000.0 1005.0 996.0 1002.0 126935 992.60 1001.2881 999.9901
## 947 2020-02-13 1004.0 1010.0 995.5 1010.0 91985 994.10 1002.8721 1001.5540
## 946 2020-02-14 1008.0 1010.0 992.0 992.0 569085 996.20 1000.8953 1008.1258
## 945 2020-02-17 992.0 1020.0 990.0 1015.0 787660 1000.25 1003.4598 995.5784
## 944 2020-02-18 1018.0 1024.0 1007.0 1012.0 147195 1003.10 1005.0126 1010.6903
## 943 2020-02-19 1018.0 1038.0 1014.0 1038.0 1205185 1006.90 1011.0103 1011.7094
## 942 2020-02-20 1054.0 1059.0 1032.0 1032.0 185325 1010.10 1014.8266 1032.1660
## 941 2020-02-21 1034.0 1045.0 1016.0 1038.0 178005 1013.90 1019.0399 1032.0368
## 940 2020-02-24 1015.0 1028.0 1002.0 1010.0 198520 1014.90 1017.3963 1036.6768
## 939 2020-02-26 1000.0 1000.0 978.0 985.0 719395 1013.40 1011.5061 1015.9197
## 938 2020-02-27 970.5 987.0 969.5 987.0 219920 1011.90 1007.0504 991.8612
## 937 2020-02-28 972.0 981.5 960.0 974.5 482350 1008.35 1001.1322 988.0787
## 936 2020-03-02 965.0 989.5 950.0 960.0 511230 1005.15 993.6536 977.5132
## 935 2020-03-03 967.0 986.0 956.5 961.0 354970 999.75 987.7166 963.8862
## 934 2020-03-04 960.0 977.0 921.0 945.0 447420 993.05 979.9499 961.6405
## 933 2020-03-05 954.5 972.0 948.5 950.0 531700 984.25 974.5045 948.6926
## 932 2020-03-06 963.0 963.0 936.0 943.0 288050 975.35 968.7764 949.7099
## 931 2020-03-09 910.0 910.5 895.0 902.5 394060 961.80 956.7261 944.4889
## 930 2020-03-10 886.0 919.0 862.0 900.0 413920 950.80 946.4123 911.8175
## 929 2020-03-11 905.0 940.0 890.5 900.0 946440 942.30 937.9737 902.6223
## 928 2020-03-12 880.0 880.0 770.0 790.0 671990 922.60 911.0694 900.5819
## 927 2020-03-13 725.0 847.5 685.0 831.5 1530940 908.30 896.6022 814.5385
## 926 2020-03-16 750.0 800.0 735.0 735.0 653420 885.80 867.2200 827.7362
## 925 2020-03-19 600.0 698.0 509.5 667.0 1600610 856.40 830.8164 755.5785
## 924 2020-03-20 700.0 740.0 689.5 721.5 1030380 834.05 810.9407 686.6559
## 923 2020-03-23 670.0 748.0 670.0 746.0 431110 813.65 799.1333 713.7680
## 922 2020-03-24 760.0 765.0 730.0 747.5 390880 794.10 789.7454 738.8476
## 921 2020-03-25 762.0 800.0 753.5 800.0 477820 783.85 791.6099 745.5800
## 920 2020-03-26 800.0 845.0 761.0 845.0 780850 778.35 801.3172 787.9240
## 919 2020-03-27 846.0 870.0 802.0 805.0 667120 768.85 801.9868 832.3346
## 918 2020-03-30 800.0 805.5 751.0 770.0 412060 766.85 796.1710 811.0657
## 917 2020-03-31 785.0 820.0 785.0 818.0 550010 765.50 800.1399 779.1126
## 916 2020-04-01 811.0 830.0 801.0 826.0 454990 774.60 804.8417 809.3707
## 915 2020-04-02 800.0 820.0 795.5 820.0 256030 789.90 807.5978 822.3099
## 914 2020-04-03 823.0 833.0 817.5 825.0 196500 800.25 810.7618 820.5126
## 913 2020-04-06 827.5 850.0 804.0 850.0 371730 810.65 817.8960 824.0042
## 912 2020-04-07 875.0 878.0 860.5 878.0 333100 823.70 828.8240 844.2314
## 911 2020-04-08 865.0 878.0 851.0 870.0 450970 830.70 836.3106 870.5066
## 910 2020-04-13 869.0 876.5 843.5 870.0 206530 833.20 842.4359 870.1124
## 909 2020-04-14 877.5 884.0 851.5 868.0 253750 839.50 847.0839 870.0249
## 908 2020-04-15 868.0 868.0 855.0 862.0 661890 848.70 849.7959 868.4493
## 907 2020-04-16 850.0 850.0 820.0 820.0 560260 848.90 844.3785 863.4311
## 906 2020-04-17 849.0 860.0 830.0 860.0 380280 852.30 847.2188 829.6375
## 905 2020-04-20 858.0 863.0 845.0 845.0 324090 854.80 846.8154 853.2625
## 904 2020-04-21 844.5 855.0 818.0 839.0 212370 856.20 845.3944 846.8335
## 903 2020-04-22 817.0 825.0 808.0 818.0 233300 853.00 840.4136 840.7383
## 902 2020-04-23 828.0 850.0 818.5 845.0 358220 849.70 841.2475 823.0457
## 901 2020-04-24 840.0 840.0 810.0 814.0 247630 844.10 836.2934 840.1283
## 900 2020-04-27 818.0 818.0 780.0 780.0 356720 835.10 826.0582 819.7980
## 899 2020-04-28 782.0 820.0 782.0 819.0 250110 830.20 824.7749 788.8313
## 898 2020-04-29 820.0 843.0 805.0 831.0 115960 827.10 825.9068 812.3055
## 897 2020-04-30 843.0 846.0 834.5 845.0 242720 829.60 829.3783 826.8516
## 896 2020-05-04 822.0 822.5 796.0 822.0 170040 825.80 828.0368 840.9728
## 895 2020-05-05 820.5 835.0 820.5 830.0 197760 824.30 828.3937 826.2101
## 894 2020-05-06 830.0 840.0 821.5 832.0 295510 823.60 829.0494 829.1590
## 893 2020-05-07 839.0 839.0 822.0 826.5 161030 824.45 828.5859 831.3696
## 892 2020-05-08 828.0 838.0 802.0 804.0 499150 820.35 824.1157 827.5806
## 891 2020-05-11 806.0 815.0 801.5 808.0 154310 819.75 821.1856 809.2326
## 890 2020-05-12 808.0 819.5 800.0 817.0 123310 823.45 820.4246 808.2735
## 889 2020-05-13 815.0 826.0 814.0 826.0 72280 824.15 821.4383 815.0636
## 888 2020-05-14 824.0 824.0 802.0 810.0 238870 822.05 819.3586 823.5732
## 887 2020-05-15 820.0 820.0 800.0 801.5 246850 817.70 816.1116 813.0119
## 886 2020-05-18 807.0 809.5 798.0 803.0 181720 815.80 813.7277 804.0545
## 885 2020-05-19 812.0 816.0 805.0 810.0 135710 813.80 813.0499 803.2340
## 884 2020-05-20 813.0 820.0 800.5 820.0 114140 812.60 814.3136 808.4986
## 883 2020-05-21 820.0 838.5 816.0 835.0 246180 813.45 818.0747 817.4478
## 882 2020-05-22 829.5 834.0 818.0 828.0 313950 815.85 819.8793 831.1051
## 881 2020-05-26 820.0 838.0 805.0 838.0 241460 818.85 823.1740 828.6890
## 880 2020-05-27 835.0 837.0 812.5 837.0 730300 820.85 825.6878 835.9339
## 879 2020-05-28 837.0 848.5 830.5 836.0 207940 821.85 827.5628 836.7634
## 878 2020-05-29 837.0 915.0 835.0 915.0 1216260 832.35 843.4604 836.1694
## 877 2020-06-01 890.0 927.5 860.0 920.0 681840 844.20 857.3767 897.5072
## 876 2020-06-02 920.0 954.0 911.5 946.0 1475830 858.50 873.4900 915.0088
## 875 2020-06-03 954.0 960.0 935.5 945.0 512470 872.00 886.4919 939.1229
## 874 2020-06-04 940.5 997.0 940.5 997.0 694010 889.70 906.5842 943.6959
## 873 2020-06-05 967.5 986.0 951.5 967.5 435380 902.95 917.6598 985.1716
## 872 2020-06-08 965.5 967.5 941.5 950.0 210910 915.15 923.5399 971.4214
## 871 2020-06-09 949.0 959.5 938.0 950.0 357250 926.35 928.3508 954.7535
## 870 2020-06-10 945.0 945.0 905.0 935.0 1418950 936.15 929.5597 951.0548
## 869 2020-06-11 930.0 951.0 911.0 951.0 198000 947.65 933.4580 938.5626
## 868 2020-06-15 950.0 950.0 915.0 915.0 325950 947.65 930.1020 948.2401
## 867 2020-06-16 921.0 940.0 916.0 940.0 126940 949.65 931.9016 922.3761
## 866 2020-06-17 961.0 969.0 926.0 956.0 176070 950.65 936.2831 936.0892
## 865 2020-06-18 931.0 963.0 925.0 963.0 1154530 952.45 941.1408 951.5817
## 864 2020-06-19 934.0 964.5 930.0 949.0 677230 947.65 942.5697 960.4662
## 863 2020-06-22 945.5 960.0 921.5 960.0 188850 946.90 945.7389 951.5444
## 862 2020-06-23 949.0 949.0 935.0 935.0 398130 945.40 943.7863 958.1237
## 861 2020-06-24 940.0 940.0 931.0 937.0 150740 944.10 942.5525 940.1312
## 860 2020-06-25 930.0 943.0 916.0 930.0 179100 943.60 940.2702 937.6948
## 859 2020-06-26 921.5 939.0 916.5 938.5 351170 942.35 939.9483 931.7075
## 858 2020-06-29 930.0 934.5 906.0 915.0 190290 942.35 935.4123 936.9927
## 857 2020-06-30 928.0 940.0 917.0 939.0 254010 942.25 936.0646 919.8803
## 856 2020-07-01 938.5 938.5 920.0 920.0 1115360 938.65 933.1438 934.7573
## 855 2020-07-02 921.0 952.0 908.0 950.0 922710 937.35 936.2085 923.2747
## 854 2020-07-03 945.0 951.0 930.0 950.0 1171300 937.45 938.7161 944.0696
## 853 2020-07-06 952.0 952.5 931.5 940.0 268730 935.45 938.9495 948.6840
## 852 2020-07-07 948.5 956.5 940.0 949.0 370100 936.85 940.7769 941.9270
## 851 2020-07-08 945.0 975.5 940.0 975.5 180680 940.70 947.0902 947.4305
## 850 2020-07-09 965.0 965.0 943.5 945.0 649600 942.20 946.7101 969.2713
## 849 2020-07-10 916.0 940.0 900.0 940.0 337280 942.35 945.4901 950.3859
## 848 2020-07-13 939.0 940.0 925.0 940.0 136080 944.85 944.4919 942.3047
## 847 2020-07-14 928.0 938.5 925.0 935.0 438560 944.45 942.7661 940.5114
## 846 2020-07-15 938.0 938.0 910.0 911.0 521960 943.55 936.9905 936.2230
## 845 2020-07-16 916.0 945.5 916.0 933.0 167230 941.85 936.2649 916.5971
## 844 2020-07-17 922.0 943.0 918.0 920.0 610350 938.85 933.3077 929.3601
## 843 2020-07-20 940.0 940.0 910.5 940.0 113270 938.85 934.5244 922.0770
## 842 2020-07-21 922.0 940.0 922.0 925.0 245300 936.45 932.7927 936.0228
## 841 2020-07-22 925.0 940.0 915.0 915.0 193670 930.40 929.5577 927.4460
## 840 2020-07-23 916.5 925.0 875.5 900.0 419490 925.90 924.1836 917.7618
## 839 2020-07-24 896.0 910.5 896.0 900.5 147410 921.95 919.8775 903.9414
## 838 2020-07-27 900.0 900.0 865.5 884.0 271930 916.35 913.3543 901.2637
## 837 2020-07-28 884.0 910.0 856.5 900.0 589260 912.85 910.9262 887.8309
## 836 2020-07-29 905.0 907.5 870.0 900.0 445190 911.75 908.9396 897.2996
## 835 2020-07-30 900.0 900.0 885.0 890.0 400020 907.45 905.4961 899.4008
## 834 2020-08-03 870.0 870.0 840.0 860.0 665150 901.45 897.2241 892.0861
## 833 2020-08-04 850.0 873.0 847.0 865.0 464270 893.95 891.3651 867.1200
## 832 2020-08-05 880.0 888.0 866.0 870.0 451400 888.45 887.4806 865.4704
## 831 2020-08-06 870.0 878.0 851.0 878.0 1982200 884.75 885.7568 868.9949
## 830 2020-08-07 876.5 876.5 846.0 850.5 699770 879.80 879.3465 876.0017
## 829 2020-08-10 850.5 865.0 835.0 862.0 227790 875.95 876.1926 856.1589
## 828 2020-08-11 859.5 874.0 852.5 858.0 450930 873.35 872.8848 860.7038
## 827 2020-08-12 865.0 870.0 860.5 870.0 15425670 870.35 872.3603 858.6000
## 826 2020-08-13 872.0 897.0 872.0 897.0 627680 870.05 876.8403 867.4703
## 825 2020-08-14 881.5 900.0 874.5 900.0 1187090 871.05 881.0511 890.4472
## 824 2020-08-17 900.0 905.0 875.0 880.0 386070 873.05 880.8600 897.8802
## 823 2020-08-18 896.0 915.0 880.5 910.0 812280 877.55 886.1582 883.9677
## 822 2020-08-19 918.0 920.0 898.0 900.0 609550 880.55 888.6749 904.2233
## 821 2020-08-20 900.5 907.0 881.0 900.0 614140 882.75 890.7340 900.9372
## 820 2020-08-24 890.0 890.0 872.0 883.0 618730 886.00 889.3278 900.2080
## 819 2020-08-25 883.0 889.0 877.0 881.0 647110 887.90 887.8137 886.8185
## 818 2020-08-26 877.0 887.5 869.5 887.0 720420 890.80 887.6657 882.2911
## 817 2020-08-27 887.0 887.0 872.0 873.0 15279810 891.10 884.9992 885.9551
## 816 2020-08-28 870.0 879.5 847.0 850.0 1338910 886.40 878.6357 875.8748
## 815 2020-09-01 853.0 885.0 837.0 837.0 1317270 880.10 871.0656 855.7417
## 814 2020-09-02 841.0 855.0 831.0 840.5 819440 876.15 865.5082 841.1589
## 813 2020-09-03 841.0 847.0 831.0 836.5 201400 868.80 860.2340 840.6462
## 812 2020-09-04 835.5 846.0 810.0 846.0 945000 863.40 857.6460 837.4201
## 811 2020-09-07 845.0 894.0 830.5 894.0 163450 862.80 864.2558 844.0961
## 810 2020-09-08 871.0 908.0 871.0 908.0 271890 865.30 872.2093 882.9261
## 809 2020-09-09 890.0 902.5 885.0 887.0 817180 865.90 874.8985 902.4360
## 808 2020-09-10 887.0 899.0 864.0 880.0 1795700 865.20 875.8261 890.4253
## 807 2020-09-11 880.0 905.0 872.0 905.0 278910 868.40 881.1304 882.3134
## 806 2020-09-14 900.0 919.5 890.5 915.0 460830 874.90 887.2885 899.9658
## 805 2020-09-15 910.5 937.0 900.0 937.0 339660 884.90 896.3270 911.6638
## 804 2020-09-16 922.0 927.0 910.0 910.0 604070 891.85 898.8130 931.3778
## 803 2020-09-17 910.0 915.0 893.0 905.0 223100 898.70 899.9379 914.7438
## 802 2020-09-18 905.0 914.0 872.0 872.0 1149150 901.30 894.8583 907.1622
## 801 2020-09-21 880.0 889.0 865.5 879.5 88180 899.85 892.0659 879.8026
## 800 2020-09-22 875.0 887.0 860.0 887.0 113230 897.75 891.1448 879.5672
## 799 2020-09-23 888.0 888.0 876.0 885.0 770470 897.55 890.0276 885.3506
## 798 2020-09-24 884.5 884.5 865.0 872.0 195270 896.75 886.7498 885.0778
## 797 2020-09-25 872.0 881.0 865.0 869.0 155450 893.15 883.5226 874.9020
## 796 2020-09-28 881.0 895.0 869.0 895.0 74000 891.15 885.6094 870.3097
## 795 2020-09-29 890.0 890.0 876.0 880.0 101010 885.45 884.5895 889.5211
## 794 2020-09-30 894.0 894.0 866.5 880.0 312410 882.45 883.7550 882.1128
## 793 2020-10-01 886.0 890.0 872.0 890.0 58210 880.95 884.8905 880.4688
## 792 2020-10-02 890.0 891.0 877.5 886.0 132120 882.35 885.0922 887.8850
## 791 2020-10-05 888.5 898.0 875.0 875.0 64370 881.90 883.2573 886.4183
## 790 2020-10-06 875.0 885.0 870.0 871.5 86180 880.35 881.1196 877.5338
## 789 2020-10-07 879.0 879.0 861.0 865.0 125870 878.35 878.1888 872.8389
## 788 2020-10-08 865.0 888.0 850.0 888.0 15185420 879.95 879.9726 866.7395
## 787 2020-10-09 887.0 899.5 887.0 899.5 157650 883.00 883.5230 883.2822
## 786 2020-10-12 899.5 903.0 894.5 900.0 72620 883.50 886.5189 895.9012
## 785 2020-10-13 900.0 900.0 884.0 884.0 140500 883.90 886.0609 899.0905
## 784 2020-10-14 884.0 890.0 864.0 864.0 213680 882.30 882.0498 887.3486
## 783 2020-10-15 864.5 880.0 864.5 874.0 104460 880.70 880.5862 869.1811
## 782 2020-10-16 865.0 875.0 864.0 864.0 85410 878.50 877.5705 872.9307
## 781 2020-10-19 866.0 894.0 866.0 894.0 208470 880.40 880.5577 865.9818
## 780 2020-10-20 893.0 917.0 891.5 910.0 303540 884.25 885.9109 887.7826
## 779 2020-10-21 910.0 938.0 910.0 921.0 474500 889.85 892.2907 905.0699
## 778 2020-10-22 934.0 945.0 917.5 945.0 507330 895.55 901.8742 917.4650
## 777 2020-10-23 950.0 989.0 950.0 970.0 604860 902.60 914.2607 938.8899
## 776 2020-10-26 971.0 997.0 953.0 981.0 513550 910.70 926.3951 963.0966
## 775 2020-10-27 980.0 989.5 963.0 969.0 293490 919.20 934.1415 977.0272
## 774 2020-10-28 970.5 979.5 963.5 965.0 201600 929.30 939.7521 970.7813
## 773 2020-10-29 964.5 965.0 942.5 950.0 279920 936.90 941.6154 966.2829
## 772 2020-10-30 940.5 959.0 931.0 950.0 361180 945.50 943.1398 953.6132
## 771 2020-11-03 969.0 975.0 931.5 974.5 459690 953.55 948.8417 950.8018
## 770 2020-11-04 974.5 996.0 951.5 996.0 338870 962.15 957.4159 969.2413
## 769 2020-11-05 995.0 1047.0 984.5 1010.0 755780 971.05 966.9767 990.0621
## 768 2020-11-06 1029.0 1029.0 991.0 1010.0 416640 977.55 974.7991 1005.5757
## 767 2020-11-09 1002.0 1006.0 982.0 990.0 282695 979.55 977.5629 1009.0182
## 766 2020-11-10 1025.0 1100.0 1025.0 1100.0 1351220 991.45 999.8242 994.2202
## 765 2020-11-11 1056.0 1090.0 1046.0 1049.0 1002865 999.45 1008.7652 1076.5271
## 764 2020-11-13 1040.0 1060.0 1030.0 1030.0 533275 1005.95 1012.6261 1055.1084
## 763 2020-11-16 1038.0 1050.0 1006.0 1015.0 434820 1012.45 1013.0577 1035.5716
## 762 2020-11-17 1030.0 1030.0 1002.0 1002.0 344620 1017.65 1011.0472 1019.5649
## 761 2020-11-18 1005.0 1029.0 999.5 1029.0 579865 1023.10 1014.3114 1005.8977
## 760 2020-11-19 1004.0 1020.0 995.5 1005.0 486255 1024.00 1012.6184 1023.8735
## 759 2020-11-20 1006.0 1050.0 1006.0 1050.0 193270 1028.00 1019.4150 1009.1881
## 758 2020-11-23 1035.0 1070.0 1035.0 1055.0 217855 1032.50 1025.8850 1040.9437
## 757 2020-11-24 1053.0 1053.0 1015.0 1030.0 238790 1036.50 1026.6332 1051.8809
## 756 2020-11-25 1030.0 1030.0 1017.0 1021.0 250405 1028.60 1025.6090 1034.8554
## 755 2020-11-26 1016.0 1025.0 992.5 1025.0 369560 1026.20 1025.4983 1024.0746
## 754 2020-11-27 1011.0 1023.0 970.0 970.0 1203935 1020.20 1015.4077 1024.7946
## 753 2020-12-01 970.0 1019.0 965.0 1019.0 544080 1020.60 1016.0608 982.1591
## 752 2020-12-02 1017.0 1044.0 1007.0 1030.0 241950 1023.40 1018.5952 1010.8249
## 751 2020-12-03 1030.0 1047.0 1007.0 1047.0 390685 1025.20 1023.7597 1025.7450
## 750 2020-12-04 1033.0 1044.0 1019.0 1026.0 299540 1027.30 1024.1670 1042.2834
## 749 2020-12-07 1044.0 1054.0 1020.0 1050.0 366925 1027.30 1028.8639 1029.6134
## 748 2020-12-09 1040.0 1079.0 1030.0 1039.0 290415 1025.70 1030.7069 1045.4761
## 747 2020-12-10 1040.0 1054.0 1040.0 1050.0 236250 1027.70 1034.2147 1040.4371
## 746 2020-12-11 1055.0 1085.0 1054.0 1068.0 273610 1032.40 1040.3575 1047.8780
## 745 2020-12-14 1068.0 1085.0 1040.0 1065.0 108300 1036.40 1044.8379 1063.5348
## 744 2020-12-15 1050.0 1064.0 1031.0 1050.0 327105 1044.40 1045.7765 1064.6749
## 743 2020-12-16 1042.0 1075.0 1035.0 1075.0 359920 1050.00 1051.0899 1053.2564
## 742 2020-12-17 1068.0 1095.0 1050.0 1094.0 378330 1056.40 1058.8917 1070.1750
## 741 2020-12-18 1069.0 1090.0 1053.0 1065.0 523810 1058.20 1060.0023 1088.7131
## 740 2020-12-21 1061.0 1081.0 1042.0 1065.0 137535 1062.10 1060.9110 1070.2620
## 739 2020-12-22 1065.0 1075.0 1046.0 1075.0 119735 1064.60 1063.4726 1066.1677
## 738 2020-12-23 1070.0 1078.0 1049.0 1077.0 151950 1068.40 1065.9321 1073.0401
## 737 2020-12-28 1065.0 1068.0 1050.0 1050.0 217125 1068.40 1063.0354 1076.1213
## 736 2020-12-29 1050.0 1060.0 1042.0 1049.0 248185 1066.50 1060.4835 1055.7964
## 735 2021-01-04 1055.0 1068.0 1046.0 1060.0 208000 1066.00 1060.3956 1050.5081
## 734 2021-01-05 1064.0 1067.0 1046.0 1050.0 122465 1066.00 1058.5055 1057.8937
## 733 2021-01-06 1050.0 1060.0 1025.0 1040.0 144465 1062.50 1055.1409 1051.7516
## 732 2021-01-07 1040.0 1054.0 1031.0 1034.0 92950 1056.50 1051.2971 1042.6077
## 731 2021-01-08 1042.0 1050.0 1037.0 1050.0 169125 1055.00 1051.0612 1035.9101
## 730 2021-01-11 1050.0 1095.0 1050.0 1050.0 312900 1053.50 1050.8683 1046.8734
## 729 2021-01-12 1060.0 1088.0 1052.0 1068.0 263010 1052.80 1053.9831 1049.3062
## 728 2021-01-13 1068.0 1086.0 1052.0 1079.0 181240 1053.00 1058.5317 1063.8518
## 727 2021-01-14 1065.0 1087.0 1065.0 1077.0 205430 1055.70 1061.8895 1075.6386
## 726 2021-01-15 1077.0 1084.0 1051.0 1051.0 157260 1055.90 1059.9096 1076.6979
## 725 2021-01-18 1051.0 1053.0 1043.0 1050.0 328055 1054.90 1058.1079 1056.7025
## 724 2021-01-19 1042.0 1074.0 1040.0 1072.0 258260 1057.10 1060.6337 1051.4873
## 723 2021-01-20 1056.0 1078.0 1045.0 1067.0 328060 1059.80 1061.7912 1067.4482
## 722 2021-01-21 1069.0 1069.0 1051.0 1067.0 160775 1063.10 1062.7383 1067.0994
## 721 2021-01-22 1052.0 1057.0 1026.0 1035.0 521960 1061.60 1057.6949 1067.0221
## 720 2021-01-25 1040.0 1047.0 1032.0 1038.0 159775 1060.40 1054.1140 1042.1058
## 719 2021-01-26 1035.0 1035.0 1020.0 1020.0 219635 1055.60 1047.9115 1038.9111
## 718 2021-01-27 1020.0 1029.0 996.0 1029.0 405275 1050.60 1044.4730 1024.1964
## 717 2021-01-28 1010.0 1043.0 1000.0 1026.0 174205 1045.50 1041.1143 1027.9341
## 716 2021-01-29 1016.0 1033.0 985.0 985.0 472445 1038.90 1030.9117 1026.4292
## 715 2021-02-01 981.0 1005.0 976.0 1005.0 404390 1034.40 1026.2005 994.1933
## 714 2021-02-02 1010.0 1050.0 1006.0 1006.0 257700 1027.80 1022.5277 1002.6020
## 713 2021-02-03 1012.0 1026.0 1007.0 1010.0 149395 1022.10 1020.2499 1005.2460
## 712 2021-02-04 1010.0 1034.0 981.0 1033.0 225680 1018.70 1022.5681 1008.9451
## 711 2021-02-05 1029.0 1046.0 1010.0 1039.0 402375 1019.10 1025.5557 1027.6621
## 710 2021-02-08 1020.0 1048.0 1013.0 1020.0 219285 1017.30 1024.5456 1036.4841
## 709 2021-02-09 1020.0 1059.0 1019.0 1056.0 403225 1020.90 1030.2646 1023.6579
## 708 2021-02-10 1055.0 1095.0 1052.0 1078.0 375190 1025.80 1038.9437 1048.8232
## 707 2021-02-11 1060.0 1078.0 1059.0 1068.0 557330 1030.00 1044.2267 1071.5256
## 706 2021-02-15 1068.0 1080.0 1055.0 1060.0 10269730 1037.50 1047.0946 1068.7823
## 705 2021-02-16 1060.0 1070.0 1060.0 1070.0 10167590 1044.00 1051.2592 1061.9488
## 704 2021-02-17 1056.0 1069.0 1030.0 1060.0 10369270 1049.40 1052.8484 1068.2134
## 703 2021-02-18 1050.0 1060.0 1033.0 1036.0 242500 1052.00 1049.7851 1061.8226
## 702 2021-02-19 1038.0 1074.0 1038.0 1065.0 432240 1055.20 1052.5514 1041.7301
## 701 2021-02-22 1060.0 1065.0 1031.0 1034.0 322215 1054.70 1049.1784 1059.8363
## 700 2021-02-23 1030.0 1060.0 1010.0 1060.0 286215 1058.70 1051.1460 1039.7332
## 699 2021-02-24 1054.0 1054.0 1035.0 1038.0 342435 1056.90 1048.7558 1055.5027
## 698 2021-02-26 1010.0 1027.0 1006.0 1009.0 848115 1050.00 1041.5275 1041.8839
## 697 2021-03-01 1025.0 1025.0 1009.0 1025.0 670320 1045.70 1038.5225 1016.2971
## 696 2021-03-02 1015.0 1052.0 1015.0 1046.0 459030 1044.30 1039.8820 1023.0688
## 695 2021-03-03 1046.0 1057.0 1026.0 1057.0 197170 1043.00 1042.9944 1040.9115
## 694 2021-03-04 1045.0 1046.0 1012.0 1040.0 249700 1041.00 1042.4500 1053.4299
## 693 2021-03-05 1030.0 1043.0 1024.0 1041.0 307150 1041.50 1042.1863 1042.9801
## 692 2021-03-08 1040.0 1041.0 1023.0 1039.0 270250 1038.90 1041.6070 1041.4394
## 691 2021-03-09 1030.0 1042.0 1023.0 1040.0 232385 1039.50 1041.3148 1039.5413
## 690 2021-03-10 1035.0 1057.0 1025.0 1057.0 282025 1039.20 1044.1667 1039.8982
## 689 2021-03-11 1041.0 1045.0 1026.0 1030.0 263775 1038.40 1041.5909 1053.2051
## 688 2021-03-12 1031.0 1040.0 1030.0 1034.0 129340 1040.90 1040.2107 1035.1493
## 687 2021-03-15 1035.0 1035.0 998.0 1018.0 340165 1040.20 1036.1724 1034.2550
## 686 2021-03-16 1000.0 1017.0 999.0 1003.0 304595 1035.90 1030.1411 1021.6071
## 685 2021-03-17 1002.0 1008.0 990.0 1005.0 424375 1030.70 1025.5700 1007.1290
## 684 2021-03-18 1006.0 1017.0 987.0 987.0 269000 1025.40 1018.5572 1005.4724
## 683 2021-03-19 990.0 1002.0 958.5 958.5 1249940 1017.15 1007.6377 991.0991
## 682 2021-03-22 950.0 968.0 940.0 961.0 327880 1009.35 999.1582 965.7339
## 681 2021-03-23 952.0 967.5 952.0 963.0 298060 1001.65 992.5839 962.0505
## 680 2021-03-24 951.5 970.0 950.0 970.0 168430 992.95 988.4778 962.7893
## 679 2021-03-25 962.0 996.5 962.0 984.0 200550 988.35 987.6636 968.3999
## 678 2021-03-26 972.0 983.5 960.0 980.0 192720 982.95 986.2702 980.5383
## 677 2021-03-29 974.0 995.0 962.0 970.0 210330 978.15 983.3120 980.1194
## 676 2021-03-30 971.0 987.0 955.5 970.0 382300 974.85 980.8917 972.2455
## 675 2021-03-31 972.0 972.0 960.0 960.0 405350 970.35 977.0932 970.4983
## 674 2021-04-05 956.0 984.0 956.0 984.0 131550 970.05 978.3490 962.3296
## 673 2021-04-06 982.0 992.0 972.0 992.0 147280 973.40 980.8310 979.1913
## 672 2021-04-07 992.0 1009.0 987.0 998.0 236930 977.10 983.9526 989.1577
## 671 2021-04-08 1003.0 1003.0 965.0 965.0 240380 977.30 980.5067 996.0379
## 670 2021-04-12 971.0 993.0 970.0 972.0 252040 977.50 978.9600 971.8874
## 669 2021-04-13 971.0 974.5 957.5 970.0 196130 976.10 977.3309 971.9750
## 668 2021-04-14 968.0 980.0 965.5 980.0 188290 976.10 977.8162 970.4383
## 667 2021-04-15 980.0 980.0 970.0 980.0 119240 977.10 978.2133 977.8782
## 666 2021-04-16 980.0 982.5 970.5 978.0 108850 977.90 978.1745 979.5292
## 665 2021-04-19 977.0 980.0 965.5 975.0 103910 979.40 977.5973 978.3393
## 664 2021-04-20 973.0 978.0 970.0 977.0 239330 978.70 977.4887 975.7410
## 663 2021-04-21 970.5 974.0 965.0 968.0 267370 976.30 975.7635 976.7206
## 662 2021-04-22 968.0 974.5 965.0 970.0 303580 973.50 974.7156 969.9351
## 661 2021-04-23 970.0 970.0 951.0 952.0 195200 972.20 970.5855 969.9856
## 660 2021-04-26 969.0 969.0 952.5 958.0 262470 970.80 968.2972 955.9911
## 659 2021-04-27 953.5 967.0 953.5 959.0 144870 969.70 966.6068 957.5542
## 658 2021-04-28 958.0 990.0 955.0 990.0 299580 970.70 970.8601 958.6792
## 657 2021-04-29 980.0 980.0 961.0 968.0 211670 969.50 970.3401 983.0498
## 656 2021-04-30 968.0 977.0 961.0 961.0 363380 967.80 968.6419 971.3396
## 655 2021-05-03 962.0 967.0 960.0 960.0 171720 966.30 967.0706 963.2944
## 654 2021-05-04 965.0 968.5 957.5 960.0 184950 964.60 965.7851 960.7310
## 653 2021-05-05 955.0 957.5 950.0 951.0 184070 962.90 963.0969 960.1622
## 652 2021-05-06 951.5 957.0 921.0 921.0 394870 958.00 955.4429 953.0331
## 651 2021-05-07 922.0 936.0 920.0 920.0 242960 954.80 948.9987 928.1083
## 650 2021-05-10 921.0 939.0 920.0 939.0 236940 952.90 947.1808 921.7993
## 649 2021-05-11 930.0 940.5 923.5 940.0 178830 951.00 945.8752 935.1831
## 648 2021-05-12 927.0 930.0 920.0 923.5 157480 944.35 941.8070 938.9311
## 647 2021-05-14 925.0 963.5 880.0 963.5 299450 943.90 945.7512 926.9242
## 646 2021-05-17 938.0 941.0 914.0 930.0 240270 940.80 942.8873 955.3837
## 645 2021-05-18 915.5 927.0 905.0 927.0 226990 937.50 939.9987 935.6327
## 644 2021-05-19 927.0 936.5 909.0 924.0 199940 933.90 937.0899 928.9156
## 643 2021-05-20 924.0 924.0 900.0 900.0 241130 928.80 930.3462 925.0908
## 642 2021-05-21 903.0 922.0 901.0 910.0 237690 927.70 926.6469 905.5677
## 641 2021-05-24 918.0 918.0 901.5 906.5 100470 926.35 922.9838 909.0165
## 640 2021-05-25 905.5 917.0 904.0 912.5 321060 923.70 921.0777 907.0584
## 639 2021-05-26 917.0 938.0 912.0 930.0 306350 922.70 922.6999 911.2925
## 638 2021-05-27 935.0 1004.0 931.0 1004.0 1001380 930.75 937.4818 925.8487
## 637 2021-05-28 989.0 989.0 965.5 980.0 304950 932.40 945.2124 986.6579
## 636 2021-05-31 965.0 990.0 962.5 970.0 177130 936.40 949.7192 981.4774
## 635 2021-06-01 970.0 970.0 957.0 960.5 102780 939.75 951.6793 972.5469
## 634 2021-06-02 965.0 1000.0 965.0 1000.0 464020 947.35 960.4649 963.1732
## 633 2021-06-03 997.5 999.0 980.5 998.0 133905 957.15 967.2895 991.8280
## 632 2021-06-04 999.0 1007.0 992.0 1000.0 229220 966.15 973.2368 996.6304
## 631 2021-06-07 1000.0 1000.0 980.0 990.0 72615 974.50 976.2847 999.2523
## 630 2021-06-08 1001.0 1008.0 992.5 1002.0 322450 983.45 980.9602 992.0531
## 629 2021-06-09 1001.0 1013.0 998.0 1000.0 264660 990.45 984.4220 999.7927
## 628 2021-06-10 1004.0 1010.0 1000.0 1009.0 245960 990.95 988.8907 999.9540
## 627 2021-06-11 1005.0 1019.0 1001.0 1019.0 109115 994.85 994.3651 1006.9927
## 626 2021-06-14 1010.0 1010.0 996.0 1000.0 111825 997.85 995.3897 1016.3355
## 625 2021-06-15 1000.0 1027.0 996.5 1015.0 274990 1003.30 998.9552 1003.6249
## 624 2021-06-16 1003.0 1019.0 1000.0 1000.0 174570 1003.30 999.1451 1012.4758
## 623 2021-06-17 1002.0 1007.0 991.0 999.0 226945 1003.40 999.1187 1002.7684
## 622 2021-06-18 995.5 1003.0 985.0 1000.0 543390 1003.40 999.2790 999.8362
## 621 2021-06-21 999.0 999.0 981.5 984.0 93420 1002.80 996.5010 999.9637
## 620 2021-06-22 985.0 1007.0 985.0 1000.0 141510 1002.60 997.1372 987.5424
## 619 2021-06-23 992.0 1000.0 990.0 1000.0 125735 1002.60 997.6577 997.2356
## 618 2021-06-24 998.0 1001.0 986.0 986.0 128525 1000.30 995.5381 999.3866
## 617 2021-06-25 988.5 997.0 988.5 995.0 72140 997.90 995.4403 988.9705
## 616 2021-06-28 996.0 1005.0 995.5 1005.0 194460 998.40 997.1784 993.6620
## 615 2021-06-29 1003.0 1015.0 999.0 1015.0 179635 998.40 1000.4187 1002.4841
## 614 2021-06-30 1013.0 1014.0 999.5 999.5 172690 998.35 1000.2517 1012.2227
## 613 2021-07-01 1015.0 1021.0 1011.0 1016.0 221920 1000.05 1003.1150 1002.3232
## 612 2021-07-02 1017.0 1021.0 1006.0 1018.0 111995 1001.85 1005.8214 1012.9651
## 611 2021-07-05 1014.0 1022.0 1013.0 1020.0 128575 1005.45 1008.3993 1016.8827
## 610 2021-07-06 1020.0 1020.0 1011.0 1014.0 104705 1006.85 1009.4176 1019.3083
## 609 2021-07-07 1014.0 1014.0 1005.0 1012.0 101130 1008.05 1009.8871 1015.1779
## 608 2021-07-08 1012.0 1015.0 984.0 1010.0 157660 1010.45 1009.9077 1012.7052
## 607 2021-07-09 1002.0 1010.0 986.5 1000.0 281625 1010.95 1008.1063 1010.6003
## 606 2021-07-12 999.0 1019.0 992.0 1019.0 126810 1012.35 1010.0869 1002.3522
## 605 2021-07-13 1019.0 1020.0 990.0 990.0 208285 1009.85 1006.4348 1015.3058
## 604 2021-07-14 992.0 1010.0 989.5 1010.0 105790 1010.90 1007.0830 995.6155
## 603 2021-07-15 1000.0 1009.0 989.0 990.0 88675 1008.30 1003.9770 1006.8080
## 602 2021-07-16 990.0 996.5 956.0 956.0 319330 1002.10 995.2539 993.7298
## 601 2021-07-19 960.0 976.5 931.0 951.0 361240 995.20 987.2077 964.3724
## 600 2021-07-21 961.0 964.0 924.0 940.0 236000 987.80 978.6245 953.9674
## 599 2021-07-22 950.0 960.0 940.5 960.0 195070 982.60 975.2382 943.0994
## 598 2021-07-23 969.0 969.5 941.5 966.0 121160 978.20 973.5586 956.2497
## 597 2021-07-26 965.0 965.0 945.0 945.0 108080 972.70 968.3661 963.8364
## 596 2021-07-27 963.0 963.0 946.0 956.0 222890 966.40 966.1177 949.1799
## 595 2021-07-28 956.0 956.0 920.0 954.0 196010 962.80 963.9145 954.4866
## 594 2021-07-29 949.0 960.0 938.0 956.0 141190 957.40 962.4755 954.1080
## 593 2021-07-30 956.0 956.0 910.0 910.5 344130 949.45 953.0254 955.5802
## 592 2021-08-02 930.0 945.0 912.0 945.0 254050 948.35 951.5662 920.5035
## 591 2021-08-03 945.0 964.5 921.0 964.5 167860 949.70 953.9178 939.5641
## 590 2021-08-04 964.5 974.5 950.0 964.0 174890 952.10 955.7510 958.9666
## 589 2021-08-05 975.0 985.0 963.0 963.0 134750 952.40 957.0690 962.8831
## 588 2021-08-06 975.0 978.0 961.5 963.0 149250 952.10 958.1473 962.9741
## 587 2021-08-09 963.0 989.0 963.0 989.0 116040 956.50 963.7569 962.9942
## 586 2021-08-10 989.0 989.0 971.5 989.0 49900 959.80 968.3466 983.2292
## 585 2021-08-11 989.0 1008.0 981.5 1008.0 119550 965.20 975.5563 987.7194
## 584 2021-08-12 999.5 1001.0 979.0 979.0 91115 967.50 976.1824 1003.4997
## 583 2021-08-13 979.0 989.0 912.0 912.0 351400 967.65 964.5129 984.4366
## 582 2021-08-16 940.0 964.5 930.0 964.0 233770 969.55 964.4196 928.0739
## 581 2021-08-17 957.0 975.0 957.0 960.0 139670 969.10 963.6161 956.0279
## 580 2021-08-18 963.0 1000.0 957.5 1000.0 208660 972.70 970.2313 959.1186
## 579 2021-08-19 999.0 1000.0 980.0 999.0 72830 976.30 975.4620 990.9283
## 578 2021-08-20 1002.0 1002.0 977.0 977.0 74470 977.70 975.7416 997.2089
## 577 2021-08-23 994.5 994.5 963.5 965.0 150880 975.30 973.7886 981.4844
## 576 2021-08-24 967.5 987.0 967.5 987.0 162460 975.10 976.1907 968.6580
## 575 2021-08-25 987.0 1010.0 974.5 1010.0 166650 975.30 982.3378 982.9298
## 574 2021-08-26 1008.0 1008.0 982.0 982.0 160345 975.60 982.2764 1003.9930
## 573 2021-08-27 981.0 999.0 975.0 975.0 102080 981.90 980.9534 986.8803
## 572 2021-08-31 975.5 1009.0 953.0 1009.0 647780 986.40 986.0528 977.6363
## 571 2021-09-01 998.5 1006.0 976.0 985.0 259095 988.90 985.8614 1002.0403
## 570 2021-09-02 998.0 1004.0 981.0 981.0 169890 987.00 984.9775 988.7813
## 569 2021-09-03 983.0 1020.0 983.0 1020.0 309510 989.10 991.3452 982.7267
## 568 2021-09-06 1002.0 1008.0 995.0 998.0 86135 991.20 992.5552 1011.7289
## 567 2021-09-07 998.0 1015.0 996.0 1015.0 65270 996.20 996.6361 1001.0465
## 566 2021-09-08 1000.0 1027.0 996.5 1025.0 273160 1000.00 1001.7931 1011.9037
## 565 2021-09-09 1024.0 1024.0 1005.0 1008.0 111805 999.80 1002.9217 1022.0939
## 564 2021-09-10 1008.0 1018.0 1002.0 1015.0 77640 1003.10 1005.1177 1011.1275
## 563 2021-09-13 1015.0 1015.0 1002.0 1009.0 63375 1006.50 1005.8236 1014.1407
## 562 2021-09-14 1010.0 1016.0 988.0 988.0 109300 1004.40 1002.5829 1010.1407
## 561 2021-09-15 1006.0 1015.0 990.0 1015.0 286280 1007.40 1004.8406 992.9131
## 560 2021-09-16 1000.0 1013.0 1000.0 1005.0 100140 1009.80 1004.8696 1010.0988
## 559 2021-09-17 995.5 1000.0 989.0 994.0 300370 1007.20 1002.8933 1006.1315
## 558 2021-09-20 994.5 999.0 983.0 986.0 58860 1006.00 999.8218 996.6920
## 557 2021-09-21 980.0 993.0 972.5 983.0 78890 1002.80 996.7633 988.3726
## 556 2021-09-22 995.0 995.0 975.0 975.0 92920 997.80 992.8063 984.1922
## 555 2021-09-23 980.0 995.0 976.0 976.0 118700 994.60 989.7506 977.0398
## 554 2021-09-24 982.0 984.5 962.0 965.0 211380 989.60 985.2505 976.2307
## 553 2021-09-27 965.5 977.0 953.5 960.0 226980 984.70 980.6595 967.4921
## 552 2021-09-28 978.0 978.0 955.5 977.0 257750 983.60 979.9941 961.6625
## 551 2021-09-29 977.0 987.0 961.0 987.0 307190 980.80 981.2679 973.5966
## 550 2021-09-30 986.0 999.0 979.5 990.0 228670 979.30 982.8556 984.0257
## 549 2021-10-01 988.0 997.5 970.0 975.0 184280 977.40 981.4273 988.6743
## 548 2021-10-04 975.0 990.0 972.5 990.0 94930 977.80 982.9860 978.0344
## 547 2021-10-05 977.5 1000.0 977.5 1000.0 77240 979.50 986.0794 987.3448
## 546 2021-10-06 997.0 1002.0 982.0 1000.0 82185 982.00 988.6104 997.1918
## 545 2021-10-07 987.0 997.0 975.0 980.0 169775 982.40 987.0449 999.3768
## 544 2021-10-08 980.0 998.0 965.0 966.0 233370 982.50 983.2186 984.2998
## 543 2021-10-11 968.0 1018.0 968.0 1005.0 241280 987.00 987.1788 970.0608
## 542 2021-10-12 986.5 1005.0 986.5 999.0 83720 989.20 989.3281 997.2469
## 541 2021-10-13 1000.0 1015.0 968.0 975.0 246210 988.00 986.7230 998.6110
## 540 2021-10-14 992.0 1010.0 986.0 1000.0 215810 989.00 989.1370 980.2394
## 539 2021-10-15 1000.0 1015.0 990.0 991.0 137025 990.60 989.4757 995.6150
## 538 2021-10-18 980.0 980.0 960.0 970.0 335180 988.60 985.9347 992.0241
## 537 2021-10-19 980.0 1009.0 977.5 1008.0 255980 989.40 989.9466 974.8872
## 536 2021-10-20 996.0 1025.0 996.0 1025.0 201240 991.90 996.3199 1000.6522
## 535 2021-10-21 1025.0 1038.0 1015.0 1038.0 205110 997.70 1003.8981 1019.5971
## 534 2021-10-22 1032.0 1041.0 1020.0 1034.0 196005 1004.50 1009.3712 1033.9163
## 533 2021-10-25 1021.0 1030.0 1010.0 1021.0 131175 1006.10 1011.4855 1033.9814
## 532 2021-10-26 1021.0 1028.0 1000.0 1028.0 124875 1009.00 1014.4881 1023.8806
## 531 2021-10-27 1024.0 1025.0 987.5 990.0 347750 1010.50 1010.0358 1027.0859
## 530 2021-10-28 993.0 1007.0 980.0 992.0 155840 1009.70 1006.7565 998.2295
## 529 2021-10-29 993.0 993.0 961.0 965.0 520640 1007.10 999.1644 993.3823
## 528 2021-11-02 976.0 1005.0 975.0 1005.0 312910 1010.60 1000.2254 971.2981
## 527 2021-11-03 990.0 1005.0 990.0 998.0 114905 1009.60 999.8208 997.5214
## 526 2021-11-04 1002.0 1002.0 976.0 990.0 227140 1006.10 998.0352 997.8938
## 525 2021-11-05 995.0 1001.0 980.0 998.0 119190 1002.10 998.0288 991.7517
## 524 2021-11-08 998.0 998.0 973.0 974.5 483200 996.15 993.7508 996.6135
## 523 2021-11-09 980.0 991.0 980.0 984.0 309280 992.45 991.9780 979.4071
## 522 2021-11-10 990.0 993.0 971.0 975.0 264070 987.15 988.8911 982.9808
## 521 2021-11-11 975.0 981.0 975.0 979.0 216660 986.05 987.0927 976.7710
## 520 2021-11-12 975.0 995.0 975.0 990.0 170110 985.85 987.6213 978.5054
## 519 2021-11-15 989.5 996.0 975.0 990.0 103840 988.35 988.0538 987.4493
## 518 2021-11-16 990.0 998.0 982.5 998.0 198880 987.65 989.8622 989.4340
## 517 2021-11-17 990.0 991.5 975.0 975.0 207130 985.35 987.1600 996.0992
## 516 2021-11-18 976.5 987.5 970.5 975.0 264690 983.85 984.9491 979.6820
## 515 2021-11-19 987.0 987.0 971.0 975.0 186160 981.55 983.1401 976.0389
## 514 2021-11-22 975.0 975.5 965.0 975.0 160950 981.60 981.6601 975.2305
## 513 2021-11-23 975.0 990.0 967.0 985.0 205880 981.70 982.2674 975.0512
## 512 2021-11-24 985.0 991.0 979.0 988.0 181130 983.00 983.3097 982.7923
## 511 2021-11-25 980.0 980.5 973.0 978.0 132930 982.90 982.3443 986.8444
## 510 2021-11-26 975.0 990.0 974.5 979.5 256170 981.85 981.8271 979.9626
## 509 2021-11-29 975.0 980.0 945.0 980.0 637330 980.85 981.4949 979.6027
## 508 2021-12-01 975.0 977.5 922.5 932.0 504100 974.25 972.4958 979.9118
## 507 2021-12-02 932.0 953.0 932.0 947.5 386390 971.50 967.9511 942.6318
## 506 2021-12-03 954.0 959.5 939.0 939.0 174070 967.90 962.6873 946.4197
## 505 2021-12-06 949.0 951.0 930.5 935.0 169180 963.90 957.6532 940.6465
## 504 2021-12-07 940.0 959.5 935.5 959.5 172290 962.35 957.9890 936.2530
## 503 2021-12-09 944.0 957.0 936.0 950.0 242270 958.85 956.5365 954.3414
## 502 2021-12-10 950.0 955.0 937.0 940.0 144990 954.05 953.5298 950.9634
## 501 2021-12-13 940.0 950.0 940.0 944.5 118170 950.70 951.8881 942.4328
## 500 2021-12-14 959.0 977.0 941.0 968.0 208280 949.55 954.8175 944.0413
## 499 2021-12-15 970.0 981.0 950.0 950.0 236140 946.55 953.9416 962.6835
## 498 2021-12-16 970.0 979.0 952.0 979.0 212880 951.25 958.4977 952.8145
## 497 2021-12-17 969.0 999.0 956.0 999.0 253940 956.40 965.8617 973.1893
## 496 2021-12-20 970.0 983.5 964.0 980.0 125660 960.50 968.4323 993.2725
## 495 2021-12-21 976.0 987.0 965.0 971.0 194280 964.10 968.8992 982.9452
## 494 2021-12-22 975.0 977.5 940.0 943.0 256680 962.45 964.1902 973.6507
## 493 2021-12-23 950.0 979.0 950.0 979.0 164880 965.35 966.8829 949.8015
## 492 2021-12-24 978.5 978.5 961.5 961.5 41380 967.50 965.9042 972.5207
## 491 2021-12-27 960.0 975.0 960.0 975.0 57670 970.55 967.5580 963.9455
## 490 2021-12-28 965.5 989.0 965.5 987.0 121180 972.45 971.0929 972.5470
## 489 2021-12-29 988.0 988.0 964.0 971.0 143390 974.55 971.0760 983.7928
## 488 2021-12-31 971.0 971.0 940.0 943.0 245380 970.95 965.9713 973.8388
## 487 2022-01-03 950.0 950.5 932.0 932.0 255750 964.25 959.7947 949.8432
## 486 2022-01-05 948.0 957.0 923.0 929.5 215800 959.20 954.2866 935.9595
## 485 2022-01-06 929.0 947.0 920.0 947.0 373440 956.80 952.9617 930.9334
## 484 2022-01-07 944.0 944.0 932.0 937.0 173030 956.20 950.0596 943.4348
## 483 2022-01-10 932.0 960.0 931.5 940.0 247910 952.30 948.2306 938.4279
## 482 2022-01-11 940.0 948.0 926.0 930.0 388200 949.15 944.9159 939.6511
## 481 2022-01-12 952.0 952.0 934.0 950.0 254360 946.65 945.8403 932.1416
## 480 2022-01-13 941.0 963.5 941.0 950.0 276460 942.95 946.5966 946.0372
## 479 2022-01-14 951.0 958.0 940.5 947.0 181510 940.55 946.6700 949.1206
## 478 2022-01-17 950.0 960.0 943.0 950.0 102980 941.25 947.2754 947.4706
## 477 2022-01-18 950.0 968.0 946.0 968.0 152340 944.85 951.0435 949.4387
## 476 2022-01-19 965.0 967.5 953.0 959.0 206130 947.80 952.4902 963.8812
## 475 2022-01-20 953.5 962.0 943.0 958.0 113970 948.90 953.4919 960.0832
## 474 2022-01-21 956.0 959.0 945.0 959.0 141740 951.10 954.4934 958.4623
## 473 2022-01-24 958.5 958.5 942.5 950.0 108810 952.10 953.6764 958.8807
## 472 2022-01-25 952.0 954.5 947.0 950.0 157050 954.10 953.0080 951.9707
## 471 2022-01-26 950.0 950.5 938.5 950.0 377950 954.10 952.4611 950.4373
## 470 2022-01-27 950.0 955.5 942.0 951.0 137050 954.20 952.1954 950.0970
## 469 2022-01-28 942.5 952.0 939.0 939.0 393820 953.40 949.7963 950.7996
## 468 2022-01-31 942.0 953.0 940.5 949.0 259840 953.30 949.6515 941.6184
## 467 2022-02-02 949.0 995.0 949.0 965.0 303110 953.00 952.4421 947.3620
## 466 2022-02-03 965.0 965.0 949.0 949.0 214530 952.00 951.8163 961.0861
## 465 2022-02-04 956.0 976.5 951.0 976.5 123040 953.85 956.3042 951.6819
## 464 2022-02-07 974.0 976.5 946.0 950.0 329890 952.95 955.1580 970.9928
## 463 2022-02-08 950.0 978.5 948.0 976.0 354130 955.55 958.9475 954.6584
## 462 2022-02-09 976.0 985.0 962.5 962.5 249620 956.80 959.5934 971.2642
## 461 2022-02-10 970.0 975.0 940.0 940.0 396330 955.80 956.0309 964.4448
## 460 2022-02-11 940.5 949.0 911.0 911.0 853080 951.80 947.8435 945.4244
## 459 2022-02-14 935.0 940.0 921.0 940.0 359040 951.90 946.4174 918.6389
## 458 2022-02-15 925.0 940.0 925.0 940.0 311670 951.00 945.2506 935.2599
## 457 2022-02-16 930.0 942.0 930.0 937.0 308670 948.20 943.7505 938.9482
## 456 2022-02-17 937.0 947.5 925.0 927.0 346510 946.00 940.7050 937.4323
## 455 2022-02-18 925.0 932.0 921.0 921.0 364420 940.45 937.1222 929.3150
## 454 2022-02-21 850.0 878.0 843.0 860.0 1588390 931.45 923.1000 922.8451
## 453 2022-02-22 861.5 897.5 856.5 895.0 804840 923.35 917.9909 873.9456
## 452 2022-02-23 893.0 898.5 877.0 880.0 259010 915.10 911.0835 890.3279
## 451 2022-02-24 880.0 905.0 865.0 871.0 480190 908.20 903.7956 882.2918
## 450 2022-02-28 871.5 910.0 871.5 892.0 483700 906.30 901.6509 873.5057
## 449 2022-03-01 900.0 947.0 898.0 947.0 893810 907.00 909.8962 887.8960
## 448 2022-03-02 937.0 955.0 922.5 930.0 448230 906.00 913.5514 933.8846
## 447 2022-03-03 932.0 957.0 925.0 957.0 329900 908.00 921.4512 930.8620
## 446 2022-03-04 950.0 951.0 930.0 932.0 228960 908.50 923.3691 951.1999
## 445 2022-03-07 930.0 931.0 904.0 929.0 155740 909.30 924.3929 936.2605
## 444 2022-03-08 902.0 938.0 890.0 890.0 476770 912.30 918.1397 930.6111
## 443 2022-03-09 890.5 919.5 871.0 871.0 705530 909.90 909.5688 899.0118
## 442 2022-03-10 889.0 908.0 880.0 908.0 371630 912.70 909.2836 877.2159
## 441 2022-03-11 885.5 912.0 885.5 909.0 271210 916.50 909.2320 901.1689
## 440 2022-03-14 901.0 901.0 871.0 880.0 495990 915.30 903.9171 907.2622
## 439 2022-03-15 875.0 911.0 851.5 911.0 504280 911.70 905.2049 886.0496
## 438 2022-03-16 890.0 908.5 875.0 900.0 443920 908.70 904.2586 905.4634
## 437 2022-03-17 891.0 911.0 886.0 906.0 395120 903.60 904.5752 901.2124
## 436 2022-03-18 894.0 934.0 885.0 902.5 12456970 900.65 904.1979 904.9376
## 435 2022-03-21 902.5 909.5 871.5 880.0 1560800 895.75 899.7983 903.0409
## 434 2022-03-22 875.0 885.0 872.0 882.0 479800 894.95 896.5622 885.1129
## 433 2022-03-23 878.0 891.5 861.0 867.0 1170230 894.55 891.1873 882.6908
## 432 2022-03-24 866.5 885.0 861.0 885.0 791410 892.25 890.0623 870.4818
## 431 2022-03-25 880.0 897.0 877.0 897.0 203940 891.05 891.3237 881.7784
## 430 2022-03-28 897.0 900.0 882.0 900.0 301460 893.05 892.9012 893.6223
## 429 2022-03-29 881.0 900.5 881.0 896.0 240460 891.55 893.4646 898.5848
## 428 2022-03-30 885.0 902.5 884.5 898.0 799910 891.35 894.2892 896.5736
## 427 2022-03-31 892.0 909.0 885.5 909.0 431160 891.65 896.9639 897.6835
## 426 2022-04-01 891.0 901.5 886.0 898.0 212900 891.20 897.1523 906.4888
## 425 2022-04-04 895.0 899.0 886.0 890.0 166160 892.20 895.8519 899.8837
## 424 2022-04-05 887.0 889.0 865.0 889.0 384770 892.90 894.6061 892.1932
## 423 2022-04-06 876.0 888.0 870.0 882.0 246680 894.40 892.3141 889.7086
## 422 2022-04-07 878.5 887.0 865.5 870.0 501380 892.90 888.2570 883.7106
## 421 2022-04-08 870.0 872.0 863.5 865.0 479270 889.70 884.0284 873.0424
## 420 2022-04-11 865.0 875.0 860.0 865.0 273200 886.20 880.5687 866.7846
## 419 2022-04-12 865.0 874.0 861.0 865.0 241960 883.10 877.7380 865.3960
## 418 2022-04-13 866.0 873.0 864.0 872.5 292230 880.55 876.7857 865.0879
## 417 2022-04-18 872.5 874.0 865.0 865.0 144170 876.15 874.6428 870.8552
## 416 2022-04-19 865.0 872.0 855.5 871.5 569580 873.50 874.0714 866.2993
## 415 2022-04-20 895.0 895.0 865.5 877.0 302310 872.20 874.6039 870.3459
## 414 2022-04-21 880.0 885.0 862.0 865.0 421950 869.80 872.8577 875.5234
## 413 2022-04-22 866.0 869.0 858.0 869.0 300700 868.50 872.1563 867.3352
## 412 2022-04-25 860.0 885.0 855.5 885.0 268520 870.00 874.4915 868.6306
## 411 2022-04-26 870.0 871.5 858.5 860.0 245420 869.50 871.8567 881.3676
## 410 2022-04-27 858.5 860.0 848.0 851.0 509780 868.10 868.0646 864.7415
## 409 2022-04-28 851.0 860.0 848.5 860.0 403970 867.60 866.5983 854.0493
## 408 2022-04-29 858.0 860.0 824.0 851.5 1191260 865.50 863.8531 858.6795
## 407 2022-05-02 850.0 851.5 840.0 849.0 81170 863.90 861.1526 853.0932
## 406 2022-05-04 849.0 849.0 825.0 849.0 360110 861.65 858.9430 849.9083
## 405 2022-05-05 851.5 870.0 840.0 861.0 663360 860.05 859.3170 849.2016
## 404 2022-05-06 840.0 848.0 832.0 845.5 906610 858.10 856.8048 858.3819
## 403 2022-05-10 836.0 855.0 810.5 845.0 692470 855.70 854.6585 848.3585
## 402 2022-05-11 845.0 853.5 811.5 825.0 630420 849.70 849.2660 845.7453
## 401 2022-05-12 824.0 839.0 820.0 828.0 352560 846.50 845.3995 829.6035
## 400 2022-05-13 830.0 838.0 789.0 789.0 483880 840.30 835.1450 828.3558
## 399 2022-05-16 801.0 816.5 791.5 808.0 412870 835.10 830.2096 797.7332
## 398 2022-05-17 808.0 832.0 800.5 832.0 282150 833.15 830.5351 805.7218
## 397 2022-05-18 832.0 870.0 820.0 870.0 659720 835.25 837.7105 826.1688
## 396 2022-05-19 849.0 849.0 815.5 839.0 512330 834.25 837.9450 860.2737
## 395 2022-05-20 848.0 855.0 835.0 845.0 156420 832.65 839.2277 843.7207
## 394 2022-05-23 848.0 860.0 842.0 848.0 288260 832.90 840.8227 844.7161
## 393 2022-05-24 848.5 848.5 830.0 830.0 170530 831.40 838.8549 847.2713
## 392 2022-05-25 830.0 847.0 830.0 847.0 188470 833.60 840.3358 833.8326
## 391 2022-05-26 847.0 847.0 822.0 835.0 305010 834.30 839.3657 844.0781
## 390 2022-05-27 837.0 839.5 834.5 838.5 199820 839.25 839.2083 837.0145
## 389 2022-05-30 840.0 864.0 839.0 862.0 371350 844.65 843.3522 838.1704
## 388 2022-05-31 862.0 867.0 845.5 858.0 905670 847.25 846.0155 856.7121
## 387 2022-06-01 858.0 858.0 850.0 850.0 152870 845.25 846.7399 857.7142
## 386 2022-06-02 857.0 857.0 840.0 856.0 182900 846.95 848.4236 851.7118
## 385 2022-06-03 850.0 865.0 845.5 865.0 244500 848.95 851.4375 855.0484
## 384 2022-06-06 860.0 864.5 855.0 861.0 245190 850.25 853.1761 862.7917
## 383 2022-06-07 861.0 864.0 852.0 864.0 101090 853.65 855.1441 861.3976
## 382 2022-06-08 863.0 864.0 852.0 852.0 211140 854.15 854.5724 863.4225
## 381 2022-06-09 860.0 862.0 844.5 862.0 300980 856.85 855.9229 854.5347
## 380 2022-06-10 861.0 861.0 820.0 820.0 485030 855.00 849.3915 860.3434
## 379 2022-06-13 818.5 827.0 805.0 806.0 373440 849.40 841.5021 828.9524
## 378 2022-06-14 807.0 830.0 796.0 830.0 397790 846.60 839.4108 811.0932
## 377 2022-06-15 810.0 816.5 795.0 795.0 265140 841.10 831.3361 825.8045
## 376 2022-06-16 808.0 824.0 789.0 809.5 401920 836.45 827.3659 801.8356
## 375 2022-06-17 807.5 807.5 785.0 785.0 571890 828.45 819.6630 807.7992
## 374 2022-06-20 785.0 807.5 785.0 790.0 224360 821.35 814.2697 790.0592
## 373 2022-06-21 790.0 796.5 772.0 774.0 390460 812.35 806.9480 790.0131
## 372 2022-06-22 779.0 786.0 763.0 763.0 194320 803.45 798.9574 777.5534
## 371 2022-06-23 766.0 773.0 738.0 769.5 273080 794.20 793.6015 766.2294
## 370 2022-06-24 794.0 804.0 780.5 801.5 270970 792.35 795.0376 768.7743
## 369 2022-06-27 810.0 810.0 790.0 799.5 185480 791.70 795.8490 794.2380
## 368 2022-06-28 802.0 829.0 801.0 829.0 246390 791.60 801.8764 798.3324
## 367 2022-06-29 829.0 829.0 803.0 820.0 173860 794.10 805.1716 822.1947
## 366 2022-06-30 810.0 820.0 778.0 782.0 422700 791.35 800.9586 820.4870
## 365 2022-07-01 780.0 786.0 769.0 770.0 294440 789.85 795.3298 790.5404
## 364 2022-07-04 780.0 804.0 771.0 800.0 278230 790.85 796.1789 774.5580
## 363 2022-07-05 801.0 801.0 783.0 792.0 171190 792.65 795.4191 794.3543
## 362 2022-07-06 799.5 839.0 793.0 839.0 375910 800.25 803.3429 792.5224
## 361 2022-07-07 817.0 846.0 817.0 844.0 258410 807.70 810.7351 828.6865
## 360 2022-07-08 844.0 859.5 823.5 839.0 510240 811.45 815.8742 840.6019
## 359 2022-07-11 839.0 858.0 826.0 838.0 127390 815.30 819.8970 839.3555
## 358 2022-07-12 825.0 837.0 810.5 813.0 415020 813.70 818.6430 838.3008
## 357 2022-07-13 815.0 816.5 791.0 797.0 657780 811.40 814.7079 818.6143
## 356 2022-07-14 797.0 797.0 771.5 775.5 519960 810.75 807.5792 801.7963
## 355 2022-07-15 775.5 780.0 758.0 775.0 355480 811.25 801.6557 781.3352
## 354 2022-07-18 762.0 781.0 762.0 781.0 464530 809.35 797.9001 776.4058
## 353 2022-07-19 792.0 796.0 782.5 796.0 97230 809.75 797.5547 779.9805
## 352 2022-07-20 797.0 804.0 786.0 788.0 298630 804.65 795.8175 792.4452
## 351 2022-07-21 800.0 807.5 772.0 774.0 325740 797.65 791.8506 788.9864
## 350 2022-07-22 775.0 793.0 774.0 788.0 260700 792.55 791.1505 777.3255
## 349 2022-07-25 788.5 793.0 775.0 789.0 264700 787.65 790.7595 785.6313
## 348 2022-07-26 792.0 792.0 781.0 790.0 80360 785.35 790.6214 788.2525
## 347 2022-07-27 790.0 790.0 771.0 780.0 164410 783.65 788.6903 789.6122
## 346 2022-07-28 786.0 801.0 786.0 800.0 265100 786.10 790.7466 782.1330
## 345 2022-07-29 802.0 804.0 771.0 775.5 639650 786.15 787.9745 796.0352
## 344 2022-08-01 779.0 788.0 763.0 780.0 319680 786.05 786.5246 780.0568
## 343 2022-08-02 778.0 780.0 764.0 769.0 424570 783.35 783.3383 780.0126
## 342 2022-08-03 772.0 798.0 765.0 795.0 353400 784.05 785.4586 771.4437
## 341 2022-08-04 790.5 803.0 785.0 792.0 294960 785.85 786.6479 789.7728
## 340 2022-08-05 792.0 798.0 770.5 780.0 630640 785.05 785.4392 791.5058
## 339 2022-08-08 789.0 789.0 767.0 778.0 441390 783.95 784.0866 782.5532
## 338 2022-08-09 780.0 807.5 780.0 805.0 424940 785.45 787.8891 779.0104
## 337 2022-08-10 805.0 813.0 793.0 809.0 411620 788.35 791.7274 799.2328
## 336 2022-08-11 819.0 845.0 811.0 845.0 480450 792.85 801.4133 806.8326
## 335 2022-08-12 844.5 847.5 834.5 843.0 355310 799.60 808.9746 836.5305
## 334 2022-08-15 845.0 861.5 843.0 860.0 521800 807.60 818.2519 841.5644
## 333 2022-08-16 860.0 883.5 855.0 880.0 615320 818.70 829.4788 855.9091
## 332 2022-08-17 880.0 887.5 855.5 882.0 465840 827.40 839.0281 874.6541
## 331 2022-08-18 861.0 883.0 861.0 880.0 427160 836.20 846.4776 880.3699
## 330 2022-08-19 880.0 887.0 875.0 883.0 101060 846.50 853.1180 880.0821
## 329 2022-08-22 880.0 883.0 850.0 850.0 108890 853.70 852.5511 882.3525
## 328 2022-08-23 849.0 859.5 832.5 842.0 94830 857.40 850.6327 857.1791
## 327 2022-08-24 840.0 860.0 840.0 851.0 67380 861.60 850.6995 845.3683
## 326 2022-08-25 859.5 880.0 854.5 880.0 192370 865.10 856.0269 849.7503
## 325 2022-08-26 870.0 885.0 865.0 879.0 194080 868.70 860.2038 873.2875
## 324 2022-08-30 858.0 878.5 850.0 875.5 241390 870.25 862.9849 877.7324
## 323 2022-08-31 875.0 875.0 831.0 831.0 402510 865.35 857.1695 875.9954
## 322 2022-09-01 843.5 847.5 836.5 840.0 224310 861.15 854.0478 840.9846
## 321 2022-09-02 840.5 873.5 840.5 860.0 164620 859.15 855.1300 840.2185
## 320 2022-09-05 868.5 878.0 853.0 870.0 159930 857.85 857.8336 855.6104
## 319 2022-09-06 870.0 881.0 859.0 877.0 243320 860.55 861.3184 866.8069
## 318 2022-09-07 877.0 877.0 837.0 841.0 144620 860.45 857.6242 874.7381
## 317 2022-09-08 842.0 851.5 840.0 840.0 143130 859.35 854.4198 848.4866
## 316 2022-09-09 850.0 875.0 844.0 865.0 118010 857.85 856.3434 841.8832
## 315 2022-09-12 865.0 891.0 862.5 885.0 402570 858.45 861.5537 859.8703
## 314 2022-09-13 881.0 893.5 878.0 884.5 307590 859.35 865.7258 879.4236
## 313 2022-09-14 867.0 878.0 854.0 859.5 253300 862.20 864.5938 883.3735
## 312 2022-09-15 862.0 877.5 850.0 850.0 340280 863.20 861.9404 864.7976
## 311 2022-09-16 855.0 871.0 844.5 871.0 386130 864.30 863.5876 853.2836
## 310 2022-09-19 866.0 870.0 835.0 835.0 385170 860.80 858.3899 867.0687
## 309 2022-09-20 850.0 854.0 828.0 828.0 394560 855.90 852.8644 842.1162
## 308 2022-09-21 828.5 834.0 800.5 818.5 524240 853.65 846.6163 831.1324
## 307 2022-09-22 800.0 819.5 786.0 819.5 564270 851.60 841.6861 821.3032
## 306 2022-09-23 820.0 820.0 800.0 808.0 349440 845.90 835.5614 819.9001
## 305 2022-09-27 784.0 784.0 747.5 763.0 953030 833.70 822.3684 810.6407
## 304 2022-09-28 770.0 774.0 725.0 733.0 942170 818.55 806.1196 773.5716
## 303 2022-09-29 751.0 764.5 741.5 760.0 531650 808.60 797.7342 742.0030
## 302 2022-09-30 750.0 762.5 725.0 725.0 367580 796.10 784.5098 756.0064
## 301 2022-10-03 722.0 760.0 720.0 760.0 163010 785.00 780.0535 731.8804
## 300 2022-10-04 760.0 794.0 750.0 794.0 395120 780.90 782.5892 753.7602
## 299 2022-10-05 799.5 800.0 760.5 785.0 253560 776.60 783.0275 785.0706
## 298 2022-10-06 785.0 789.5 760.0 760.0 155270 770.75 778.8407 785.0157
## 297 2022-10-07 758.0 765.0 745.0 760.0 99890 764.80 775.4151 765.5511
## 296 2022-10-10 749.0 764.5 741.5 760.0 67770 760.00 772.6124 761.2318
## 295 2022-10-11 761.0 770.0 751.0 759.0 428010 759.60 770.1374 760.2733
## 294 2022-10-12 759.0 770.0 759.0 764.0 142410 762.70 769.0215 759.2826
## 293 2022-10-13 768.0 788.5 755.5 788.5 155400 765.55 772.5631 762.9532
## 292 2022-10-14 788.5 788.5 762.0 762.0 310490 769.25 770.6425 782.8311
## 291 2022-10-17 765.0 799.0 750.0 799.0 198660 773.15 775.7984 766.6225
## 290 2022-10-18 799.0 799.0 780.5 786.0 445990 772.35 777.6532 791.8153
## 289 2022-10-19 790.0 799.0 780.0 799.0 82370 773.75 781.5345 787.2904
## 288 2022-10-20 795.0 817.5 770.5 777.0 696710 775.45 780.7100 796.4016
## 287 2022-10-21 781.5 789.0 770.0 770.0 389490 776.45 778.7627 781.3053
## 286 2022-10-24 775.5 789.5 764.5 765.0 430620 776.95 776.2604 772.5087
## 285 2022-10-25 773.0 784.0 773.0 780.0 444730 779.05 776.9403 766.6662
## 284 2022-10-26 781.0 799.5 781.0 799.5 294290 782.60 781.0421 777.0412
## 283 2022-10-27 798.0 830.0 792.0 830.0 557260 786.75 789.9435 794.5163
## 282 2022-10-28 820.0 828.0 790.0 820.0 123360 792.55 795.4084 822.1260
## 281 2022-11-02 833.0 843.0 807.5 843.0 505170 796.95 804.0614 820.4718
## 280 2022-11-03 820.0 820.5 800.5 820.0 184260 800.35 806.9593 838.0009
## 279 2022-11-04 819.0 835.0 811.5 835.0 132380 803.95 812.0576 823.9945
## 278 2022-11-07 830.0 839.5 820.5 835.0 214730 809.75 816.2290 832.5578
## 277 2022-11-08 836.0 843.0 826.5 833.0 465070 816.05 819.2782 834.4581
## 276 2022-11-09 825.0 837.0 820.0 831.0 401200 822.65 821.4095 833.3236
## 275 2022-11-10 825.0 831.0 784.0 787.0 491370 823.35 815.1532 831.5156
## 274 2022-11-11 810.0 829.0 808.0 825.0 322310 825.90 816.9435 796.8782
## 273 2022-11-14 825.0 847.0 821.5 842.0 615170 827.10 821.4993 818.7597
## 272 2022-11-15 843.0 870.0 830.5 870.0 350250 832.10 830.3176 836.8429
## 271 2022-11-16 870.0 873.5 842.0 870.0 553530 834.80 837.5326 862.6423
## 270 2022-11-17 867.0 878.0 855.0 867.0 262260 839.50 842.8903 868.3673
## 269 2022-11-18 869.0 878.0 855.0 859.0 361850 841.90 845.8193 867.3034
## 268 2022-11-21 860.0 860.0 836.0 836.0 269310 842.00 844.0340 860.8426
## 267 2022-11-22 837.0 869.5 837.0 869.0 224300 845.60 848.5733 841.5127
## 266 2022-11-23 865.0 898.0 865.0 895.0 256990 852.00 857.0145 862.9005
## 265 2022-11-24 893.0 894.0 876.0 894.0 369510 862.70 863.7391 887.8770
## 264 2022-11-25 893.0 919.0 882.0 910.0 761090 871.20 872.1502 892.6413
## 263 2022-11-28 905.0 931.5 900.0 927.0 610210 879.70 882.1229 906.1480
## 262 2022-11-29 915.0 939.0 905.5 939.0 754100 886.60 892.4642 922.3729
## 261 2022-12-01 954.0 981.5 940.0 980.0 1052130 897.60 908.3798 935.3104
## 260 2022-12-02 968.0 968.0 901.5 901.5 647500 901.05 907.1289 970.0832
## 259 2022-12-05 905.0 910.0 890.0 894.0 237650 904.55 904.7418 916.7189
## 258 2022-12-06 900.0 943.0 893.0 943.0 387480 915.25 911.6979 899.0414
## 257 2022-12-07 940.0 940.0 910.0 910.0 223250 919.35 911.3892 933.2454
## 256 2022-12-09 928.0 939.0 910.0 930.0 338250 922.85 914.7730 915.1582
## 255 2022-12-12 923.0 950.0 915.5 936.0 453440 927.05 918.6324 926.7066
## 254 2022-12-13 940.0 946.0 916.0 916.0 128990 927.65 918.1538 933.9378
## 253 2022-12-14 922.0 939.0 922.0 928.0 243360 927.75 919.9440 919.9805
## 252 2022-12-15 921.0 933.5 910.5 930.0 198370 926.85 921.7724 926.2204
## 251 2022-12-16 922.0 929.0 910.0 929.0 340930 921.75 923.0865 929.1613
## 250 2022-12-19 922.0 923.5 894.0 908.5 225790 922.45 920.4344 929.0358
## 249 2022-12-20 905.0 915.0 898.0 905.0 156620 923.55 917.6281 913.0570
## 248 2022-12-21 900.0 915.0 898.5 909.0 101910 920.15 916.0594 906.7879
## 247 2022-12-22 910.0 926.0 910.0 926.0 326750 921.75 917.8668 908.5091
## 246 2022-12-23 924.0 927.0 913.0 914.0 308450 920.15 917.1637 922.1187
## 245 2022-12-27 914.0 932.5 912.0 930.0 352220 919.55 919.4976 915.8016
## 244 2022-12-28 920.0 930.0 901.0 910.0 442540 918.95 917.7708 926.8493
## 243 2022-12-29 910.0 916.5 900.0 900.0 623110 916.15 914.5397 913.7389
## 242 2023-01-03 900.0 919.0 900.0 900.0 230080 913.15 911.8961 903.0487
## 241 2023-01-04 900.0 929.5 900.0 921.0 322840 912.35 913.5514 900.6765
## 240 2023-01-05 925.0 933.0 910.0 915.0 300190 913.00 913.8148 916.4901
## 239 2023-01-06 918.0 920.0 900.0 900.0 465530 912.50 911.3030 915.3307
## 238 2023-01-09 901.0 909.5 899.5 900.0 749990 911.60 909.2479 903.4019
## 237 2023-01-10 902.0 907.0 899.5 903.5 594580 909.35 908.2028 900.7549
## 236 2023-01-11 903.5 911.0 897.0 900.0 700020 907.95 906.7114 902.8909
## 235 2023-01-12 900.0 905.0 900.0 904.0 459290 905.35 906.2184 900.6415
## 234 2023-01-13 904.0 913.0 901.5 908.0 686140 905.15 906.5423 903.2547
## 233 2023-01-16 911.0 962.5 911.0 947.0 835660 909.85 913.8983 906.9470
## 232 2023-01-17 935.0 945.0 923.0 933.0 712370 913.15 917.3713 938.1121
## 231 2023-01-18 933.0 935.0 915.0 934.0 658560 914.45 920.3947 934.1344
## 230 2023-01-19 930.0 935.5 925.5 930.5 411660 916.00 922.2320 934.0298
## 229 2023-01-20 930.0 958.5 930.0 950.0 364610 921.00 927.2808 931.2833
## 228 2023-01-23 950.0 950.0 933.0 950.0 127530 926.00 931.4115 945.8467
## 227 2023-01-24 944.0 956.5 939.0 945.0 98930 930.15 933.8822 949.0784
## 226 2023-01-25 950.0 952.0 943.0 945.0 119240 934.65 935.9036 945.9050
## 225 2023-01-26 950.0 952.0 942.0 942.0 143390 938.45 937.0120 945.2008
## 224 2023-01-27 942.0 949.0 940.0 944.0 122160 942.05 938.2826 942.7103
## 223 2023-01-30 949.5 949.5 926.0 930.0 224130 940.35 936.7766 943.7138
## 222 2023-01-31 925.0 928.0 900.0 920.0 832110 939.05 933.7263 933.0431
## 221 2023-02-01 920.0 946.0 905.0 946.0 385740 940.25 935.9579 922.8943
## 220 2023-02-02 948.0 948.0 930.0 930.0 381700 940.20 934.8747 940.8728
## 219 2023-02-03 938.0 938.0 903.0 919.0 857370 937.10 931.9884 932.4127
## 218 2023-02-06 919.0 924.0 910.0 910.0 344760 933.10 927.9905 921.9763
## 217 2023-02-07 910.0 918.5 908.0 915.0 419150 930.10 925.6286 912.6576
## 216 2023-02-08 906.0 923.0 905.5 909.0 396480 926.50 922.6052 914.4802
## 215 2023-02-09 910.0 910.0 888.0 895.0 583240 921.80 917.5861 910.2161
## 214 2023-02-10 897.0 904.0 897.0 900.0 373650 917.40 914.3886 898.3765
## 213 2023-02-13 900.0 904.0 893.0 895.0 404290 913.90 910.8634 899.6397
## 212 2023-02-14 898.0 908.0 883.0 885.0 623790 910.40 906.1610 896.0296
## 211 2023-02-15 885.5 898.0 878.0 891.0 337440 904.90 903.4044 887.4475
## 210 2023-02-16 886.5 895.0 885.5 888.0 237950 900.70 900.6036 890.2117
## 209 2023-02-17 890.0 890.0 870.0 875.0 392980 896.30 895.9484 888.4908
## 208 2023-02-20 884.0 884.0 860.0 872.0 254050 892.50 891.5942 877.9937
## 207 2023-02-21 885.0 901.5 873.0 897.5 344670 890.75 892.6679 873.3300
## 206 2023-02-22 894.5 897.0 879.0 890.0 439140 888.85 892.1829 892.1366
## 205 2023-02-23 890.0 902.5 881.0 900.0 129070 889.35 893.6042 890.4741
## 204 2023-02-27 895.0 895.0 866.0 894.5 331370 888.80 893.7670 897.8862
## 203 2023-02-28 894.5 900.0 852.0 852.0 945520 884.50 886.1730 895.2514
## 202 2023-03-01 876.0 893.0 860.0 889.0 522690 884.90 886.6870 861.5976
## 201 2023-03-02 893.0 911.0 884.5 890.5 365030 884.85 887.3803 882.9193
## 200 2023-03-03 893.0 898.5 886.0 896.0 202590 885.65 888.9475 888.8178
## 199 2023-03-06 900.0 903.5 886.0 886.0 149540 886.75 888.4116 894.4062
## 198 2023-03-07 888.5 898.5 880.0 880.0 280940 887.55 886.8822 887.8654
## 197 2023-03-08 880.0 894.5 858.0 889.0 175780 886.70 887.2673 881.7454
## 196 2023-03-09 887.5 895.0 871.0 871.0 260620 884.80 884.3096 887.3902
## 195 2023-03-10 878.0 878.0 852.5 875.0 79970 882.30 882.6169 874.6370
## 194 2023-03-13 860.0 899.0 856.0 875.0 162020 880.35 881.2320 874.9195
## 193 2023-03-14 875.0 889.5 860.0 860.0 291630 881.15 877.3717 874.9821
## 192 2023-03-15 868.0 882.5 866.5 874.0 212220 879.65 876.7586 863.3246
## 191 2023-03-16 874.0 879.0 848.0 874.0 227800 878.00 876.2571 871.6311
## 190 2023-03-17 861.0 897.5 861.0 897.0 337780 878.10 880.0285 873.4743
## 189 2023-03-20 884.0 888.5 877.0 883.5 119400 877.85 880.6597 891.7796
## 188 2023-03-21 880.0 901.0 880.0 900.0 556710 879.85 884.1761 885.3373
## 187 2023-03-22 903.0 911.0 891.5 900.0 455430 880.95 887.0532 896.7463
## 186 2023-03-23 893.0 900.0 885.0 900.0 219450 883.85 889.4071 899.2780
## 185 2023-03-24 900.0 909.0 899.5 905.0 360650 886.85 892.2422 899.8398
## 184 2023-03-27 905.0 918.5 898.5 918.0 242430 891.15 896.9254 903.8549
## 183 2023-03-28 918.0 919.5 911.0 915.5 359250 896.70 900.3026 914.8612
## 182 2023-03-29 915.5 915.5 905.0 909.0 514580 900.20 901.8840 915.3582
## 181 2023-03-30 910.0 910.5 901.0 902.5 280950 903.05 901.9960 910.4109
## 180 2023-03-31 907.0 907.0 889.0 889.0 669790 902.25 899.6331 904.2555
## 179 2023-04-03 889.0 891.0 882.0 885.0 407280 902.40 896.9725 892.3852
## 178 2023-04-04 885.0 894.5 862.0 870.0 531640 899.40 892.0684 886.6388
## 177 2023-04-05 870.0 899.0 870.0 896.0 184470 899.00 892.7833 873.6922
## 176 2023-04-11 896.0 903.0 880.5 899.0 422640 898.90 893.9136 891.0498
## 175 2023-04-12 900.0 900.0 886.5 890.0 745240 897.40 893.2020 897.2358
## 174 2023-04-13 886.5 889.0 872.0 884.0 220120 894.00 891.5289 891.6057
## 173 2023-04-14 883.5 904.0 883.5 904.0 158570 892.85 893.7964 885.6877
## 172 2023-04-17 899.5 906.0 883.5 900.0 560250 891.95 894.9243 899.9364
## 171 2023-04-18 900.0 902.5 889.0 900.0 263420 891.70 895.8472 899.9859
## 170 2023-04-19 904.0 904.0 891.0 900.0 180030 892.80 896.6022 899.9969
## 169 2023-04-20 900.0 903.5 899.5 900.0 182300 894.30 897.2200 899.9993
## 168 2023-04-24 902.0 907.0 895.0 900.0 224340 897.30 897.7255 899.9998
## 167 2023-04-25 906.5 906.5 896.0 900.0 241450 897.70 898.1390 900.0000
## 166 2023-04-26 899.0 905.0 885.0 898.0 393860 897.60 898.1137 900.0000
## 165 2023-04-27 898.0 900.5 888.0 888.0 286370 897.40 896.2749 898.4438
## 164 2023-04-28 895.0 901.5 895.0 895.0 401440 898.50 896.0431 890.3175
## 163 2023-05-02 899.5 920.0 899.5 920.0 313680 900.10 900.3989 893.9609
## 162 2023-05-03 920.0 924.0 903.5 907.0 164960 900.80 901.5991 914.2218
## 161 2023-05-04 907.0 918.0 907.0 913.5 323090 902.15 903.7629 908.6026
## 160 2023-05-05 913.5 927.0 913.5 925.0 280470 904.65 907.6242 912.4132
## 159 2023-05-08 927.0 935.0 913.0 920.0 153910 906.65 909.8743 922.2070
## 158 2023-05-09 920.0 935.0 919.5 935.0 422360 910.15 914.4426 920.4897
## 157 2023-05-10 934.0 944.5 929.5 943.0 317220 914.45 919.6349 931.7801
## 156 2023-05-11 943.0 944.0 935.0 941.0 348150 918.75 923.5194 940.5103
## 155 2023-05-12 939.5 940.0 920.0 927.0 115250 922.65 924.1523 940.8913
## 154 2023-05-15 926.0 939.0 922.5 924.5 183600 925.60 924.2155 930.0825
## 153 2023-05-16 922.0 934.0 922.0 930.5 78100 926.65 925.3581 925.7388
## 152 2023-05-17 928.5 940.0 928.5 940.0 234700 929.95 928.0203 929.4435
## 151 2023-05-18 940.0 940.0 926.0 927.0 178980 931.30 927.8348 937.6575
## 150 2023-05-19 933.0 938.5 925.5 929.0 144320 931.70 928.0466 929.3649
## 149 2023-05-22 925.0 940.0 910.5 924.0 179540 932.10 927.3109 929.0810
## 148 2023-05-23 911.0 927.0 911.0 920.0 331700 930.60 925.9816 925.1275
## 147 2023-05-24 918.5 930.0 918.5 929.0 434840 929.20 926.5304 921.1378
## 146 2023-05-25 925.0 934.0 912.5 916.0 348450 926.70 924.6158 927.2554
## 145 2023-05-26 920.0 924.0 901.0 920.0 361060 926.00 923.7766 918.4976
## 144 2023-05-29 921.0 924.5 910.5 920.0 349890 925.55 923.0899 919.6666
## 143 2023-05-30 919.0 922.0 910.0 910.5 350410 923.55 920.8008 919.9260
## 142 2023-05-31 910.5 929.0 910.5 929.0 912220 922.45 922.2916 912.5917
## 141 2023-06-01 916.5 926.0 908.0 910.0 183570 920.75 920.0568 925.3589
## 140 2023-06-02 910.0 920.0 910.0 920.0 105860 919.85 920.0464 913.4082
## 139 2023-06-05 920.0 930.0 915.0 928.0 111750 920.25 921.4925 918.5373
## 138 2023-06-06 928.0 928.0 903.0 905.0 372910 918.75 918.4939 925.9002
## 137 2023-06-07 909.0 925.0 906.0 925.0 135210 918.35 919.6768 909.6378
## 136 2023-06-08 925.0 928.0 913.5 924.0 95250 919.15 920.4629 921.5911
## 135 2023-06-09 917.0 927.5 910.0 910.0 140420 918.15 918.5605 923.4655
## 134 2023-06-13 910.0 928.0 909.0 926.0 155750 918.75 919.9132 912.9880
## 133 2023-06-14 929.0 935.0 910.0 910.0 421100 918.70 918.1108 923.1126
## 132 2023-06-15 915.0 922.0 904.5 922.0 416660 918.00 918.8179 912.9097
## 131 2023-06-16 922.0 925.0 905.5 924.0 522420 919.40 919.7601 919.9828
## 130 2023-06-19 925.0 925.0 907.0 908.0 95120 918.20 917.6219 923.1086
## 129 2023-06-20 920.0 920.0 907.5 915.0 306810 916.90 917.1452 911.3526
## 128 2023-06-21 915.0 924.0 911.5 924.0 392130 918.80 918.3915 914.1906
## 127 2023-06-22 924.0 924.0 908.0 910.0 381790 917.30 916.8658 921.8233
## 126 2023-06-23 910.0 915.0 908.0 909.5 351670 915.85 915.5266 912.6236
## 125 2023-06-26 918.5 933.5 913.0 929.0 394480 917.75 917.9763 910.1931
## 124 2023-06-27 929.0 937.5 915.5 919.0 354350 917.05 918.1624 924.8267
## 123 2023-06-29 928.0 932.0 914.0 916.0 319570 917.65 917.7692 920.2930
## 122 2023-06-30 924.0 929.5 916.0 925.0 295570 917.95 919.0839 916.9526
## 121 2023-07-03 925.0 934.0 923.0 932.0 135640 918.75 921.4323 923.2143
## 120 2023-07-04 932.0 938.5 931.5 938.0 140780 921.75 924.4446 930.0504
## 119 2023-07-05 937.5 937.5 918.0 932.0 272150 923.45 925.8183 936.2360
## 118 2023-07-06 929.5 934.0 922.0 932.0 78010 924.25 926.9423 932.9400
## 117 2023-07-07 932.0 932.0 910.5 910.5 338290 924.30 923.9528 932.2086
## 116 2023-07-10 910.5 919.0 907.0 908.0 276100 924.15 921.0523 915.3172
## 115 2023-07-11 910.0 922.5 910.0 910.5 218700 922.30 919.1337 909.6237
## 114 2023-07-12 923.0 923.0 910.5 910.5 100670 921.45 917.5639 910.3055
## 113 2023-07-13 915.5 933.5 915.5 931.0 295990 922.95 920.0068 910.4569
## 112 2023-07-14 932.0 946.5 932.0 946.5 487820 925.10 924.8238 926.4414
## 111 2023-07-17 946.0 946.0 925.0 925.0 125110 924.40 924.8558 942.0489
## 110 2023-07-18 926.0 935.0 920.5 929.0 103770 923.50 925.6093 928.7832
## 109 2023-07-19 927.5 935.0 921.0 921.0 203680 922.40 924.7712 928.9519
## 108 2023-07-20 920.5 945.5 920.5 940.0 221460 923.20 927.5401 922.7646
## 107 2023-07-21 940.0 947.0 935.0 940.0 197890 926.15 929.8055 936.1754
## 106 2023-07-24 940.0 944.5 923.0 923.0 124780 927.65 928.5682 939.1513
## 105 2023-07-25 929.5 934.5 924.0 924.0 211680 929.00 927.7376 926.5840
## 104 2023-07-26 934.0 937.5 923.0 937.5 297010 931.70 929.5126 924.5734
## 103 2023-07-27 929.0 931.5 922.0 922.0 241620 930.80 928.1467 934.6315
## 102 2023-07-28 922.0 929.5 918.0 918.0 121470 927.95 926.3018 924.8030
## 101 2023-07-31 920.5 931.0 912.0 912.0 299750 926.65 923.7015 919.5096
## 100 2023-08-01 916.0 919.0 913.0 915.0 225140 925.25 922.1194 913.6664
## 99 2023-08-02 915.0 916.5 896.0 904.5 377900 923.60 918.9159 914.7041
## 98 2023-08-03 904.5 913.5 902.0 912.0 69240 920.80 917.6584 906.7643
## 97 2023-08-04 909.0 913.5 905.0 908.5 578090 917.65 915.9933 910.8382
## 96 2023-08-07 908.5 916.5 901.5 901.5 217400 915.50 913.3581 909.0189
## 95 2023-08-08 903.0 907.0 889.0 895.0 277810 912.60 910.0203 903.1685
## 94 2023-08-09 895.5 906.5 888.5 900.0 300280 908.85 908.1984 896.8126
## 93 2023-08-10 900.0 900.0 884.0 887.0 205030 905.35 904.3442 899.2927
## 92 2023-08-11 886.5 896.0 877.0 882.5 130110 901.80 900.3725 889.7278
## 91 2023-08-14 882.5 883.5 862.0 867.0 259740 897.30 894.3048 884.1039
## 90 2023-08-15 870.0 884.5 857.0 860.0 24237539 891.80 888.0675 870.7954
## 89 2023-08-16 865.0 886.0 860.0 886.0 166020 889.95 887.6916 862.3955
## 88 2023-08-17 886.0 889.5 860.5 860.5 284670 884.80 882.7477 880.7621
## 87 2023-08-18 860.0 869.0 857.5 860.0 172170 879.95 878.6117 864.9962
## 86 2023-08-22 856.0 856.5 828.5 829.5 288630 872.75 869.6823 861.1087
## 85 2023-08-23 832.0 834.0 821.5 829.0 241570 866.15 862.2855 836.5141
## 84 2023-08-24 838.0 842.0 830.5 835.0 101140 859.65 857.3245 830.6674
## 83 2023-08-25 839.0 839.0 821.5 825.0 180830 853.45 851.4474 834.0386
## 82 2023-08-29 821.0 825.0 802.5 812.5 581550 846.45 844.3660 827.0057
## 81 2023-08-30 821.5 847.5 813.0 844.0 198940 844.15 844.2995 815.7189
## 80 2023-08-31 839.0 852.0 832.0 833.0 538060 841.45 842.2450 837.7243
## 79 2023-09-01 841.0 846.0 815.0 820.0 102670 834.85 838.2005 834.0483
## 78 2023-09-04 825.0 834.0 813.0 820.0 171540 830.80 834.8913 823.1174
## 77 2023-09-05 824.0 844.0 822.5 840.0 120160 828.80 835.8201 820.6918
## 76 2023-09-06 843.0 856.0 834.5 856.0 92070 831.45 839.4892 835.7154
## 75 2023-09-07 850.0 850.0 821.5 824.0 165670 830.95 836.6730 851.4988
## 74 2023-09-08 825.0 828.5 822.5 824.0 222260 829.85 834.3688 830.1021
## 73 2023-09-11 824.5 826.0 822.0 825.0 113210 829.85 832.6654 825.3541
## 72 2023-09-12 825.0 825.0 818.0 820.0 153500 830.60 830.3626 825.0786
## 71 2023-09-13 821.0 821.0 801.0 801.0 483720 826.30 825.0239 821.1270
## 70 2023-09-14 809.5 812.0 801.0 812.0 346950 824.20 822.6560 805.4662
## 69 2023-09-15 812.0 819.0 803.0 803.0 183220 822.50 819.0821 810.5501
## 68 2023-09-18 808.0 810.0 800.0 810.0 207880 821.50 817.4308 804.6754
## 67 2023-09-19 810.0 810.0 800.0 801.0 112060 817.60 814.4434 808.8185
## 66 2023-09-20 805.0 807.5 789.5 789.5 455730 810.95 809.9083 802.7349
## 65 2023-09-21 798.0 798.0 786.0 793.5 268280 807.90 806.9249 792.4369
## 64 2023-09-22 796.5 807.5 795.0 804.0 132470 805.90 806.3931 793.2641
## 63 2023-09-25 806.0 834.5 804.0 827.5 236370 806.15 810.2307 801.6177
## 62 2023-09-26 828.0 838.0 815.0 838.0 220220 807.95 815.2797 821.7566
## 61 2023-09-27 833.0 852.0 828.0 850.0 745660 812.85 821.5925 834.3955
## 60 2023-09-28 850.0 853.0 841.0 846.5 234910 816.30 826.1211 846.5373
## 59 2023-09-29 849.0 850.0 841.0 843.5 383000 820.35 829.2809 846.5083
## 58 2023-10-02 844.0 848.0 840.0 841.0 920430 823.45 831.4117 844.1675
## 57 2023-10-03 841.5 844.0 821.0 827.0 256070 826.05 830.6095 841.7029
## 56 2023-10-04 825.0 832.5 822.0 826.5 599240 829.75 829.8623 830.2626
## 55 2023-10-05 827.5 831.5 806.0 814.0 572860 831.80 826.9783 827.3349
## 54 2023-10-06 810.5 838.0 808.5 833.0 214040 834.70 828.0731 816.9591
## 53 2023-10-09 830.0 838.5 824.0 830.0 133010 834.95 828.4235 829.4405
## 52 2023-10-10 830.0 844.0 821.0 821.0 109090 833.25 827.0738 829.8758
## 51 2023-10-11 831.0 844.0 823.0 828.0 364740 831.05 827.2422 822.9696
## 50 2023-10-12 829.0 835.0 823.5 830.0 125520 829.40 827.7436 826.8837
## 49 2023-10-13 830.5 831.0 821.5 825.0 706550 827.55 827.2448 829.3085
## 48 2023-10-16 822.0 828.5 802.0 802.0 261590 823.65 822.6548 825.9561
## 47 2023-10-17 808.0 817.5 807.0 817.0 346260 822.65 821.6267 807.3159
## 46 2023-10-18 813.0 821.5 810.0 812.5 446630 821.25 819.9673 814.8511
## 45 2023-10-19 815.0 824.0 808.0 820.0 234570 821.85 819.9732 813.0217
## 44 2023-10-20 819.5 819.5 815.0 817.0 154340 820.25 819.4326 818.4515
## 43 2023-10-23 817.0 824.0 808.0 811.0 154940 818.35 817.8994 817.3221
## 42 2023-10-24 811.0 823.5 810.0 811.0 112810 817.35 816.6450 812.4029
## 41 2023-10-25 811.0 817.5 808.5 817.5 114650 816.30 816.8004 811.3113
## 40 2023-10-26 817.0 817.0 803.5 814.0 100920 814.70 816.2913 816.1267
## 39 2023-10-27 811.0 815.0 803.0 805.5 169280 812.75 814.3292 814.4719
## 38 2023-10-31 810.0 818.5 801.0 801.0 289500 812.65 811.9057 807.4909
## 37 2023-11-03 812.0 815.5 804.0 805.0 285670 811.45 810.6501 802.4404
## 36 2023-11-06 805.0 833.5 805.0 833.5 814450 813.55 814.8047 804.4320
## 35 2023-11-07 832.0 832.0 822.0 829.0 163640 814.45 817.3856 827.0497
## 34 2023-11-08 829.0 829.0 814.0 819.0 257640 814.65 817.6792 828.5672
## 33 2023-11-09 816.0 828.5 816.0 817.0 284460 815.25 817.5557 821.1230
## 32 2023-11-10 824.0 824.0 807.0 821.0 168510 816.25 818.1819 817.9149
## 31 2023-11-13 820.0 825.0 815.0 819.0 41470 816.40 818.3307 820.3154
## 30 2023-11-14 819.0 825.0 815.0 825.0 67660 817.50 819.5433 819.2919
## 29 2023-11-15 825.0 843.0 820.0 839.0 1093810 820.85 823.0809 823.7333
## 28 2023-11-16 840.0 845.0 835.5 842.5 233710 825.00 826.6116 835.6123
## 27 2023-11-17 843.0 861.0 841.0 855.0 221170 830.00 831.7731 840.9716
## 26 2023-11-20 854.0 854.0 829.0 829.0 235580 829.55 831.2689 851.8870
## 25 2023-11-21 835.0 840.0 825.0 827.0 247480 829.35 830.4928 834.0787
## 24 2023-11-22 831.5 832.5 827.0 830.0 54440 830.45 830.4032 828.5708
## 23 2023-11-23 835.0 835.5 823.5 830.0 116120 831.75 830.3299 829.6829
## 22 2023-11-24 830.0 834.5 825.5 834.0 151050 833.05 830.9972 829.9296
## 21 2023-11-28 835.5 847.5 835.5 845.0 267150 835.65 833.5431 833.0968
## 20 2023-11-29 844.0 855.0 839.0 848.0 218950 837.95 836.1717 842.3586
## 19 2023-11-30 839.0 843.0 819.0 819.0 500460 835.95 833.0495 846.7482
## 18 2023-12-01 825.0 832.5 824.0 825.0 70470 834.20 831.5860 825.1574
## 17 2023-12-04 830.0 832.0 821.0 825.0 463440 831.20 830.3885 825.0349
## 16 2023-12-05 832.5 834.5 821.0 823.5 232880 830.65 829.1361 825.0078
## 15 2023-12-06 823.5 828.5 821.0 828.0 102820 830.75 828.9295 823.8346
## 14 2023-12-07 829.5 830.5 823.5 826.0 452380 830.35 828.3969 827.0757
## 13 2023-12-11 822.0 840.0 820.0 835.0 200670 830.85 829.5974 826.2387
## 12 2023-12-12 835.0 839.0 826.0 839.0 153290 831.35 831.3070 833.0558
## 11 2023-12-13 838.0 849.5 830.5 832.0 131710 830.05 831.4330 837.6810
## 10 2023-12-14 836.5 877.0 836.5 875.0 599190 832.75 839.3543 833.2606
## 9 2023-12-15 870.0 912.0 870.0 906.0 900000 841.45 851.4717 865.7379
## 8 2023-12-18 903.0 919.0 886.5 912.5 461200 850.20 862.5677 897.0657
## 7 2023-12-19 910.0 910.0 895.0 903.5 298550 858.05 870.0100 909.0751
## 6 2023-12-20 909.0 917.0 903.5 904.5 446550 866.15 876.2809 904.7371
## 5 2023-12-21 900.0 903.0 891.5 903.0 218920 873.65 881.1389 904.5526
## 4 2023-12-22 902.5 915.0 901.0 904.5 212770 881.50 885.3864 903.3445
## 3 2023-12-27 899.0 903.0 886.5 889.0 298610 886.90 886.0434 904.2436
## 2 2023-12-28 891.0 899.0 887.0 894.0 128600 892.40 887.4901 892.3826
## 1 2023-12-29 893.0 894.0 872.0 872.0 362440 896.40 884.6737 893.6411
## Index Pred_LM
## 975 2 972.8858
## 974 3 972.7682
## 973 4 972.6507
## 972 5 972.5332
## 971 6 972.4157
## 970 7 972.2981
## 969 8 972.1806
## 968 9 972.0631
## 967 10 971.9455
## 966 11 971.8280
## 965 12 971.7105
## 964 13 971.5930
## 963 14 971.4754
## 962 15 971.3579
## 961 16 971.2404
## 960 17 971.1228
## 959 18 971.0053
## 958 19 970.8878
## 957 20 970.7702
## 956 21 970.6527
## 955 22 970.5352
## 954 23 970.4177
## 953 24 970.3001
## 952 25 970.1826
## 951 26 970.0651
## 950 27 969.9475
## 949 28 969.8300
## 948 29 969.7125
## 947 30 969.5950
## 946 31 969.4774
## 945 32 969.3599
## 944 33 969.2424
## 943 34 969.1248
## 942 35 969.0073
## 941 36 968.8898
## 940 37 968.7723
## 939 38 968.6547
## 938 39 968.5372
## 937 40 968.4197
## 936 41 968.3021
## 935 42 968.1846
## 934 43 968.0671
## 933 44 967.9496
## 932 45 967.8320
## 931 46 967.7145
## 930 47 967.5970
## 929 48 967.4794
## 928 49 967.3619
## 927 50 967.2444
## 926 51 967.1269
## 925 52 967.0093
## 924 53 966.8918
## 923 54 966.7743
## 922 55 966.6567
## 921 56 966.5392
## 920 57 966.4217
## 919 58 966.3042
## 918 59 966.1866
## 917 60 966.0691
## 916 61 965.9516
## 915 62 965.8340
## 914 63 965.7165
## 913 64 965.5990
## 912 65 965.4815
## 911 66 965.3639
## 910 67 965.2464
## 909 68 965.1289
## 908 69 965.0113
## 907 70 964.8938
## 906 71 964.7763
## 905 72 964.6588
## 904 73 964.5412
## 903 74 964.4237
## 902 75 964.3062
## 901 76 964.1886
## 900 77 964.0711
## 899 78 963.9536
## 898 79 963.8360
## 897 80 963.7185
## 896 81 963.6010
## 895 82 963.4835
## 894 83 963.3659
## 893 84 963.2484
## 892 85 963.1309
## 891 86 963.0133
## 890 87 962.8958
## 889 88 962.7783
## 888 89 962.6608
## 887 90 962.5432
## 886 91 962.4257
## 885 92 962.3082
## 884 93 962.1906
## 883 94 962.0731
## 882 95 961.9556
## 881 96 961.8381
## 880 97 961.7205
## 879 98 961.6030
## 878 99 961.4855
## 877 100 961.3679
## 876 101 961.2504
## 875 102 961.1329
## 874 103 961.0154
## 873 104 960.8978
## 872 105 960.7803
## 871 106 960.6628
## 870 107 960.5452
## 869 108 960.4277
## 868 109 960.3102
## 867 110 960.1927
## 866 111 960.0751
## 865 112 959.9576
## 864 113 959.8401
## 863 114 959.7225
## 862 115 959.6050
## 861 116 959.4875
## 860 117 959.3700
## 859 118 959.2524
## 858 119 959.1349
## 857 120 959.0174
## 856 121 958.8998
## 855 122 958.7823
## 854 123 958.6648
## 853 124 958.5473
## 852 125 958.4297
## 851 126 958.3122
## 850 127 958.1947
## 849 128 958.0771
## 848 129 957.9596
## 847 130 957.8421
## 846 131 957.7245
## 845 132 957.6070
## 844 133 957.4895
## 843 134 957.3720
## 842 135 957.2544
## 841 136 957.1369
## 840 137 957.0194
## 839 138 956.9018
## 838 139 956.7843
## 837 140 956.6668
## 836 141 956.5493
## 835 142 956.4317
## 834 143 956.3142
## 833 144 956.1967
## 832 145 956.0791
## 831 146 955.9616
## 830 147 955.8441
## 829 148 955.7266
## 828 149 955.6090
## 827 150 955.4915
## 826 151 955.3740
## 825 152 955.2564
## 824 153 955.1389
## 823 154 955.0214
## 822 155 954.9039
## 821 156 954.7863
## 820 157 954.6688
## 819 158 954.5513
## 818 159 954.4337
## 817 160 954.3162
## 816 161 954.1987
## 815 162 954.0812
## 814 163 953.9636
## 813 164 953.8461
## 812 165 953.7286
## 811 166 953.6110
## 810 167 953.4935
## 809 168 953.3760
## 808 169 953.2585
## 807 170 953.1409
## 806 171 953.0234
## 805 172 952.9059
## 804 173 952.7883
## 803 174 952.6708
## 802 175 952.5533
## 801 176 952.4358
## 800 177 952.3182
## 799 178 952.2007
## 798 179 952.0832
## 797 180 951.9656
## 796 181 951.8481
## 795 182 951.7306
## 794 183 951.6130
## 793 184 951.4955
## 792 185 951.3780
## 791 186 951.2605
## 790 187 951.1429
## 789 188 951.0254
## 788 189 950.9079
## 787 190 950.7903
## 786 191 950.6728
## 785 192 950.5553
## 784 193 950.4378
## 783 194 950.3202
## 782 195 950.2027
## 781 196 950.0852
## 780 197 949.9676
## 779 198 949.8501
## 778 199 949.7326
## 777 200 949.6151
## 776 201 949.4975
## 775 202 949.3800
## 774 203 949.2625
## 773 204 949.1449
## 772 205 949.0274
## 771 206 948.9099
## 770 207 948.7924
## 769 208 948.6748
## 768 209 948.5573
## 767 210 948.4398
## 766 211 948.3222
## 765 212 948.2047
## 764 213 948.0872
## 763 214 947.9697
## 762 215 947.8521
## 761 216 947.7346
## 760 217 947.6171
## 759 218 947.4995
## 758 219 947.3820
## 757 220 947.2645
## 756 221 947.1470
## 755 222 947.0294
## 754 223 946.9119
## 753 224 946.7944
## 752 225 946.6768
## 751 226 946.5593
## 750 227 946.4418
## 749 228 946.3243
## 748 229 946.2067
## 747 230 946.0892
## 746 231 945.9717
## 745 232 945.8541
## 744 233 945.7366
## 743 234 945.6191
## 742 235 945.5016
## 741 236 945.3840
## 740 237 945.2665
## 739 238 945.1490
## 738 239 945.0314
## 737 240 944.9139
## 736 241 944.7964
## 735 242 944.6788
## 734 243 944.5613
## 733 244 944.4438
## 732 245 944.3263
## 731 246 944.2087
## 730 247 944.0912
## 729 248 943.9737
## 728 249 943.8561
## 727 250 943.7386
## 726 251 943.6211
## 725 252 943.5036
## 724 253 943.3860
## 723 254 943.2685
## 722 255 943.1510
## 721 256 943.0334
## 720 257 942.9159
## 719 258 942.7984
## 718 259 942.6809
## 717 260 942.5633
## 716 261 942.4458
## 715 262 942.3283
## 714 263 942.2107
## 713 264 942.0932
## 712 265 941.9757
## 711 266 941.8582
## 710 267 941.7406
## 709 268 941.6231
## 708 269 941.5056
## 707 270 941.3880
## 706 271 941.2705
## 705 272 941.1530
## 704 273 941.0355
## 703 274 940.9179
## 702 275 940.8004
## 701 276 940.6829
## 700 277 940.5653
## 699 278 940.4478
## 698 279 940.3303
## 697 280 940.2128
## 696 281 940.0952
## 695 282 939.9777
## 694 283 939.8602
## 693 284 939.7426
## 692 285 939.6251
## 691 286 939.5076
## 690 287 939.3901
## 689 288 939.2725
## 688 289 939.1550
## 687 290 939.0375
## 686 291 938.9199
## 685 292 938.8024
## 684 293 938.6849
## 683 294 938.5673
## 682 295 938.4498
## 681 296 938.3323
## 680 297 938.2148
## 679 298 938.0972
## 678 299 937.9797
## 677 300 937.8622
## 676 301 937.7446
## 675 302 937.6271
## 674 303 937.5096
## 673 304 937.3921
## 672 305 937.2745
## 671 306 937.1570
## 670 307 937.0395
## 669 308 936.9219
## 668 309 936.8044
## 667 310 936.6869
## 666 311 936.5694
## 665 312 936.4518
## 664 313 936.3343
## 663 314 936.2168
## 662 315 936.0992
## 661 316 935.9817
## 660 317 935.8642
## 659 318 935.7467
## 658 319 935.6291
## 657 320 935.5116
## 656 321 935.3941
## 655 322 935.2765
## 654 323 935.1590
## 653 324 935.0415
## 652 325 934.9240
## 651 326 934.8064
## 650 327 934.6889
## 649 328 934.5714
## 648 329 934.4538
## 647 330 934.3363
## 646 331 934.2188
## 645 332 934.1013
## 644 333 933.9837
## 643 334 933.8662
## 642 335 933.7487
## 641 336 933.6311
## 640 337 933.5136
## 639 338 933.3961
## 638 339 933.2786
## 637 340 933.1610
## 636 341 933.0435
## 635 342 932.9260
## 634 343 932.8084
## 633 344 932.6909
## 632 345 932.5734
## 631 346 932.4559
## 630 347 932.3383
## 629 348 932.2208
## 628 349 932.1033
## 627 350 931.9857
## 626 351 931.8682
## 625 352 931.7507
## 624 353 931.6331
## 623 354 931.5156
## 622 355 931.3981
## 621 356 931.2806
## 620 357 931.1630
## 619 358 931.0455
## 618 359 930.9280
## 617 360 930.8104
## 616 361 930.6929
## 615 362 930.5754
## 614 363 930.4579
## 613 364 930.3403
## 612 365 930.2228
## 611 366 930.1053
## 610 367 929.9877
## 609 368 929.8702
## 608 369 929.7527
## 607 370 929.6352
## 606 371 929.5176
## 605 372 929.4001
## 604 373 929.2826
## 603 374 929.1650
## 602 375 929.0475
## 601 376 928.9300
## 600 377 928.8125
## 599 378 928.6949
## 598 379 928.5774
## 597 380 928.4599
## 596 381 928.3423
## 595 382 928.2248
## 594 383 928.1073
## 593 384 927.9898
## 592 385 927.8722
## 591 386 927.7547
## 590 387 927.6372
## 589 388 927.5196
## 588 389 927.4021
## 587 390 927.2846
## 586 391 927.1671
## 585 392 927.0495
## 584 393 926.9320
## 583 394 926.8145
## 582 395 926.6969
## 581 396 926.5794
## 580 397 926.4619
## 579 398 926.3444
## 578 399 926.2268
## 577 400 926.1093
## 576 401 925.9918
## 575 402 925.8742
## 574 403 925.7567
## 573 404 925.6392
## 572 405 925.5216
## 571 406 925.4041
## 570 407 925.2866
## 569 408 925.1691
## 568 409 925.0515
## 567 410 924.9340
## 566 411 924.8165
## 565 412 924.6989
## 564 413 924.5814
## 563 414 924.4639
## 562 415 924.3464
## 561 416 924.2288
## 560 417 924.1113
## 559 418 923.9938
## 558 419 923.8762
## 557 420 923.7587
## 556 421 923.6412
## 555 422 923.5237
## 554 423 923.4061
## 553 424 923.2886
## 552 425 923.1711
## 551 426 923.0535
## 550 427 922.9360
## 549 428 922.8185
## 548 429 922.7010
## 547 430 922.5834
## 546 431 922.4659
## 545 432 922.3484
## 544 433 922.2308
## 543 434 922.1133
## 542 435 921.9958
## 541 436 921.8783
## 540 437 921.7607
## 539 438 921.6432
## 538 439 921.5257
## 537 440 921.4081
## 536 441 921.2906
## 535 442 921.1731
## 534 443 921.0556
## 533 444 920.9380
## 532 445 920.8205
## 531 446 920.7030
## 530 447 920.5854
## 529 448 920.4679
## 528 449 920.3504
## 527 450 920.2329
## 526 451 920.1153
## 525 452 919.9978
## 524 453 919.8803
## 523 454 919.7627
## 522 455 919.6452
## 521 456 919.5277
## 520 457 919.4101
## 519 458 919.2926
## 518 459 919.1751
## 517 460 919.0576
## 516 461 918.9400
## 515 462 918.8225
## 514 463 918.7050
## 513 464 918.5874
## 512 465 918.4699
## 511 466 918.3524
## 510 467 918.2349
## 509 468 918.1173
## 508 469 917.9998
## 507 470 917.8823
## 506 471 917.7647
## 505 472 917.6472
## 504 473 917.5297
## 503 474 917.4122
## 502 475 917.2946
## 501 476 917.1771
## 500 477 917.0596
## 499 478 916.9420
## 498 479 916.8245
## 497 480 916.7070
## 496 481 916.5895
## 495 482 916.4719
## 494 483 916.3544
## 493 484 916.2369
## 492 485 916.1193
## 491 486 916.0018
## 490 487 915.8843
## 489 488 915.7668
## 488 489 915.6492
## 487 490 915.5317
## 486 491 915.4142
## 485 492 915.2966
## 484 493 915.1791
## 483 494 915.0616
## 482 495 914.9441
## 481 496 914.8265
## 480 497 914.7090
## 479 498 914.5915
## 478 499 914.4739
## 477 500 914.3564
## 476 501 914.2389
## 475 502 914.1214
## 474 503 914.0038
## 473 504 913.8863
## 472 505 913.7688
## 471 506 913.6512
## 470 507 913.5337
## 469 508 913.4162
## 468 509 913.2987
## 467 510 913.1811
## 466 511 913.0636
## 465 512 912.9461
## 464 513 912.8285
## 463 514 912.7110
## 462 515 912.5935
## 461 516 912.4759
## 460 517 912.3584
## 459 518 912.2409
## 458 519 912.1234
## 457 520 912.0058
## 456 521 911.8883
## 455 522 911.7708
## 454 523 911.6532
## 453 524 911.5357
## 452 525 911.4182
## 451 526 911.3007
## 450 527 911.1831
## 449 528 911.0656
## 448 529 910.9481
## 447 530 910.8305
## 446 531 910.7130
## 445 532 910.5955
## 444 533 910.4780
## 443 534 910.3604
## 442 535 910.2429
## 441 536 910.1254
## 440 537 910.0078
## 439 538 909.8903
## 438 539 909.7728
## 437 540 909.6553
## 436 541 909.5377
## 435 542 909.4202
## 434 543 909.3027
## 433 544 909.1851
## 432 545 909.0676
## 431 546 908.9501
## 430 547 908.8326
## 429 548 908.7150
## 428 549 908.5975
## 427 550 908.4800
## 426 551 908.3624
## 425 552 908.2449
## 424 553 908.1274
## 423 554 908.0099
## 422 555 907.8923
## 421 556 907.7748
## 420 557 907.6573
## 419 558 907.5397
## 418 559 907.4222
## 417 560 907.3047
## 416 561 907.1872
## 415 562 907.0696
## 414 563 906.9521
## 413 564 906.8346
## 412 565 906.7170
## 411 566 906.5995
## 410 567 906.4820
## 409 568 906.3644
## 408 569 906.2469
## 407 570 906.1294
## 406 571 906.0119
## 405 572 905.8943
## 404 573 905.7768
## 403 574 905.6593
## 402 575 905.5417
## 401 576 905.4242
## 400 577 905.3067
## 399 578 905.1892
## 398 579 905.0716
## 397 580 904.9541
## 396 581 904.8366
## 395 582 904.7190
## 394 583 904.6015
## 393 584 904.4840
## 392 585 904.3665
## 391 586 904.2489
## 390 587 904.1314
## 389 588 904.0139
## 388 589 903.8963
## 387 590 903.7788
## 386 591 903.6613
## 385 592 903.5438
## 384 593 903.4262
## 383 594 903.3087
## 382 595 903.1912
## 381 596 903.0736
## 380 597 902.9561
## 379 598 902.8386
## 378 599 902.7211
## 377 600 902.6035
## 376 601 902.4860
## 375 602 902.3685
## 374 603 902.2509
## 373 604 902.1334
## 372 605 902.0159
## 371 606 901.8984
## 370 607 901.7808
## 369 608 901.6633
## 368 609 901.5458
## 367 610 901.4282
## 366 611 901.3107
## 365 612 901.1932
## 364 613 901.0757
## 363 614 900.9581
## 362 615 900.8406
## 361 616 900.7231
## 360 617 900.6055
## 359 618 900.4880
## 358 619 900.3705
## 357 620 900.2530
## 356 621 900.1354
## 355 622 900.0179
## 354 623 899.9004
## 353 624 899.7828
## 352 625 899.6653
## 351 626 899.5478
## 350 627 899.4302
## 349 628 899.3127
## 348 629 899.1952
## 347 630 899.0777
## 346 631 898.9601
## 345 632 898.8426
## 344 633 898.7251
## 343 634 898.6075
## 342 635 898.4900
## 341 636 898.3725
## 340 637 898.2550
## 339 638 898.1374
## 338 639 898.0199
## 337 640 897.9024
## 336 641 897.7848
## 335 642 897.6673
## 334 643 897.5498
## 333 644 897.4323
## 332 645 897.3147
## 331 646 897.1972
## 330 647 897.0797
## 329 648 896.9621
## 328 649 896.8446
## 327 650 896.7271
## 326 651 896.6096
## 325 652 896.4920
## 324 653 896.3745
## 323 654 896.2570
## 322 655 896.1394
## 321 656 896.0219
## 320 657 895.9044
## 319 658 895.7869
## 318 659 895.6693
## 317 660 895.5518
## 316 661 895.4343
## 315 662 895.3167
## 314 663 895.1992
## 313 664 895.0817
## 312 665 894.9642
## 311 666 894.8466
## 310 667 894.7291
## 309 668 894.6116
## 308 669 894.4940
## 307 670 894.3765
## 306 671 894.2590
## 305 672 894.1415
## 304 673 894.0239
## 303 674 893.9064
## 302 675 893.7889
## 301 676 893.6713
## 300 677 893.5538
## 299 678 893.4363
## 298 679 893.3187
## 297 680 893.2012
## 296 681 893.0837
## 295 682 892.9662
## 294 683 892.8486
## 293 684 892.7311
## 292 685 892.6136
## 291 686 892.4960
## 290 687 892.3785
## 289 688 892.2610
## 288 689 892.1435
## 287 690 892.0259
## 286 691 891.9084
## 285 692 891.7909
## 284 693 891.6733
## 283 694 891.5558
## 282 695 891.4383
## 281 696 891.3208
## 280 697 891.2032
## 279 698 891.0857
## 278 699 890.9682
## 277 700 890.8506
## 276 701 890.7331
## 275 702 890.6156
## 274 703 890.4981
## 273 704 890.3805
## 272 705 890.2630
## 271 706 890.1455
## 270 707 890.0279
## 269 708 889.9104
## 268 709 889.7929
## 267 710 889.6754
## 266 711 889.5578
## 265 712 889.4403
## 264 713 889.3228
## 263 714 889.2052
## 262 715 889.0877
## 261 716 888.9702
## 260 717 888.8527
## 259 718 888.7351
## 258 719 888.6176
## 257 720 888.5001
## 256 721 888.3825
## 255 722 888.2650
## 254 723 888.1475
## 253 724 888.0300
## 252 725 887.9124
## 251 726 887.7949
## 250 727 887.6774
## 249 728 887.5598
## 248 729 887.4423
## 247 730 887.3248
## 246 731 887.2073
## 245 732 887.0897
## 244 733 886.9722
## 243 734 886.8547
## 242 735 886.7371
## 241 736 886.6196
## 240 737 886.5021
## 239 738 886.3845
## 238 739 886.2670
## 237 740 886.1495
## 236 741 886.0320
## 235 742 885.9144
## 234 743 885.7969
## 233 744 885.6794
## 232 745 885.5618
## 231 746 885.4443
## 230 747 885.3268
## 229 748 885.2093
## 228 749 885.0917
## 227 750 884.9742
## 226 751 884.8567
## 225 752 884.7391
## 224 753 884.6216
## 223 754 884.5041
## 222 755 884.3866
## 221 756 884.2690
## 220 757 884.1515
## 219 758 884.0340
## 218 759 883.9164
## 217 760 883.7989
## 216 761 883.6814
## 215 762 883.5639
## 214 763 883.4463
## 213 764 883.3288
## 212 765 883.2113
## 211 766 883.0937
## 210 767 882.9762
## 209 768 882.8587
## 208 769 882.7412
## 207 770 882.6236
## 206 771 882.5061
## 205 772 882.3886
## 204 773 882.2710
## 203 774 882.1535
## 202 775 882.0360
## 201 776 881.9185
## 200 777 881.8009
## 199 778 881.6834
## 198 779 881.5659
## 197 780 881.4483
## 196 781 881.3308
## 195 782 881.2133
## 194 783 881.0958
## 193 784 880.9782
## 192 785 880.8607
## 191 786 880.7432
## 190 787 880.6256
## 189 788 880.5081
## 188 789 880.3906
## 187 790 880.2730
## 186 791 880.1555
## 185 792 880.0380
## 184 793 879.9205
## 183 794 879.8029
## 182 795 879.6854
## 181 796 879.5679
## 180 797 879.4503
## 179 798 879.3328
## 178 799 879.2153
## 177 800 879.0978
## 176 801 878.9802
## 175 802 878.8627
## 174 803 878.7452
## 173 804 878.6276
## 172 805 878.5101
## 171 806 878.3926
## 170 807 878.2751
## 169 808 878.1575
## 168 809 878.0400
## 167 810 877.9225
## 166 811 877.8049
## 165 812 877.6874
## 164 813 877.5699
## 163 814 877.4524
## 162 815 877.3348
## 161 816 877.2173
## 160 817 877.0998
## 159 818 876.9822
## 158 819 876.8647
## 157 820 876.7472
## 156 821 876.6297
## 155 822 876.5121
## 154 823 876.3946
## 153 824 876.2771
## 152 825 876.1595
## 151 826 876.0420
## 150 827 875.9245
## 149 828 875.8070
## 148 829 875.6894
## 147 830 875.5719
## 146 831 875.4544
## 145 832 875.3368
## 144 833 875.2193
## 143 834 875.1018
## 142 835 874.9843
## 141 836 874.8667
## 140 837 874.7492
## 139 838 874.6317
## 138 839 874.5141
## 137 840 874.3966
## 136 841 874.2791
## 135 842 874.1615
## 134 843 874.0440
## 133 844 873.9265
## 132 845 873.8090
## 131 846 873.6914
## 130 847 873.5739
## 129 848 873.4564
## 128 849 873.3388
## 127 850 873.2213
## 126 851 873.1038
## 125 852 872.9863
## 124 853 872.8687
## 123 854 872.7512
## 122 855 872.6337
## 121 856 872.5161
## 120 857 872.3986
## 119 858 872.2811
## 118 859 872.1636
## 117 860 872.0460
## 116 861 871.9285
## 115 862 871.8110
## 114 863 871.6934
## 113 864 871.5759
## 112 865 871.4584
## 111 866 871.3409
## 110 867 871.2233
## 109 868 871.1058
## 108 869 870.9883
## 107 870 870.8707
## 106 871 870.7532
## 105 872 870.6357
## 104 873 870.5182
## 103 874 870.4006
## 102 875 870.2831
## 101 876 870.1656
## 100 877 870.0480
## 99 878 869.9305
## 98 879 869.8130
## 97 880 869.6955
## 96 881 869.5779
## 95 882 869.4604
## 94 883 869.3429
## 93 884 869.2253
## 92 885 869.1078
## 91 886 868.9903
## 90 887 868.8728
## 89 888 868.7552
## 88 889 868.6377
## 87 890 868.5202
## 86 891 868.4026
## 85 892 868.2851
## 84 893 868.1676
## 83 894 868.0501
## 82 895 867.9325
## 81 896 867.8150
## 80 897 867.6975
## 79 898 867.5799
## 78 899 867.4624
## 77 900 867.3449
## 76 901 867.2273
## 75 902 867.1098
## 74 903 866.9923
## 73 904 866.8748
## 72 905 866.7572
## 71 906 866.6397
## 70 907 866.5222
## 69 908 866.4046
## 68 909 866.2871
## 67 910 866.1696
## 66 911 866.0521
## 65 912 865.9345
## 64 913 865.8170
## 63 914 865.6995
## 62 915 865.5819
## 61 916 865.4644
## 60 917 865.3469
## 59 918 865.2294
## 58 919 865.1118
## 57 920 864.9943
## 56 921 864.8768
## 55 922 864.7592
## 54 923 864.6417
## 53 924 864.5242
## 52 925 864.4067
## 51 926 864.2891
## 50 927 864.1716
## 49 928 864.0541
## 48 929 863.9365
## 47 930 863.8190
## 46 931 863.7015
## 45 932 863.5840
## 44 933 863.4664
## 43 934 863.3489
## 42 935 863.2314
## 41 936 863.1138
## 40 937 862.9963
## 39 938 862.8788
## 38 939 862.7613
## 37 940 862.6437
## 36 941 862.5262
## 35 942 862.4087
## 34 943 862.2911
## 33 944 862.1736
## 32 945 862.0561
## 31 946 861.9386
## 30 947 861.8210
## 29 948 861.7035
## 28 949 861.5860
## 27 950 861.4684
## 26 951 861.3509
## 25 952 861.2334
## 24 953 861.1158
## 23 954 860.9983
## 22 955 860.8808
## 21 956 860.7633
## 20 957 860.6457
## 19 958 860.5282
## 18 959 860.4107
## 17 960 860.2931
## 16 961 860.1756
## 15 962 860.0581
## 14 963 859.9406
## 13 964 859.8230
## 12 965 859.7055
## 11 966 859.5880
## 10 967 859.4704
## 9 968 859.3529
## 8 969 859.2354
## 7 970 859.1179
## 6 971 859.0003
## 5 972 858.8828
## 4 973 858.7653
## 3 974 858.6477
## 2 975 858.5302
## 1 976 858.4127
LMdata$Logret <- SM_log_returns
Generate Linear Regression on Log Returns
data$Index <- 1:nrow(data)
lm_model <- lm(Close ~ Index, data = data)
data$Pred_LM <- predict(lm_model)
ggplot(data, aes(x = Index, y = Close)) +
geom_line(color = "blue") +
geom_line(aes(y = Pred_LM), color = "orange") +
labs(title = "Linear Regression on Close Prices")
Generate Regression Evaluation Metrics
# Actual and predicted values
actual <- LMdata$Close
predicted <- LMdata$Pred_LM
# Calculate metrics
rmse_val <- rmse(actual, predicted)
mae_val <- mae(actual, predicted)
r_squared <- summary(lm_model)$r.squared
# Print results
cat("Linear Regression Evaluation Metrics:\n")
## Linear Regression Evaluation Metrics:
cat("RMSE:", round(rmse_val, 4), "\n")
## RMSE: 70.034
cat("MAE:", round(mae_val, 4), "\n")
## MAE: 57.9517
cat("R-squared:", round(r_squared, 4), "\n")
## R-squared: 0.1827
Generate ARIMA Forecast
auto_fit <- auto.arima(SM_log_returns)
forecast_arima <- forecast(auto_fit, h = 30)
autoplot(forecast_arima) + labs(title = "ARIMA Forecast")
Generate ARIMA Evaluation Metrics
# Fit the ARIMA model
auto_fit <- auto.arima(SM_log_returns)
# Generate forecasts for the next 30 periods
forecast_arima <- forecast(auto_fit, h = 30)
# Assuming you have a test set (actual values for comparison)
# Replace 'actual_test_values' with the actual values for the test period
actual_test_values <- SM_log_returns[(length(SM_log_returns)-29):length(SM_log_returns)]
# Get the predicted values from the forecast
predicted_values <- forecast_arima$mean
# RMSE (Root Mean Squared Error)
rmse <- sqrt(mean((predicted_values - actual_test_values)^2))
# MAE (Mean Absolute Error)
mae <- mean(abs(predicted_values - actual_test_values))
# R-squared (Coefficient of Determination)
sst <- sum((actual_test_values - mean(actual_test_values))^2) # Total Sum of Squares
sse <- sum((predicted_values - actual_test_values)^2) # Sum of Squares due to Error
rsq <- 1 - (sse / sst)
# Print the evaluation metrics
cat("RMSE: ", rmse, "\n")
## RMSE: 0.01640586
cat("MAE: ", mae, "\n")
## MAE: 0.01088867
cat("R-squared: ", rsq, "\n")
## R-squared: -0.01038861
Generate Table for the Results of Each Model
library(knitr)
results <- data.frame(
Model = c("SMA", "EMA", "SES", "Holt Method", "Holt-Winters Method", "Kalman Filter", "Regression", "ARIMA"),
RMSE = c(0.0205, 0.0219, 0.0163, 0.0165, 0.0163, 0.0164, 918.8477, 0.0164),
MAE = c(0.0149,0.0159, 0.0106, 0.0109, 0.011, 0.0109, 915.5817, 0.1099),
R_squared = c(0.0884, -0.0409, 0, -0.022, 0.0047, -0.017, 0, -0.0104)
)