The simulation has 1920 respondents and 500 runs. The simulation itself took 1.7099153^{4} seconds.
the parameters used for the simulation are:
Statistics and power
Here you see the statistics of your parameters for the 500 runs.
kable (all_designs[["summaryall" ]] ,digits = 3 ) %>% kable_styling ()
bx12
500
500
500
500
500
-0.250
-0.251
-0.251
-0.249
-0.249
-0.255
0.102
0.060
0.063
0.065
0.063
-0.543
-0.408
-0.455
-0.430
-0.441
0.059
-0.064
-0.054
-0.094
-0.104
0.602
0.344
0.401
0.337
0.337
0.005
0.003
0.003
0.003
0.003
-0.248
-0.035
-0.210
-0.251
0.096
-0.168
-0.246
-0.114
0.091
-0.247
-0.063
-0.228
-0.252
-0.202
-0.034
bx13
500
500
500
500
500
-0.500
-0.498
-0.501
-0.497
-0.494
-0.500
0.092
0.123
0.063
0.065
0.053
-0.788
-0.881
-0.689
-0.707
-0.635
-0.247
-0.122
-0.300
-0.305
-0.329
0.542
0.759
0.389
0.402
0.306
0.004
0.006
0.003
0.003
0.002
-0.499
-0.190
0.127
-0.500
0.093
0.050
-0.495
-0.114
0.021
-0.496
0.030
0.050
-0.501
0.011
-0.322
bx14
500
500
500
500
500
-0.600
-0.596
-0.601
-0.599
-0.601
-0.599
0.097
0.076
0.062
0.051
0.065
-0.849
-0.816
-0.786
-0.789
-0.871
-0.188
-0.374
-0.422
-0.453
-0.357
0.661
0.441
0.364
0.336
0.514
0.004
0.003
0.003
0.002
0.003
-0.591
0.083
0.246
-0.600
0.023
-0.082
-0.599
-0.090
-0.057
-0.598
-0.081
0.208
-0.602
-0.024
0.470
bx15
500
500
500
500
500
-0.700
-0.697
-0.701
-0.697
-0.694
-0.700
0.092
0.085
0.067
0.063
0.075
-0.943
-0.979
-0.966
-0.892
-0.924
-0.411
-0.470
-0.463
-0.520
-0.466
0.532
0.509
0.503
0.372
0.459
0.004
0.004
0.003
0.003
0.003
-0.699
0.174
-0.180
-0.701
-0.117
-0.234
-0.697
-0.026
0.284
-0.689
-0.067
0.010
-0.699
0.075
0.019
bx2
500
500
500
500
500
-0.509
-0.512
-0.509
-0.504
-0.510
-0.510
0.061
0.036
0.047
0.048
0.031
-0.685
-0.627
-0.640
-0.662
-0.601
-0.335
-0.394
-0.349
-0.378
-0.392
0.350
0.234
0.291
0.285
0.209
0.003
0.002
0.002
0.002
0.001
-0.514
0.111
-0.076
-0.509
-0.064
0.077
-0.503
-0.046
0.026
-0.512
-0.010
-0.020
-0.509
0.170
0.323
bx3
500
500
500
500
500
0.362
0.366
0.362
0.361
0.369
0.362
0.072
0.032
0.046
0.051
0.026
0.147
0.264
0.225
0.240
0.291
0.574
0.473
0.515
0.492
0.433
0.427
0.209
0.290
0.252
0.142
0.003
0.001
0.002
0.002
0.001
0.362
0.205
-0.022
0.363
-0.057
0.137
0.363
0.002
0.289
0.367
0.087
-0.298
0.363
0.007
0.000
bx4
500
500
500
500
500
-0.021
-0.021
-0.021
-0.021
-0.021
-0.021
0.001
0.000
0.001
0.001
0.001
-0.023
-0.022
-0.022
-0.022
-0.022
-0.018
-0.019
-0.019
-0.019
-0.019
0.005
0.003
0.003
0.003
0.003
0.000
0.000
0.000
0.000
0.000
-0.021
0.069
0.013
-0.021
-0.073
0.282
-0.021
0.099
-0.139
-0.021
0.158
-0.151
-0.021
-0.014
-0.132
bx1x22
500
500
500
500
500
0.334
0.340
0.333
0.329
0.339
0.337
0.082
0.065
0.066
0.063
0.120
0.049
0.118
0.079
0.153
-0.027
0.591
0.529
0.535
0.519
0.683
0.542
0.411
0.456
0.366
0.711
0.004
0.003
0.003
0.003
0.005
0.343
-0.169
-0.092
0.336
-0.092
0.078
0.329
-0.067
0.358
0.340
0.090
-0.020
0.333
-0.002
-0.045
bx1x23
500
500
500
500
500
0.300
0.306
0.303
0.295
0.298
0.302
0.089
0.074
0.066
0.059
0.062
0.045
0.090
0.127
0.134
0.122
0.594
0.491
0.489
0.483
0.494
0.549
0.401
0.362
0.349
0.372
0.004
0.003
0.003
0.003
0.003
0.306
0.005
-0.028
0.299
-0.032
-0.213
0.295
0.121
-0.241
0.298
0.015
-0.225
0.301
-0.062
-0.073
bx1x24
500
500
500
500
500
0.300
0.302
0.301
0.295
0.304
0.305
0.124
0.084
0.071
0.066
0.092
-0.112
0.051
0.076
0.082
-0.033
0.752
0.607
0.518
0.550
0.536
0.864
0.556
0.442
0.467
0.569
0.006
0.004
0.003
0.003
0.004
0.302
-0.028
-0.012
0.304
0.001
0.435
0.297
-0.086
-0.017
0.306
0.064
0.208
0.305
-0.146
0.281
bx1x25
500
500
500
500
500
0.300
0.303
0.296
0.295
0.300
0.000
0.088
0.091
0.066
0.067
0.000
0.058
-0.026
0.084
0.092
0.000
0.549
0.630
0.489
0.525
0.000
0.491
0.656
0.404
0.433
0.000
0.004
0.004
0.003
0.003
0.000
0.309
-0.054
-0.192
0.294
0.163
0.334
0.292
0.015
0.141
0.297
0.222
-0.016
0.000
NaN
NaN
bx1x32
500
500
500
500
500
0.334
0.334
0.339
0.338
0.329
0.337
0.099
0.074
0.065
0.069
0.109
0.033
0.110
0.159
0.121
0.038
0.675
0.566
0.513
0.521
0.637
0.643
0.455
0.354
0.399
0.599
0.004
0.003
0.003
0.003
0.005
0.335
0.119
-0.002
0.337
0.029
-0.121
0.336
0.021
-0.265
0.333
-0.110
0.052
0.335
0.091
-0.223
bx1x33
500
500
500
500
500
0.300
0.296
0.300
0.302
0.291
0.296
0.097
0.110
0.066
0.068
0.069
0.002
0.001
0.094
0.089
0.127
0.597
0.622
0.477
0.500
0.484
0.594
0.621
0.383
0.411
0.357
0.004
0.005
0.003
0.003
0.003
0.298
0.081
0.177
0.296
0.058
-0.198
0.300
-0.101
-0.046
0.288
0.020
-0.274
0.299
0.028
-0.373
bx1x34
500
500
500
500
500
0.300
0.284
0.302
0.303
0.292
0.295
0.164
0.087
0.064
0.067
0.098
-0.209
0.041
0.059
0.094
-0.004
0.760
0.536
0.537
0.475
0.626
0.969
0.495
0.479
0.382
0.630
0.007
0.004
0.003
0.003
0.004
0.292
-0.062
-0.050
0.298
0.036
0.004
0.304
0.012
0.219
0.290
-0.047
-0.096
0.299
-0.053
-0.152
bx1x35
500
500
500
500
500
0.300
0.294
0.305
0.303
0.291
0.300
0.092
0.098
0.075
0.065
0.093
0.055
0.072
-0.031
0.034
0.054
0.628
0.584
0.538
0.453
0.572
0.573
0.512
0.570
0.419
0.518
0.004
0.004
0.003
0.003
0.004
0.293
0.020
-0.096
0.305
0.063
-0.331
0.304
-0.050
0.430
0.293
-0.098
0.084
0.299
0.117
-0.259
bsq
500
500
500
500
500
-1.325
-1.321
-1.323
-1.322
-1.321
-1.327
0.135
0.035
0.054
0.053
0.037
-1.698
-1.422
-1.479
-1.481
-1.444
-0.736
-1.205
-1.166
-1.174
-1.223
0.963
0.217
0.313
0.307
0.220
0.006
0.002
0.002
0.002
0.002
-1.318
0.125
0.239
-1.322
0.022
0.199
-1.321
-0.131
-0.018
-1.321
0.035
-0.104
-1.327
0.042
-0.145
rob_pval0_bx12
500
500
500
500
0
NA
0.075
0.002
0.003
0.004
NaN
0.145
0.015
0.024
0.015
NA
0.000
0.000
0.000
0.000
Inf
0.990
0.270
0.350
0.130
-Inf
0.990
0.270
0.350
0.130
-Inf
0.007
0.001
0.001
0.001
NA
0.010
3.248
12.886
0.000
13.474
229.608
0.000
12.073
164.322
0.000
5.516
35.156
NA
NA
NA
rob_pval0_bx13
500
500
500
500
0
NA
0.000
0.003
0.000
0.000
NaN
0.000
0.018
0.000
0.000
NA
0.000
0.000
0.000
0.000
Inf
0.010
0.290
0.000
0.000
-Inf
0.010
0.290
0.000
0.000
-Inf
0.000
0.001
0.000
0.000
NA
0.000
22.227
493.012
0.000
10.408
137.124
0.000
NaN
NaN
0.000
NaN
NaN
NA
NA
NA
rob_pval0_bx14
500
500
500
500
0
NA
0.000
0.000
0.000
0.000
NaN
0.002
0.000
0.000
0.000
NA
0.000
0.000
0.000
0.000
Inf
0.040
0.000
0.000
0.000
-Inf
0.040
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
NA
0.000
22.227
493.012
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
NA
NA
NA
rob_pval0_bx15
500
500
500
500
0
NA
0.000
0.000
0.000
0.000
NaN
0.000
0.000
0.000
0.000
NA
0.000
0.000
0.000
0.000
Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
NA
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
NA
NA
NA
rob_pval0_bx2
500
500
500
500
0
NA
0.000
0.000
0.000
0.000
NaN
0.000
0.000
0.000
0.000
NA
0.000
0.000
0.000
0.000
Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
NA
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
NA
NA
NA
rob_pval0_bx3
500
500
500
500
0
NA
0.000
0.000
0.000
0.000
NaN
0.002
0.000
0.000
0.000
NA
0.000
0.000
0.000
0.000
Inf
0.040
0.000
0.000
0.000
-Inf
0.040
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
NA
0.000
17.960
352.808
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
NA
NA
NA
rob_pval0_bx4
500
500
500
500
0
NA
0.000
0.000
0.000
0.000
NaN
0.000
0.000
0.000
0.000
NA
0.000
0.000
0.000
0.000
Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
NA
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
NA
NA
NA
rob_pval0_bx1x22
500
500
500
500
0
NA
0.004
0.000
0.001
0.000
NaN
0.030
0.005
0.010
0.001
NA
0.000
0.000
0.000
0.000
Inf
0.560
0.080
0.220
0.020
-Inf
0.560
0.080
0.220
0.020
-Inf
0.001
0.000
0.000
0.000
NA
0.000
14.856
247.270
0.000
14.143
214.776
0.000
19.420
403.166
0.000
17.863
333.781
NA
NA
NA
rob_pval0_bx1x23
500
500
500
500
0
NA
0.014
0.003
0.001
0.000
NaN
0.051
0.018
0.004
0.002
NA
0.000
0.000
0.000
0.000
Inf
0.600
0.220
0.050
0.030
-Inf
0.600
0.220
0.050
0.030
-Inf
0.002
0.001
0.000
0.000
NA
0.000
6.409
51.275
0.000
8.212
77.475
0.000
8.470
87.184
0.000
10.697
119.682
NA
NA
NA
rob_pval0_bx1x24
500
500
500
500
0
NA
0.078
0.012
0.003
0.001
NaN
0.153
0.049
0.017
0.012
NA
0.000
0.000
0.000
0.000
Inf
0.930
0.550
0.270
0.230
-Inf
0.930
0.550
0.270
0.230
-Inf
0.007
0.002
0.001
0.001
NA
0.010
2.827
8.374
0.000
6.796
53.143
0.000
10.856
146.378
0.000
15.942
280.724
NA
NA
NA
rob_pval0_bx1x25
500
500
500
500
0
NA
0.012
0.020
0.002
0.001
NaN
0.044
0.068
0.015
0.008
NA
0.000
0.000
0.000
0.000
Inf
0.480
0.780
0.220
0.150
-Inf
0.480
0.780
0.220
0.150
-Inf
0.002
0.003
0.001
0.000
NA
0.000
6.294
48.790
0.000
7.626
71.412
0.000
10.355
125.449
0.000
15.398
252.588
NA
NA
NA
rob_pval0_bx1x32
500
500
500
500
0
NA
0.016
0.001
0.000
0.001
NaN
0.055
0.007
0.001
0.005
NA
0.000
0.000
0.000
0.000
Inf
0.760
0.140
0.010
0.080
-Inf
0.760
0.140
0.010
0.080
-Inf
0.002
0.000
0.000
0.000
NA
0.000
7.732
80.712
0.000
15.103
265.905
0.000
11.013
119.517
0.000
10.776
132.162
NA
NA
NA
rob_pval0_bx1x33
500
500
500
500
0
NA
0.032
0.047
0.001
0.002
NaN
0.093
0.114
0.008
0.012
NA
0.000
0.000
0.000
0.000
Inf
0.980
0.990
0.130
0.210
-Inf
0.980
0.990
0.130
0.210
-Inf
0.004
0.005
0.000
0.001
NA
0.000
5.759
41.212
0.000
4.090
20.316
0.000
12.102
167.312
0.000
12.442
204.501
NA
NA
NA
rob_pval0_bx1x34
500
500
500
500
0
NA
0.212
0.011
0.001
0.002
NaN
0.256
0.047
0.017
0.012
NA
0.000
0.000
0.000
0.000
Inf
0.980
0.610
0.380
0.190
-Inf
0.980
0.610
0.380
0.190
-Inf
0.011
0.002
0.001
0.001
NA
0.090
1.404
1.003
0.000
7.584
72.371
0.000
21.364
466.431
0.000
10.436
140.865
NA
NA
NA
rob_pval0_bx1x35
500
500
500
500
0
NA
0.022
0.030
0.004
0.002
NaN
0.061
0.073
0.033
0.028
NA
0.000
0.000
0.000
0.000
Inf
0.550
0.490
0.660
0.610
-Inf
0.550
0.490
0.660
0.610
-Inf
0.003
0.003
0.001
0.001
NA
0.000
4.730
27.522
0.000
3.908
16.775
0.000
17.056
320.628
0.000
20.541
440.673
NA
NA
NA
rob_pval0_bsq
500
500
500
500
0
NA
0.000
0.000
0.000
0.000
NaN
0.000
0.000
0.000
0.000
NA
0.000
0.000
0.000
0.000
Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
-Inf
0.000
0.000
0.000
0.000
NA
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
0.000
NaN
NaN
NA
NA
NA
$DesignBayesian1
FALSE TRUE
85 15
$interaction
FALSE TRUE
45.6 54.4
$interaFiltereddumm
FALSE TRUE
6.6 93.4
$interaFiltereddumm2bl
FALSE TRUE
6.8 93.2
$interaFiltered
numeric(0)
$time
NULL
$arguements
NULL
Illustration of simulated parameter values
To facilitate interpretation and judgement of the different designs, you can plot the densities of simulated parameter values from the different experimental designs.