Perhitungan Penjumlahan Operasi Dasar

2 + 3     #penjumlahan
## [1] 5
5 - 1     #pengurangan
## [1] 4
4 * 2     #perkalian
## [1] 8
10 / 2    #pembagi
## [1] 5
2^3       #pangkat
## [1] 8

Pembuatan Variabel

a <- 10 
b <- 5
c <- a + b
c
## [1] 15

Struktur Data Dasar

vektor <- c(1,2,3,4,5)
vektor
## [1] 1 2 3 4 5

Membuat Vektor Karakter

Bunga <- c("Mawar","Melati","Tulip","Mawar","Melati","Tulip")
Bunga
## [1] "Mawar"  "Melati" "Tulip"  "Mawar"  "Melati" "Tulip"

Mengonversi ke faktor

bunga_factor <- factor(Bunga)   ##Ubah vektor menjadi faktor

Menampilkan struktur faktor

str(bunga_factor)
##  Factor w/ 3 levels "Mawar","Melati",..: 1 2 3 1 2 3

Menampilkan level yang ada di faktor

levels(bunga_factor)
## [1] "Mawar"  "Melati" "Tulip"

Frekuensi tiap kategorik

table(bunga_factor)  # Menampilkan frekuensi masing-masing kategori dalam faktor
## bunga_factor
##  Mawar Melati  Tulip 
##      2      2      2

Membuat list berbagai jenis data

data_list <- list(
  angka = c(10, 20, 30, 40),
  teks = c("A", "B", "C"),
  kategori = factor(c("Baik", "Sedang", "Buruk"))
)

Menampilkan isi list

print(data_list)
## $angka
## [1] 10 20 30 40
## 
## $teks
## [1] "A" "B" "C"
## 
## $kategori
## [1] Baik   Sedang Buruk 
## Levels: Baik Buruk Sedang
## $angka
## [1] 10 20 30 40
## 
## $teks
## [1] "A" "B" "C"
## 
## $kategori
## [1] Baik   Sedang Buruk 
## Levels: Baik Buruk Sedang

Mengakses elemen list

data_list$angka   # Mengakses elemen 'angka' dalam list
## [1] 10 20 30 40
data_list[[2]]    # Mengakses elemen kedua dalam list (vektor 'teks')
## [1] "A" "B" "C"

Membuat Dataframe

data_karyawan <- data.frame(
  Nama = c("hulk", "batman", "iroman", "joker"),  # Kolom Nama
  Usia = c(25, 23, 15, 27),                   # Kolom Usia
  Pekerjaan = factor(c("BUMN", "StarUp", "Pelajar", "Doktor"))  # Kolom Pekerjaan
)

Menampilkan Dataframe

print(data_karyawan)  # Menampilkan seluruh isi dataframe
##     Nama Usia Pekerjaan
## 1   hulk   25      BUMN
## 2 batman   23    StarUp
## 3 iroman   15   Pelajar
## 4  joker   27    Doktor

Menampilkan ringkasan dataframe

summary(data_karyawan)  # Menampilkan ringkasan statistik dari dataframe
##      Nama                Usia        Pekerjaan
##  Length:4           Min.   :15.0   BUMN   :1  
##  Class :character   1st Qu.:21.0   Doktor :1  
##  Mode  :character   Median :24.0   Pelajar:1  
##                     Mean   :22.5   StarUp :1  
##                     3rd Qu.:25.5              
##                     Max.   :27.0

Membuat Array 3 Dimensi

array_data <- array(1:24, dim = c(3, 4, 2))  # Membuat array dengan dimensi 3x4x2
print(array_data)
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    4    7   10
## [2,]    2    5    8   11
## [3,]    3    6    9   12
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]   13   16   19   22
## [2,]   14   17   20   23
## [3,]   15   18   21   24

Menampilkan dimensi Array

dim(array_data)  # Menampilkan dimensi dari array
## [1] 3 4 2

Membuat vektor dengan nilai NA

nilai <- c(90, 85, NA, 75, 80, NA, 95)  # Membuat vektor dengan beberapa nilai NA

# Mengecek nilai yang hilang
is.na(nilai)  # Mengecek apakah ada nilai NA dalam vektor
## [1] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
# Menghitung jumlah nilai NA dalam vektor
sum(is.na(nilai))  # Menghitung total nilai NA dalam vektor
## [1] 2

Sequence Generation

x1 <- seq(0, 10, length=5)  
x1
## [1]  0.0  2.5  5.0  7.5 10.0
x2 <- seq(0,10,length=6)
x2
## [1]  0  2  4  6  8 10
x3 <- seq(0,10,length=7)
x3
## [1]  0.000000  1.666667  3.333333  5.000000  6.666667  8.333333 10.000000

Pembulatan pecahan desimal

round(x3)  # Membulatkan nilai dalam 'x3' ke bilangan bulat terdekat
## [1]  0  2  3  5  7  8 10
floor(x3)  # Membulatkan nilai dalam 'x3' ke bawah
## [1]  0  1  3  5  6  8 10
ceiling(x3) 
## [1]  0  2  4  5  7  9 10

Replicate Elements of Vectors and Lists

rep(c("A", "B", "C"), 5)  # Mengulang vektor "A", "B", "C" sebanyak 5 kali
##  [1] "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C"
rep(c("A", "B", "C"), each=5)  # Mengulang setiap elemen vektor "A", "B", "C" sebanyak 5 kali
##  [1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B" "C" "C" "C" "C" "C"
rep(c("A", "B", "C"), each=2, 5)
##  [1] "A" "A" "B" "B" "C" "C" "A" "A" "B" "B" "C" "C" "A" "A" "B" "B" "C" "C" "A"
## [20] "A" "B" "B" "C" "C" "A" "A" "B" "B" "C" "C"
rep(1:5, 5) 
##  [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
rep(1:5, each=5)
##  [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
rep(1:5, each=2, 5) 
##  [1] 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4
## [39] 5 5 1 1 2 2 3 3 4 4 5 5

Fungsi Dasar Statistika pada R

# Membuat data x dan y
x <- c(3, 4, 5, 6)  # Membuat vektor x
y <- c(2, 3, 4, 5, 6, 6)  # Membuat vektor y
# Menghitung nilai statistik dasar
min(x)  # Menghitung nilai minimum dari vektor x
## [1] 3
max(y)  # Menghitung nilai maksimum dari vektor y
## [1] 6
mean(x) # Menghitung rata-rata dari vektor x
## [1] 4.5
var(y)  # Menghitung variansi dari vektor y
## [1] 2.666667
cor(x, y[1:length(x)])  # Menghitung korelasi antara vektor x dan y (panjang harus sama)
## [1] 1
# Menentukan range (jangkauan nilai)
range(x)  # Menghitung range dari vektor x
## [1] 3 6
range(y)  # Menghitung range dari vektor y
## [1] 2 6

Simulasi Sampel Acak

# Simulasi pelemparan koin (0 = ekor, 1 = kepala)
set.seed(123)  # Mengatur seed untuk hasil yang konsisten
sample(0:1, 30, replace = TRUE)  # Simulasi pelemparan koin sebanyak 30 kali
##  [1] 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1
# Simulasi pengambilan sampel huruf "A" dan "G" sebanyak 15 kali
sample(c("A", "G"), 15, replace = TRUE)  # Simulasi pengambilan sampel huruf "A" dan "G"
##  [1] "A" "G" "A" "G" "G" "A" "A" "A" "A" "G" "A" "G" "G" "A" "A"
# Simulasi pelemparan dadu sebanyak 30 kali
sample(1:6, 30, replace = TRUE)  # Simulasi pelemparan dadu sebanyak 30 kali
##  [1] 1 1 2 3 4 5 5 3 6 1 2 5 5 4 5 2 1 1 3 1 6 5 1 2 4 4 6 6 3 6

Pratikum manipulasi dasar

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(data.table)
## Warning: package 'data.table' was built under R version 4.3.3
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
data <- tbl_df(iris)
## Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
## ℹ Please use `tibble::as_tibble()` instead.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
class(data)
## [1] "tbl_df"     "tbl"        "data.frame"
data
## # A tibble: 150 × 5
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
##  1          5.1         3.5          1.4         0.2 setosa 
##  2          4.9         3            1.4         0.2 setosa 
##  3          4.7         3.2          1.3         0.2 setosa 
##  4          4.6         3.1          1.5         0.2 setosa 
##  5          5           3.6          1.4         0.2 setosa 
##  6          5.4         3.9          1.7         0.4 setosa 
##  7          4.6         3.4          1.4         0.3 setosa 
##  8          5           3.4          1.5         0.2 setosa 
##  9          4.4         2.9          1.4         0.2 setosa 
## 10          4.9         3.1          1.5         0.1 setosa 
## # ℹ 140 more rows
data_slice <- slice(data, 1:10)
data_slice
## # A tibble: 10 × 5
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
##  1          5.1         3.5          1.4         0.2 setosa 
##  2          4.9         3            1.4         0.2 setosa 
##  3          4.7         3.2          1.3         0.2 setosa 
##  4          4.6         3.1          1.5         0.2 setosa 
##  5          5           3.6          1.4         0.2 setosa 
##  6          5.4         3.9          1.7         0.4 setosa 
##  7          4.6         3.4          1.4         0.3 setosa 
##  8          5           3.4          1.5         0.2 setosa 
##  9          4.4         2.9          1.4         0.2 setosa 
## 10          4.9         3.1          1.5         0.1 setosa
arrange(data_slice, desc(data_slice$Sepal.Length))
## # A tibble: 10 × 5
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
##  1          5.4         3.9          1.7         0.4 setosa 
##  2          5.1         3.5          1.4         0.2 setosa 
##  3          5           3.6          1.4         0.2 setosa 
##  4          5           3.4          1.5         0.2 setosa 
##  5          4.9         3            1.4         0.2 setosa 
##  6          4.9         3.1          1.5         0.1 setosa 
##  7          4.7         3.2          1.3         0.2 setosa 
##  8          4.6         3.1          1.5         0.2 setosa 
##  9          4.6         3.4          1.4         0.3 setosa 
## 10          4.4         2.9          1.4         0.2 setosa
datatable <- data.table(iris)
datatable
##      Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
##             <num>       <num>        <num>       <num>    <fctr>
##   1:          5.1         3.5          1.4         0.2    setosa
##   2:          4.9         3.0          1.4         0.2    setosa
##   3:          4.7         3.2          1.3         0.2    setosa
##   4:          4.6         3.1          1.5         0.2    setosa
##   5:          5.0         3.6          1.4         0.2    setosa
##  ---                                                            
## 146:          6.7         3.0          5.2         2.3 virginica
## 147:          6.3         2.5          5.0         1.9 virginica
## 148:          6.5         3.0          5.2         2.0 virginica
## 149:          6.2         3.4          5.4         2.3 virginica
## 150:          5.9         3.0          5.1         1.8 virginica
datatable$new_col <- datatable$Species
datatable$new_col
##   [1] setosa     setosa     setosa     setosa     setosa     setosa    
##   [7] setosa     setosa     setosa     setosa     setosa     setosa    
##  [13] setosa     setosa     setosa     setosa     setosa     setosa    
##  [19] setosa     setosa     setosa     setosa     setosa     setosa    
##  [25] setosa     setosa     setosa     setosa     setosa     setosa    
##  [31] setosa     setosa     setosa     setosa     setosa     setosa    
##  [37] setosa     setosa     setosa     setosa     setosa     setosa    
##  [43] setosa     setosa     setosa     setosa     setosa     setosa    
##  [49] setosa     setosa     versicolor versicolor versicolor versicolor
##  [55] versicolor versicolor versicolor versicolor versicolor versicolor
##  [61] versicolor versicolor versicolor versicolor versicolor versicolor
##  [67] versicolor versicolor versicolor versicolor versicolor versicolor
##  [73] versicolor versicolor versicolor versicolor versicolor versicolor
##  [79] versicolor versicolor versicolor versicolor versicolor versicolor
##  [85] versicolor versicolor versicolor versicolor versicolor versicolor
##  [91] versicolor versicolor versicolor versicolor versicolor versicolor
##  [97] versicolor versicolor versicolor versicolor virginica  virginica 
## [103] virginica  virginica  virginica  virginica  virginica  virginica 
## [109] virginica  virginica  virginica  virginica  virginica  virginica 
## [115] virginica  virginica  virginica  virginica  virginica  virginica 
## [121] virginica  virginica  virginica  virginica  virginica  virginica 
## [127] virginica  virginica  virginica  virginica  virginica  virginica 
## [133] virginica  virginica  virginica  virginica  virginica  virginica 
## [139] virginica  virginica  virginica  virginica  virginica  virginica 
## [145] virginica  virginica  virginica  virginica  virginica  virginica 
## Levels: setosa versicolor virginica
setkey(datatable, Species)
key(datatable)
## [1] "Species"
datatable[,.(mean=mean(Sepal.Length), IQR=IQR(Sepal.Length), median=median(Sepal.Length)), by=Species]
## Key: <Species>
##       Species  mean   IQR median
##        <fctr> <num> <num>  <num>
## 1:     setosa 5.006 0.400    5.0
## 2: versicolor 5.936 0.700    5.9
## 3:  virginica 6.588 0.675    6.5
plot_data <- ggplot(data,aes(x=Sepal.Length, y=Sepal.Width)) + geom_point(aes(colour=Species)) 
plot_data