Objetivo

Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson

Descripción

Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.

Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta x tenga algún exactamente algún valor, < a algún valor o > o >, entre otros.

Fundamento teórico

Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio (Mendenhall, Beaver, and Beaver 2006).

Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.(Walpole, Myers, and Myers 2012)

Esta distribución discreta, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,

  • La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o

  • El número medio de reparaciones necesarias en 10 kms. de una autopista o,

  • El número promedio de fugas de agua en tubería en un lapso 3 meses.

  • El número de focos promedio que fallan en una cantidad de lote de 1000 focos.

  • El número medio de fugas en 100 kms.de tubería, entre otros (Anderson, Sweeney, and Williams 2008).

Fórmula

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]

en donde:

  • f(x) es la función de probabilidad para valores de x = 0,1,2,3..,n.

  • μ es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como λ lambda.

  • x es la variable aleatoria. Es una variable aleatoria discreta (x = 0,1,.2,….)

  • e valor constante, es la base de los logaritmos naturales 2.71728.

Propiedades de un evento Poisson:

  • La probabilidad de ocurrencia es la misma para cualquiera de dos intervalos de la misma longitud.

  • La ocurrencia o no ocurrencia en cualquier intervalo es independiente de la ocurrencia o no ocurrencia en cualquier otro intervalo.

  • El factor de proporcionalidad para la probabilidad de un hecho en un intervalo infinitésimo. Se le suele designar como parámetro de intensidad y corresponde con el número medio de hechos que cabe esperar que se produzcan en un intervalo unitario (media de la distribución);

  • El valor de la media también coincide con la varianza de la distribución.

  • Se trata de un modelo discreto y que el campo de variación de la variable será el conjunto de los número naturales, incluido el cero:

\[ x \in \text{{0, 1, 2, 3, 4 ......... ......}} \]

Probabilidad acumulada

\[ F(x) = \sum_{0}^{n}f.x_i \]

Esperanza, varianza y desviación estándard

Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:

El valor medio o esperanza

\[ E(X) = \lambda \]

La varianza

\[ Var(X) = \sigma^{2} = \lambda \]

Es decir, tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales.

La desviación

\[ \sigma = \sqrt{Var(x)} = \sqrt{\sigma^{2}} \]

El los siguiente ejercicios se hace uso de funciones de distribución para Poisson en R, al igual que otras de las distribuciones de probabilidad, R trae consigo funciones de paquete base que ya permiten calcular la probabilidad, la densidad y la generación de números aleatorios, entre otras.

De igual modo se tienen funciones previamente codificadas que generan los mismos resultados en la dirección: https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/2023/funciones/funciones%20para%20disribuciones%20de%20probabilidad.R

Desarrollo

Cargar librerías

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
library(cowplot) #Imágenes en el mismo renglón
## 
## Attaching package: 'cowplot'
## The following object is masked from 'package:mosaic':
## 
##     theme_map
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:mosaic':
## 
##     do
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica

Notación normal

options(scipen=999) # Notación normal 

Cargar funciones

#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/2023/funciones/funciones%20para%20disribuciones%20de%20probabilidad.R")
## 
## Attaching package: 'gtools'
## The following object is masked from 'package:mosaic':
## 
##     logit

Ejercicios

Se describen ejercicios en donde se encuentra la función de distribución

Llegadas a cajero automático

Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(Anderson, Sweeney, and Williams 2008)
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(Anderson, Sweeney, and Williams 2008)

Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.

Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;

Aquí la variable aleatoria es x número de automóviles que llegan en un lapso de 15 minutos.

Probabilidad de que lleguen exactamente 5 automóviles en 15 minutos

Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, x = 5, y se obtiene:

Inicializando variables y valores, estos valores son los parámetros que requiere la función de Poisson. x como variable aleatoria, μ (miu) o λ (lambda) es el valor medio de la distribución y n como un valor final de los valores de la variable discreta x, desde 0 hasta n;.

Este último valor de n puede modificarse y observar los valores de densidad (probabilidad) de la variable discreta van reduciendo poco a poco.

media <- 10 # Media o lambda en la función de densidad
x <- 5    # Valores de la variable disreta
n = 25 # Estimado final de la variable aleatoria x , pero puede variar

Utilizando la función creada conforme a la fórmula

prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de :  0.0378"

Utilizando la función dpois()

prob2 <- round(dpois(x = x, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de :  0.0378"

Para este caso al igual que las entregas de Caso de binomial e hipergeométrica, también se hace uso de la función previamente f.poisson.all(…) construída para este fín y que se encuentra en el script previamente cargado con la función source().

Esta función f.poisson.all(…), devuelve entre otras cosas, la tabla de distribución, el valor esperado, la varianza, la desviación estándar así como las visualizaciones gráficas de la densidad, histograma y acumulado de la variable discreta Poisson.

Tabla de probabilidad y gráfica de la probabilidad de Poisson.

Se crea una tabla de distribución codificada manualmente

tabla1 <- data.frame(x=0:25, f.x = round(dpois(x = 0:25, lambda = media),8), F.x = round(ppois(q=0:25, lambda = media), 8))
tabla1
##     x        f.x        F.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
## 22 21 0.00088861 0.99930035
## 23 22 0.00040391 0.99970426
## 24 23 0.00017561 0.99987988
## 25 24 0.00007317 0.99995305
## 26 25 0.00002927 0.99998232

Se hace la misma tabla de distribución usando la variable resultado que provienen de haber ejecutado la función previamente.

Ejecutando la función f.poisson.all(…)

resultado <- f.poisson.all(media = media)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
tabla <- resultado$tabla
tabla
##     x        f.x        F.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174

El resultado de ambas tablas debe ser similar.

Visualizando probabilidad de Poisson

Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.

plot_grid(resultado$g.dens, resultado$g_all$dens)

Histograma y acumulado

plot_grid(resultado$g_barra, resultado$g_all$acum)

Usando plotly para visualizaciones dinámicas

resultado$g.hist.plotly
resultado$g.acum.plotly

¿Cual es la probabilidad de que X sea menor o igual a diez?

\[ f(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10) \]

i <- 10
tabla$F.x[i + 1]
## [1] 0.5830397
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$F.x[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.58303975"

Usando ppois()

ppois() determina la probabilidad acumulada de una distribución Poisson.

prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.583"

Media diferente

En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.

Regla de tres:

\[ 10 = 15 \]

\[ ? = 3 \]

Entonces, la probabilidad de x = 4 llegadas en un lapso de 3 minutos con μ=2 está dada por la siguiente nueva función de probabilidad de Poisson.

\[ \mu = 2 \]

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]

Entonces ….

media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"

El valor de la esperanza media

Regresando a la media μ=10 o λ=10 , entonces la esperanza media es igual a: 10

La varianza

La varianza es igual a 10

La desviación estándar

La raiz cuadrada de √10

sqrt(media)
## [1] 1.414214

Interpretación

Pendiente

Instalaciones industriales

En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es 0.0050.005 y los accidentes son independientes entre sí (Walpole, Myers, and Myers 2012).
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es 0.0050.005 y los accidentes son independientes entre sí (Walpole, Myers, and Myers 2012).

¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de días por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.

n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2

La variable aleatoria son los días desde x = 0…hasta x = n

La tabla de distribución de probabilidad de Poisson

resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
##   x        f.x       F.x
## 1 0 0.13533528 0.1353353
## 2 1 0.27067057 0.4060059
## 3 2 0.27067057 0.6766764
## 4 3 0.18044704 0.8571235
## 5 4 0.09022352 0.9473470

Visualización de Poisson

Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.

plot_grid(resultado$g.dens, resultado$g_all$dens)

Histograma/Barra y acumulado

plot_grid(resultado$g_barra, resultado$g_all$acum)

Usando plotly para visualizaciones dinámicas

resultado$g.hist.plotly
resultado$g.acum.plotly

¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?

\[ f(x=1) \]

Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor x + 1 en la tabla:

i <- 1
prob <- tabla$f.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es:  0.27067057"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es:  0.2707"

¿Cuál es la probabilidad de que haya a lo más tres días con un accidente?

  • El indice en la tabla comienza en cero

\[ f(x=0) + f(x=1) + f(x=2) + f(x=3) \\ 0.13533528 + 0.27067057 + 0.27067057 + 0.18044704 = 0.8571235 \]

i <- 3
prob <- round(tabla$F.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es:  0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es:  0.8571"

Interpretación

Pendiente

Fabricante de automóviles

Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con λ=5 (Walpole, Myers, and Myers 2012).
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con λ=5 (Walpole, Myers, and Myers 2012).

Inicializando valores

media <- 5

La tabla de distribución cuando media igual a 5

resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
##     x        f.x        F.x
## 1   0 0.00673795 0.00673795
## 2   1 0.03368973 0.04042768
## 3   2 0.08422434 0.12465202
## 4   3 0.14037390 0.26502592
## 5   4 0.17546737 0.44049329
## 6   5 0.17546737 0.61596065
## 7   6 0.14622281 0.76218346
## 8   7 0.10444486 0.86662833
## 9   8 0.06527804 0.93190637
## 10  9 0.03626558 0.96817194
## 11 10 0.01813279 0.98630473

Visualización de Poisson

Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.

plot_grid(resultado$g.dens, resultado$g_all$dens)

Histograma/barra y lineal acumulado

plot_grid(resultado$g_barra, resultado$g_all$acum)

Usando plotly para visualizaciones dinámicas

resultado$g.hist.plotly
resultado$g.acum.plotly

¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?

\[ f(X \leq 3) \]

\[ f(X=0) + f(X=1) + f(X=2) + f(X=3) \]

i <- 3
prob <- tabla$F.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5 %"

¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?

\[ 1 - F(X \leq 1) \]

\[ 1 - (f(X=0) + f(x=1)) \]

i <- 1
prob <- 1 - tabla$F.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"

¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?

\[ f(X \leq 3) \]

\[ f(X=0) + f(X=1) + f(X=2) + f(X=3) \]

i <- 3
prob <- tabla$F.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5 %"

¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?

\[ 1 - F(X \leq 1) \]

\[ 1 - (f(X=0) + f(x=1)) \]

i <- 1
prob <- 1 - tabla$F.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"

Interpretación

Pendiente

Declaración de impuestos

Suponga que, en promedio, 1 persona en 1000
comete un error numérico al preparar su declaración de impuestos. Si se seleccionan 10,000 formas al azar y se examinan, encuentre la probabilidad de que 6, 7 u 8de las formas contengan un error.(walpole2007?). Ejercicio 5.65, Pág. 165.

\[ f(x=6:8) = f(x=6) + f(x=7) + f(x=8) \]

Valores iniciales

prob <- 1 / 1000
media <- prob * 10000

Tabla de distribución

resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
##     x        f.x        F.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174

¿Cuál es la probabilidad de que haya entre 6 y 8 declaraciones con errores?

\[ f(x \text { de 6 a }8) = f(x=6) + f(x=7) + f(x=8) \]

Se suman las probabilidades

Usando dpois()

paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es:  26.5734 %"

Con ppois(), restando el valor acumulado de F(x = 8) - el valor cumulado en F(x = 5)

prob <- ppois(q = 8, lambda = media) - ppois(q = 5, lambda = media)
prob
## [1] 0.2657337

Visualización de Poisson

Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.

plot_grid(resultado$g.dens, resultado$g_all$dens)

Histograma/barra y lineal acumulado

plot_grid(resultado$g_barra, resultado$g_all$acum)

Usando plotly para visualizaciones dinámicas

resultado$g.hist.plotly
resultado$g.acum.plotly

Interpretación

Interpretación del caso

Llegadas a cajero automático

  • Interpretación:
    Dado que la tasa promedio de llegadas es de 10 autos cada 15 minutos, la probabilidad de que lleguen exactamente 5 autos es baja (3.78%). Esto indica que 5 llegadas en ese tiempo es un evento poco frecuente, ya que está muy por debajo del promedio esperado. Además, hay un 58.3% de probabilidad de que lleguen 10 autos o menos, lo que permite planificar recursos como seguridad o personal en función de esa probabilidad acumulada.

Instalaciones industriales

  • Interpretación:
    Con una media de 2 accidentes cada 400 días, la probabilidad de que ocurra exactamente 1 accidente en un día específico es de aproximadamente 27%.
    La probabilidad de que haya a lo más 3 días con accidentes en ese periodo es del 85.7%, lo cual indica que los accidentes son poco frecuentes pero no imposibles. Es útil para planes de mantenimiento preventivo o seguros.

Fabricante de automóviles

  • Interpretación:
    La probabilidad de que a lo más 3 autos sufran una falla en los frenos por año es del 26.5%, lo cual indica que es poco común que tan pocos autos fallen.
    En cambio, hay un 95.96% de probabilidad de que más de 1 auto presente fallas, lo cual muestra que el evento no es extremadamente raro y podría requerir una acción por parte del fabricante (como un llamado a revisión o rediseño).

Declaraciones de impuestos

  • Interpretación:
    Con un promedio esperado de 10 errores en 10,000 declaraciones, la probabilidad de que entre 6 y 8 declaraciones contengan errores es del 26.57%.
    Esto significa que, aunque el evento es infrecuente (dado que solo 1 de cada 1000 personas comete un error), es razonablemente probable encontrar entre 6 y 8 errores en una muestra grande, y por lo tanto debe tenerse en cuenta en auditorías y controles de calidad.

Referencias Bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,.

Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición.

Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.