library(readr)
sales_employee_data<-read.csv("C:/Users/salim/OneDrive/Documents/USIU/1.2/DSA/Datasets/Dataset.csv")
sales_employee_data
##    Transaction.ID Product Sales.Amount Region Employee.ID Employee.Name
## 1               1       X          250  North          10          John
## 2               2       Y          320  South          11          Jane
## 3               3       X          180   East          12          Mike
## 4               4       Z          410   West          13          Anna
## 5               5       Y          275  North          14          Paul
## 6               6       X          190   East          15          Sara
## 7               7       Z          390  South          11          Jane
## 8               8       Y          280   West          10          John
## 9               9       X          210  North          14          Paul
## 10             10       Z          370   East          12          Mike
##    Department Experience..Years. Salary
## 1       Sales                  4  48000
## 2       Sales                  6  53000
## 3          HR                  3  42000
## 4          IT                  9  60000
## 5          HR                  7  47000
## 6          IT                 10  52000
## 7       Sales                  6  53000
## 8       Sales                  4  48000
## 9          HR                  7  47000
## 10         HR                  3  42000

B

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
total_sales_by_region <- summarise(group_by(sales_employee_data, Region), Total_Sales = sum(`Sales.Amount`))
"Total Sales by Region:"
## [1] "Total Sales by Region:"
total_sales_by_region
## # A tibble: 4 × 2
##   Region Total_Sales
##   <chr>        <int>
## 1 East           740
## 2 North          735
## 3 South          710
## 4 West           690

C

avg_salary_by_department <- summarise(group_by(sales_employee_data, Department), Average_Salary = mean(Salary))
avg_salary_by_department
## # A tibble: 3 × 2
##   Department Average_Salary
##   <chr>               <dbl>
## 1 HR                  44500
## 2 IT                  56000
## 3 Sales               50500

D

experienced_employees <- filter(sales_employee_data, `Experience..Years.` > 5)

experienced_employees
##   Transaction.ID Product Sales.Amount Region Employee.ID Employee.Name
## 1              2       Y          320  South          11          Jane
## 2              4       Z          410   West          13          Anna
## 3              5       Y          275  North          14          Paul
## 4              6       X          190   East          15          Sara
## 5              7       Z          390  South          11          Jane
## 6              9       X          210  North          14          Paul
##   Department Experience..Years. Salary
## 1      Sales                  6  53000
## 2         IT                  9  60000
## 3         HR                  7  47000
## 4         IT                 10  52000
## 5      Sales                  6  53000
## 6         HR                  7  47000

E

experienced_employees %>%
  arrange(desc('sales.Amount'))
##   Transaction.ID Product Sales.Amount Region Employee.ID Employee.Name
## 1              2       Y          320  South          11          Jane
## 2              4       Z          410   West          13          Anna
## 3              5       Y          275  North          14          Paul
## 4              6       X          190   East          15          Sara
## 5              7       Z          390  South          11          Jane
## 6              9       X          210  North          14          Paul
##   Department Experience..Years. Salary
## 1      Sales                  6  53000
## 2         IT                  9  60000
## 3         HR                  7  47000
## 4         IT                 10  52000
## 5      Sales                  6  53000
## 6         HR                  7  47000

F

sales_employee_data %>%
  select('Employee.Name','Product','Sales.Amount','Salary')
##    Employee.Name Product Sales.Amount Salary
## 1           John       X          250  48000
## 2           Jane       Y          320  53000
## 3           Mike       X          180  42000
## 4           Anna       Z          410  60000
## 5           Paul       Y          275  47000
## 6           Sara       X          190  52000
## 7           Jane       Z          390  53000
## 8           John       Y          280  48000
## 9           Paul       X          210  47000
## 10          Mike       Z          370  42000

G

sales_employee_data %>%
  rename(Year_of_Experience='Experience..Years.')
##    Transaction.ID Product Sales.Amount Region Employee.ID Employee.Name
## 1               1       X          250  North          10          John
## 2               2       Y          320  South          11          Jane
## 3               3       X          180   East          12          Mike
## 4               4       Z          410   West          13          Anna
## 5               5       Y          275  North          14          Paul
## 6               6       X          190   East          15          Sara
## 7               7       Z          390  South          11          Jane
## 8               8       Y          280   West          10          John
## 9               9       X          210  North          14          Paul
## 10             10       Z          370   East          12          Mike
##    Department Year_of_Experience Salary
## 1       Sales                  4  48000
## 2       Sales                  6  53000
## 3          HR                  3  42000
## 4          IT                  9  60000
## 5          HR                  7  47000
## 6          IT                 10  52000
## 7       Sales                  6  53000
## 8       Sales                  4  48000
## 9          HR                  7  47000
## 10         HR                  3  42000

H

sales_employee_data <- mutate(sales_employee_data, New_Salary = Salary * 1.12)
(head(sales_employee_data))
##   Transaction.ID Product Sales.Amount Region Employee.ID Employee.Name
## 1              1       X          250  North          10          John
## 2              2       Y          320  South          11          Jane
## 3              3       X          180   East          12          Mike
## 4              4       Z          410   West          13          Anna
## 5              5       Y          275  North          14          Paul
## 6              6       X          190   East          15          Sara
##   Department Experience..Years. Salary New_Salary
## 1      Sales                  4  48000      53760
## 2      Sales                  6  53000      59360
## 3         HR                  3  42000      47040
## 4         IT                  9  60000      67200
## 5         HR                  7  47000      52640
## 6         IT                 10  52000      58240

I

total_sales_by_department <- summarise(group_by(sales_employee_data, Department), Total_Sales = sum(`Sales.Amount`))
print("Total Sales by Department:")
## [1] "Total Sales by Department:"
print(total_sales_by_department)
## # A tibble: 3 × 2
##   Department Total_Sales
##   <chr>            <int>
## 1 HR                1035
## 2 IT                 600
## 3 Sales             1240

J

sales_employee_data %>%
  filter(Department == 'Sales',Region =='South') %>%
  summarise(mean('Sales.Amount'))
## Warning: There was 1 warning in `summarise()`.
## ℹ In argument: `mean("Sales.Amount")`.
## Caused by warning in `mean.default()`:
## ! argument is not numeric or logical: returning NA
##   mean("Sales.Amount")
## 1                   NA