In 2012 and 2013, there were 10 teams in the MLB playoffs: the six
teams that had the most wins in each baseball division, and four “wild
card” teams. The playoffs start between the four wild card teams - the
two teams that win proceed in the playoffs (8 teams remaining). Then,
these teams are paired off and play a series of games. The four teams
that win are then paired and play to determine who will play in the
World Series. We can assign rankings to the teams as follows:
Rank 1: the team that won the World Series Rank 2: the team that lost
the World Series Rank 3: the two teams that lost to the teams in the
World Series Rank 4: the four teams that made it past the wild card
round, but lost to the above four teams Rank 5: the two teams that lost
the wild card round In your R console, create a corresponding rank
vector by typing teamRank = c(1,2,3,3,4,4,4,4,5,5)
teamRank = c(1,2,3,3,4,4,4,4,5,5)
In this quick question, we’ll see how well these rankings correlate
with the regular season wins of the teams. In 2012, the ranking of the
teams and their regular season wins were as follows: Rank 1: San
Francisco Giants (Wins = 94) Rank 2: Detroit Tigers (Wins = 88) Rank 3:
New York Yankees (Wins = 95), and St. Louis Cardinals (Wins = 88) Rank
4: Baltimore Orioles (Wins = 93), Oakland A’s (Wins = 94), Washington
Nationals (Wins = 98), Cincinnati Reds (Wins = 97) Rank 5: Texas Rangers
(Wins = 93), and Atlanta Braves (Wins = 94) Create a vector in R called
wins2012, that has the wins of each team in 2012, in order of rank (the
vector should have 10 numbers).
wins2012 = c(94, 88, 95, 88, 93, 94, 98, 97, 93, 94)
In 2013, the ranking of the teams and their regular season wins were
as follows: Rank 1: Boston Red Sox (Wins = 97) Rank 2: St. Louis
Cardinals (Wins = 97) Rank 3: Los Angeles Dodgers (Wins = 92), and
Detroit Tigers (Wins = 93) Rank 4: Tampa Bay Rays (Wins = 92), Oakland
A’s (Wins = 96), Pittsburgh Pirates (Wins = 94), and Atlanta Braves
(Wins = 96) Rank 5: Cleveland Indians (Wins = 92), and Cincinnati Reds
(Wins = 90) Create another vector in R called wins2013, that has the
wins of each team in 2013, in order of rank (the vector should have 10
numbers).
wins2013 = c(97, 97, 92, 93, 92, 96, 94, 96, 92, 90)
What is the correlation between teamRank and wins2012?
cor(teamRank, wins2012)
[1] 0.3477129
Exercise 1 Numerical Response: # The correlation between teamRank and
wins2012 is 35%, which indicates a slightly weak but positive
correlation. This means that as the rank increases the number of wins
increases. This however is counterintuitive more wins can not equal a
worse rank.
What is the correlation between teamRank and wins2013?
cor(teamRank, wins2013)
[1] -0.6556945
Exercise 2 Numerical Response # The correlation between teamRank and
wins2013 is -0.65%, which indicates a strong negative correlation.This
makes sense that as a team rank becomes lower(higher) they tend to when
more games.
From this examples we can see that team rank is not indictive of to
predicting wins year over year, as this formulation is not
consistent.Instead we would need to add more predictors to the model to
get a better prediction.
LS0tDQp0aXRsZTogIlBsYXlvZmYgUmFua2luZ3MiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KSW4gMjAxMiBhbmQgMjAxMywgdGhlcmUgd2VyZSAxMCB0ZWFtcyBpbiB0aGUgTUxCIHBsYXlvZmZzOiB0aGUgc2l4IHRlYW1zIHRoYXQgaGFkIHRoZSBtb3N0IHdpbnMgaW4gZWFjaCBiYXNlYmFsbCBkaXZpc2lvbiwgYW5kIGZvdXIg4oCcd2lsZCBjYXJk4oCdIHRlYW1zLiBUaGUgcGxheW9mZnMgc3RhcnQgYmV0d2VlbiB0aGUgZm91ciB3aWxkIGNhcmQgdGVhbXMgLSB0aGUgdHdvIHRlYW1zIHRoYXQgd2luIHByb2NlZWQgaW4gdGhlIHBsYXlvZmZzICg4IHRlYW1zIHJlbWFpbmluZykuIFRoZW4sIHRoZXNlIHRlYW1zIGFyZSBwYWlyZWQgb2ZmIGFuZCBwbGF5IGEgc2VyaWVzIG9mIGdhbWVzLiBUaGUgZm91ciB0ZWFtcyB0aGF0IHdpbiBhcmUgdGhlbiBwYWlyZWQgYW5kIHBsYXkgdG8gZGV0ZXJtaW5lIHdobyB3aWxsIHBsYXkgaW4gdGhlIFdvcmxkIFNlcmllcy4gDQpXZSBjYW4gYXNzaWduIHJhbmtpbmdzIHRvIHRoZSB0ZWFtcyBhcyBmb2xsb3dzOg0KIA0KUmFuayAxOiB0aGUgdGVhbSB0aGF0IHdvbiB0aGUgV29ybGQgU2VyaWVzDQpSYW5rIDI6IHRoZSB0ZWFtIHRoYXQgbG9zdCB0aGUgV29ybGQgU2VyaWVzDQpSYW5rIDM6IHRoZSB0d28gdGVhbXMgdGhhdCBsb3N0IHRvIHRoZSB0ZWFtcyBpbiB0aGUgV29ybGQgU2VyaWVzDQpSYW5rIDQ6IHRoZSBmb3VyIHRlYW1zIHRoYXQgbWFkZSBpdCBwYXN0IHRoZSB3aWxkIGNhcmQgcm91bmQsIGJ1dCBsb3N0IHRvIHRoZSBhYm92ZSBmb3VyIHRlYW1zDQpSYW5rIDU6IHRoZSB0d28gdGVhbXMgdGhhdCBsb3N0IHRoZSB3aWxkIGNhcmQgcm91bmQNCkluIHlvdXIgUiBjb25zb2xlLCBjcmVhdGUgYSBjb3JyZXNwb25kaW5nIHJhbmsgdmVjdG9yIGJ5IHR5cGluZw0KdGVhbVJhbmsgPSBjKDEsMiwzLDMsNCw0LDQsNCw1LDUpDQpgYGB7cn0NCnRlYW1SYW5rID0gYygxLDIsMywzLDQsNCw0LDQsNSw1KQ0KDQpgYGANCg0KSW4gdGhpcyBxdWljayBxdWVzdGlvbiwgd2XigJlsbCBzZWUgaG93IHdlbGwgdGhlc2UgcmFua2luZ3MgY29ycmVsYXRlIHdpdGggdGhlIHJlZ3VsYXIgc2Vhc29uIHdpbnMgb2YgdGhlIHRlYW1zLiBJbiAyMDEyLCB0aGUgcmFua2luZyBvZiB0aGUgdGVhbXMgYW5kIHRoZWlyIHJlZ3VsYXIgc2Vhc29uIHdpbnMgd2VyZSBhcyBmb2xsb3dzOg0KUmFuayAxOiBTYW4gRnJhbmNpc2NvIEdpYW50cyAoV2lucyA9IDk0KQ0KUmFuayAyOiBEZXRyb2l0IFRpZ2VycyAoV2lucyA9IDg4KQ0KUmFuayAzOiBOZXcgWW9yayBZYW5rZWVzIChXaW5zID0gOTUpLCBhbmQgU3QuIExvdWlzIENhcmRpbmFscyAoV2lucyA9IDg4KQ0KUmFuayA0OiBCYWx0aW1vcmUgT3Jpb2xlcyAoV2lucyA9IDkzKSwgT2FrbGFuZCBB4oCZcyAoV2lucyA9IDk0KSwgV2FzaGluZ3RvbiBOYXRpb25hbHMgKFdpbnMgPSA5OCksIENpbmNpbm5hdGkgUmVkcyAoV2lucyA9IDk3KQ0KUmFuayA1OiBUZXhhcyBSYW5nZXJzIChXaW5zID0gOTMpLCBhbmQgQXRsYW50YSBCcmF2ZXMgKFdpbnMgPSA5NCkgDQpDcmVhdGUgYSB2ZWN0b3IgaW4gUiBjYWxsZWQgd2luczIwMTIsIHRoYXQgaGFzIHRoZSB3aW5zIG9mIGVhY2ggdGVhbSBpbiAyMDEyLCBpbiBvcmRlciBvZiByYW5rICh0aGUgdmVjdG9yIHNob3VsZCBoYXZlIDEwIG51bWJlcnMpLg0KYGBge3J9DQp3aW5zMjAxMiA9IGMoOTQsIDg4LCA5NSwgODgsIDkzLCA5NCwgOTgsIDk3LCA5MywgOTQpDQoNCg0KYGBgDQoNCkluIDIwMTMsIHRoZSByYW5raW5nIG9mIHRoZSB0ZWFtcyBhbmQgdGhlaXIgcmVndWxhciBzZWFzb24gd2lucyB3ZXJlIGFzIGZvbGxvd3M6DQpSYW5rIDE6IEJvc3RvbiBSZWQgU294IChXaW5zID0gOTcpDQpSYW5rIDI6IFN0LiBMb3VpcyBDYXJkaW5hbHMgKFdpbnMgPSA5NykNClJhbmsgMzogTG9zIEFuZ2VsZXMgRG9kZ2VycyAoV2lucyA9IDkyKSwgYW5kIERldHJvaXQgVGlnZXJzIChXaW5zID0gOTMpDQpSYW5rIDQ6IFRhbXBhIEJheSBSYXlzIChXaW5zID0gOTIpLCBPYWtsYW5kIEHigJlzIChXaW5zID0gOTYpLCBQaXR0c2J1cmdoIFBpcmF0ZXMgKFdpbnMgPSA5NCksIGFuZCBBdGxhbnRhIEJyYXZlcyAoV2lucyA9IDk2KQ0KUmFuayA1OiBDbGV2ZWxhbmQgSW5kaWFucyAoV2lucyA9IDkyKSwgYW5kIENpbmNpbm5hdGkgUmVkcyAoV2lucyA9IDkwKSANCkNyZWF0ZSBhbm90aGVyIHZlY3RvciBpbiBSIGNhbGxlZCB3aW5zMjAxMywgdGhhdCBoYXMgdGhlIHdpbnMgb2YgZWFjaCB0ZWFtIGluIDIwMTMsIGluIG9yZGVyIG9mIHJhbmsgKHRoZSB2ZWN0b3Igc2hvdWxkIGhhdmUgMTAgbnVtYmVycykuDQpgYGB7cn0NCndpbnMyMDEzID0gYyg5NywgOTcsIDkyLCA5MywgOTIsIDk2LCA5NCwgOTYsIDkyLCA5MCkNCmBgYA0KDQpXaGF0IGlzIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRlYW1SYW5rIGFuZCB3aW5zMjAxMj8NCmBgYHtyfQ0KY29yKHRlYW1SYW5rLCB3aW5zMjAxMikNCg0KYGBgDQpFeGVyY2lzZSAxDQogTnVtZXJpY2FsIFJlc3BvbnNlOg0KIyBUaGUgY29ycmVsYXRpb24gYmV0d2VlbiB0ZWFtUmFuayBhbmQgd2luczIwMTIgaXMgMzUlLCB3aGljaCBpbmRpY2F0ZXMgYSBzbGlnaHRseSB3ZWFrIGJ1dCBwb3NpdGl2ZSBjb3JyZWxhdGlvbi4gVGhpcyBtZWFucyB0aGF0IGFzIHRoZSByYW5rIGluY3JlYXNlcyB0aGUgbnVtYmVyIG9mIHdpbnMgaW5jcmVhc2VzLiBUaGlzIGhvd2V2ZXIgaXMgY291bnRlcmludHVpdGl2ZSAgbW9yZSB3aW5zIGNhbiBub3QgZXF1YWwgYSB3b3JzZSByYW5rLg0KDQoNCiANCldoYXQgaXMgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gdGVhbVJhbmsgYW5kIHdpbnMyMDEzPw0KYGBge3J9DQpjb3IodGVhbVJhbmssIHdpbnMyMDEzKQ0KYGBgDQoNCkV4ZXJjaXNlIDINCiBOdW1lcmljYWwgUmVzcG9uc2UNCiMgVGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gdGVhbVJhbmsgYW5kIHdpbnMyMDEzIGlzIC0wLjY1JSwgd2hpY2ggaW5kaWNhdGVzIGEgc3Ryb25nIG5lZ2F0aXZlIGNvcnJlbGF0aW9uLlRoaXMgbWFrZXMgc2Vuc2UgdGhhdCBhcyBhIHRlYW0gcmFuayBiZWNvbWVzIGxvd2VyKGhpZ2hlcikgdGhleSB0ZW5kIHRvIHdoZW4gbW9yZSBnYW1lcy4NCg0KDQojIEZyb20gdGhpcyBleGFtcGxlcyB3ZSBjYW4gc2VlIHRoYXQgdGVhbSByYW5rIGlzIG5vdCBpbmRpY3RpdmUgb2YgdG8gcHJlZGljdGluZyB3aW5zIHllYXIgb3ZlciB5ZWFyLCBhcyB0aGlzIGZvcm11bGF0aW9uIGlzIG5vdCBjb25zaXN0ZW50Lkluc3RlYWQgd2Ugd291bGQgbmVlZCB0byBhZGQgbW9yZSBwcmVkaWN0b3JzIHRvIHRoZSBtb2RlbCB0byBnZXQgYSBiZXR0ZXIgcHJlZGljdGlvbi4NCmBgYHtyfQ0KDQpgYGANCg0K